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Abstract. Seasonal precipitation forecasting is essencial for climate planning
and disaster risk reduction. This study used Convolutional Neural Network 1D
(CNN 1D), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
and Graph Convolutional Long Short-Term Memory (GConvLSTM) to forecast
autumn 2023 precipitation. CNN 1D had the best performance (MSE: 1.8827,
Correlation Coefficient: 0.9137), excelling in accuracy but losing spatial de-
tails. GConvLSTM captured spatial patterns better, while LSTM and GRU un-
derperformed. Despite CNN 1D’s superiority, integrating spatial components,
as in GConvLSTM, could improve predictions.

Resumo. A previsão de precipitação sazonal é essencial para o planejamento
climático e a redução de riscos de desastres naturais. Este estudo utilizou Con-
volutional Neural Network 1D (CNN 1D), Long Short-Term Memory (LSTM),
Gated Recurrent Unit (GRU) e Graph Convolutional Long Short-Term Mem-
ory (GConvLSTM) para prever a precipitação do outono de 2023. CNN 1D
teve o melhor desempenho (MSE: 1.8827, Coeficiente de Correlação: 0.9137),
destacando-se em precisão, mas perdendo detalhes espaciais. GConvLSTM
capturou melhor os padrões espaciais, enquanto LSTM e GRU tiveram desem-
penho inferior. Apesar da superioridade da CNN 1D, a integração de compo-
nentes espaciais, como no GConvLSTM, poderia melhorar as previsões.

1. Introduction
Precipitation is one of the most challenging meteorological variables to predict, primarily
due to the complexity of cloud microphysics, which involves processes such as conden-
sation, coalescence, and ice crystal formation. These processes are strongly influenced
by a variety of other atmospheric variables [Holton and Hakim 2013]. With increasingly
intense global environmental climate changes, precipitation forecasting becomes increas-
ingly difficult to perform accurately.



Traditionally, numerical weather/climate prediction models, based on physical
equations, remain the primary approach to address this issue. These models aim to iden-
tify atmospheric behavior by solving complex systems of differential equations that gov-
ern atmospheric dynamics. To optimize the computational process, discretization meth-
ods and parallelism techniques are employed, although this approach still incurs high
computational costs [Reboita et al. 2018, CPTEC 1988].

With advancements in artificial intelligence, especially in Machine Learning (ML)
and its subfield Deep Learning (DL), promising alternatives have emerged for precipita-
tion forecasting. While ML is effective at recognizing patterns in large datasets, it can
struggle with very large data or complex patterns. In contrast, DL techniques excel in
handling these challenges, making them a powerful and effective approach for accurate
precipitation forecasting. These methods are particularly suited for capturing intricate
temporal and spatial dependencies in climate data, offering significant improvements in
forecasting precision [DataCamp 2023]

Based on data from the Global Precipitation Climatology Project (GPCP), a sea-
sonal precipitation forecast for South America was made using Extreme Gradient Boost-
ing (XGBoost) and Multilayer Perceptron (MLP) models [Monego et al. 2022]. Also
using GPCP data, monthly precipitation forecasts were made, including an analysis of
droughts, using an MLP model and comparing the results with data from the North Amer-
ican Multi-Model Ensemble (NMME) [Anochi and Shimizu 2024]. However, the use of
DL techniques for precipitation forecasting still needs to be properly explored, by evalu-
ating several approaches and perceiving their performances.

The Chinese summer precipitation forecast between 2019 and 2021 was inves-
tigated using climate data from 1991 to 2021 with a spatial resolution of 1° × 1° and
observed precipitation data from Merged Analysis of Precipitation (CMAP) with a reso-
lution of 2.5° × 2.5° [Yang et al. 2022]. In Brazil, a seasonal precipitation forecast was
performed with the Support Vector Machine (SVM) model and climate indices as input
variables [Torres et al. 2024].

The seasonal precipitation forecast in South America for the years 2018 and 2019
was evaluated using data from the Global Precipitation Climatology Project (GPCP) with
a spatial resolution of 2.5° × 2.5°. A Multilayer Perceptron (MLP) optimized by the
Multiparticle Collision Algorithm (MPCA) was compared with the standard MLP and
the Brazilian Atmospheric Model (BAM). The results indicated that the MPCA improved
the accuracy of the MLP, although limitations remained in some regions, as evidenced by
the MSE (Mean Squared Error) and other evaluation metrics [Anochi et al. 2021].

The literature still presents a lack of more comprehensive investigations on the
application of DL models in climate precipitation forecasting, indicating a promising field
to be explored.

This article aims to make a climate seasonal precipitation forecast for the
autumn season in South America in the year of 2023 using DL techniques, such
as CNN 1D [Kiranyaz et al. 2019], LSTM [Staudemeyer and Morris 2019], GRU
[Chung et al. 2014], and GConvLSTM [Seo et al. 2016]. The choice of autumn as the fo-
cus of the research is due to it being a transitional season between summer and winter, pre-
senting atmospheric characteristics that can significantly influence climate forecasts. The



forecast will be based on atmospheric behaviors from the previous summer season as well
as historical data from the autumn season itself. Additionally, the results obtained from
the DL models will be compared with predictions from the North American Multi-Model
Ensemble (NMME) to assess their performance and reliability [Kirtman et al. 2014].

2. Materials and methods
Figure 1 presents the flowchart of the proposed methodology. To perform the autumn
climate forecasting, tabular and gridded data from ECMWF Reanalysis v5 (ERA5) were
used. These data have a resolution of 0.25° x 0.25°, which is considered high for climate
studies, and are part of a reanalysis dataset [Hersbach et al. 2023, Service 2023]. Reanal-
ysis combines global observations with model data to produce a globally comprehensive
and consistent dataset, based on the laws of physics.

Figure 1. Flowchart of the proposed methodology

The climatic variables contained in this dataset are detailed in Table 1, where
the variables precipitation and mean precipitation rate were originally in meters per day
(m/day) but were converted to mm/day during preprocessing.

Variables Representation Units
Precipitation tp mm/day

Air temperature at 2 meters t2m K
Horizontal wind speed component u m/s

Vertical wind speed component v m/s
Surface pressure sp Pa

Mean precipitation rate mtpr mm/day
Geopotential height z m
Specific humidity q kg/kg
Air temperature t K

Divergence d s-1

Table 1. Variable representations and their respective units.

Initially, the data were organized based on the seasons of the year. Then, two
sets were created: the input set, consisting of historical data from 1989 to 2022, and
the test set, containing data from 2023. Before proceeding, a sensitivity analysis was



conducted, focusing on the correlation matrix between the variables, as it helps to assess
the importance of the variables based on their linear correlations. After this analysis, the
input set was further subdivided into training and validation sets, with 80% of the data
allocated for training and 20% for validation.

Based on the correlation matrix (see Figure 2), some variables were removed to
avoid redundancy and reduce collinearity in the model. The year, month and pressure
level variables were excluded, as they did not present a significant correlation with other
variables, making it irrelevant for prediction. The mtpr variable was discarded due to
its 100% correlation with tp (total precipitation; this is the variable that needs to be pre-
dicted), indicating that both carry the same information. Similarly, sp was removed due
to its strong correlation with other meteorological variables, while d was excluded for its
low predictive power and high correlation with existing variables. These removals help
optimize the model by preserving only the most relevant information and reducing data
complexity. After this analysis, the final set of input variables contains q, t, t2m, tp, u, v,
z, latitude, and longitude.

Figure 2. Correlation matrix

After the sensitivity analysis, the model hyperparameters were fine-tuned to opti-
mize its performance. The adjusted values, which showed the best combination of results
for precipitation forecasting, are detailed in Table 2. This table presents the key configu-
rations, such as the number of hidden layers, the activation function used, the batch size,
the learning rate, among others, which were essential for the success of all models during
training.

Parameters Value
Number of hidden layers 5
Epochs 200
Activation function ReLU
Batch size 1024
Patience 20
Neurons [256, 128, 64, 32, 64, 128, 256]
Optimizer AdamW
Learning Rate 0.001

Table 2. Hyperparameters of all DL models.

As for the GConvLSTM model, the number of connections was determined using
a Multi-Layer Perceptron (MLP) network with 2 layers. The MLP was trained for 20
epochs with a learning rate of 0.001 to optimize the adjustment of the connections.



In the data extracted from NMME for the autumn of 2023, total precipitation
data was used, and bilinear interpolation was applied to align it with the ERA5 grid. This
interpolation aimed to ensure spatial compatibility between the two data sources, enabling
a more consistent and comparable analysis between the model results and the NMME
forecasts. By aligning the precipitation data to the same grid, this process minimized
spatial discrepancies and allowed for a more accurate assessment of precipitation patterns
and forecasting performance across both datasets.

Regarding the selected DL models, LSTM, GRU, 1D CNN, and GConvL-
STM are neural networks used to process sequential and structured data. LSTM
captures long-term dependencies through three gates: forget, input, and output
[Staudemeyer and Morris 2019]. GRU is a more compact version with reset and update
gates [Chung et al. 2014]. 1D CNN learns patterns in one-dimensional data and uses
them in MLP models for tasks like classification and prediction [Kiranyaz et al. 2019].
GConvLSTM combines graph convolutions with LSTM, where each grid point is a node,
and the connections between them can be adjusted using a distance measure, enabling the
modeling of spatial and temporal data [Seo et al. 2016].

2.1. Assessment metrics
To assess the performance of the models, we employed the following evaluation met-
rics: R2, MSE, MAE, and the Correlation Coefficient. The corresponding equations are
provided below:

Coefficient of Determination (R2): This metric quantifies the proportion of the
variance in the observed data explained by the model. A value closer to 1 indicates a
better model fit.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(1)

Where yi is the observed value for the i-th sample, ŷi is the predicted value for the i-th
sample, and ȳ is the mean of the observed values.

Mean Squared Error (MSE): MSE computes the average of the squared differ-
ences between observed and predicted values, with larger errors being penalized more.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

Where yi is the observed value for the i-th sample, ŷi is the predicted value for the i-th
sample, and n is the total number of samples.

Mean Absolute Error (MAE): MAE calculates the average of the absolute dif-
ferences between observed and predicted values, offering a straightforward indication of
model accuracy.

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)



Where yi is the observed value for the i-th sample, ŷi is the predicted value for the i-th
sample, and n is the total number of samples.

Correlation Coefficient (r): The correlation coefficient quantifies the linear rela-
tionship between observed and predicted values, with a range from -1 to 1. A value of 1
indicates perfect positive correlation, while -1 indicates perfect negative correlation.

r =

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(yi − ȳ)2
∑n

i=1(ŷi − ¯̂y)2
(4)

Where yi represents the observed values for the i-th sample, ŷi represents the predicted
values for the i-th sample, ȳ and ¯̂y are the means of the observed and predicted values,
respectively, and n is the total number of samples.

3. Results
During autumn in the Southern Hemisphere, which serves as a transitional period between
summer and winter, one of the most notable characteristics is the persistence of rainfall in
the northern and northeastern regions of Brazil, often influenced by the Intertropical Con-
vergence Zone (ITCZ). This period is also marked by the occurrence of the first typical ad-
verse weather phenomena, such as fog in the South, Southeast, and Central-West regions,
frosts in the South, Southeast, and Mato Grosso do Sul, snow in the mountainous areas and
plateaus of the South region, and cold spells in the southern part of the North region, as
well as in Mato Grosso do Sul and Mato Grosso. Another typical phenomenon of autumn
is the intrusion of cold air masses from the southern part of the continent, which cause a
significant drop in temperatures, especially in the South and Southeast regions. These cold
air masses result in colder nights and, in some areas, frosts, marking the gradual transition
between warmer and cooler seasons, as well as contributing to a more unstable climate in
various parts of Brazil [INSTITUTO NACIONAL DE METEOROLOGIA 2024].

Figure 3. Observed precipitation and estimates. (a) ERA5 (reference), (b) NMME,
(c) LSTM, (d) CNN 1D, (e) GRU, (f) GConvLSTM.



Figure 3 presents a comparison between observed precipitation (ERA5) and esti-
mates generated by the NMME model and different neural network architectures (LSTM,
CNN 1D, GRU, and GConvLSTM) for South America. In general, the models capture the
seasonal distribution of precipitation, with the highest accumulations over the Amazon re-
gion and the Andes Mountains, which are typical characteristics of the region’s climate
regime.

However, differences in the intensity and location of precipitation maxima can be
observed. The NMME model (b) exhibits general patterns similar to ERA5 but shows
excessive intensification in northern South America and underestimates precipitation in
southern Brazil. The LSTM (c) and GRU (e) display very similar patterns, but with vari-
ations in rainfall intensity, especially in the Amazon, where both seem to smooth out
maximum values. The CNN 1D (d) tends to further smooth spatial patterns, losing lo-
cal details, particularly in the Andes region and along the eastern coast of Brazil. The
GConvLSTM (f), by incorporating graph convolutions, better captures certain geograph-
ical structures of precipitation, making it more similar to the spatial distribution observed
in ERA5. When compared to the observed data, some models tend to underestimate pre-
cipitation in the Amazon and southern Brazil, while others overestimate it in coastal areas
of the Andes Mountains.

Figure 4. Error maps. (a) LSTM, (b) CNN 1D, (c) GRU, (d) GConvLSTM, (e) NMME.

Figure 4 presents precipitation error maps over South America during autumn,
comparing the LSTM (a), CNN1D (b), GRU (c), GConvLSTM (d) and NMME (e) mod-
els. LSTM (a) underestimates precipitation over most of the continent, with some over-
estimations located in the Amazon and the Pacific coast. CNN1D (b) has a more bal-
anced error distribution, but still presents underestimations in the eastern region. GRU
(c) exhibits a similar behavior to CNN1D, but with smoother underestimations and more
uniform patterns. GConvLSTM (d) demonstrates the smallest underestimation bias, with
overestimations concentrated on the northwest coast. NMME (e) presents the largest over-
all error, with significant underestimations in the south and intense overestimations in the
northern and western coastal regions.

The models struggle to accurately capture precipitation intensities, especially in
regions with high climate variability like the Amazon and the Andes. The LSTM model
shows the strongest dry bias, while the GConvLSTM model appears to better capture
some spatial structures, reducing systematic errors. Quantitative evaluations are crucial
to determine which model provides the most accurate seasonal precipitation predictions.



Model MSE R² MAE Correlation Coefficient
CNN 1D 1.8827 0.8264 0.8226 0.9137
LSTM 2.1719 0.7998 0.9277 0.8976
GRU 2.3152 0.7866 0.9327 0.8979
GConvLSTM 1.9589 0.8194 0.9061 0.9083
NMME 6.9661 0.3586 1.7353 0.6479

Table 3. Performance metrics for each model in autumn.

The results shown in Table 3 indicate that the CNN 1D model performs best in
predicting precipitation during the autumn of 2023, standing out with the lowest Mean
Squared Error (MSE = 1.8827), the highest R² (0.8264), the lowest Mean Absolute Error
(MAE = 0.8226), and the highest Correlation Coefficient (0.9137), suggesting a strong
correspondence between the predicted and observed values. The GConvLSTM model
also performs competitively, with an R² close to that of CNN 1D (0.8194), but with a
slightly higher MSE. LSTM and GRU perform worse, with higher MSE and lower overall
accuracy, evidenced by the higher MAE values. The NMME data, with an MSE of 6.9661,
an R² of 0.3586, an MAE of 1.7353, and a Correlation Coefficient of 0.6479, shows
relatively poorer performance in comparison. Overall, CNN 1D stands out as the most
efficient and reliable model for predicting precipitation in the fall, while the other models,
especially GRU, may require adjustments to improve their accuracy.

4. Discussion

The evaluation of deep learning models for seasonal precipitation forecasting in South
America shows distinct strengths and weaknesses. All models capture the general sea-
sonal distribution, with the Amazon and Andes experiencing the highest precipitation
levels, but each model exhibits specific biases in spatial patterns and rainfall intensity.

LSTM and GRU models show similar precipitation patterns but tend to underesti-
mate rainfall in areas like the Amazon and southern Brazil, despite capturing large-scale
trends. The CNN 1D model, which achieves the best performance metrics (Table 3),
smooths precipitation patterns, potentially losing localized details. This is evident in the
error maps (Figure 4), where CNN 1D presents a balanced error distribution but underes-
timates rainfall in the eastern part of the continent.

The GConvLSTM model, incorporating graph convolutions, better captures geo-
graphic precipitation structures and reduces underestimation bias compared to other mod-
els. However, it does not surpass CNN 1D in accuracy, as shown by the performance
metrics.

In comparison, the NMME data, bilinearly interpolated to the ERA5 grid, shows
poorer performance with an MSE of 6.9661, an R² of 0.3586, an MAE of 1.7353, and
a Correlation Coefficient of 0.6479. Although it offers valuable multi-model forecasts,
its larger errors and lower correlation demonstrate its limitations in seasonal precipitation
prediction, particularly when compared to the deep learning models.

Overall, while the CNN 1D model provides the best overall predictive perfor-
mance, the integration of spatial components, like those in GConvLSTM, could further
improve precipitation predictions.



5. Conclusion
In data-driven approaches, such as deep learning, it is challenging for a single solution
to perform optimally across all domains. This study evaluated various DL models for
seasonal precipitation forecasting in South America, identifying their strengths and weak-
nesses. The CNN 1D model showed the best predictive performance, although with some
loss of spatial detail, while the GConvLSTM model demonstrated promise in capturing
geographic precipitation structures, highlighting the potential of graph-based neural net-
works for meteorological predictions.

In contrast, the NMME model, despite offering valuable multi-model forecasts,
displayed weaker predictive performance than the DL models, with higher MSE, lower
R², and less favorable correlation. This underscores the limitations of traditional model
ensembles in seasonal precipitation forecasting when compared to the spatially aware DL
models.

This research improves seasonal precipitation forecasting, supporting water allo-
cation, disaster preparedness, and conservation. It enhances decision-making for envi-
ronmental management and natural resources. The findings contribute to more reliable
climate predictions.

Future work will involve using the Optuna hyperparameter optimization frame-
work to improve model performance and extending the evaluation to other seasons, , and
incorporating SHAP values to enhance the interpretability of the models. We also plan to
explore graph-based neural networks further, aiming to enhance both accuracy and spa-
tial representation of precipitation forecasts. Additionally, combining dynamic modeling
with DL will be investigated to assess its feasibility for precipitation forecasting, poten-
tially advancing reliable seasonal modeling and benefiting weather-sensitive sectors.
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