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Abstract. Wildfire spread has intensified in Brazil, particularly in biomes such
as the Cerrado, due to climate change and environmental degradation. This
study proposes a heterogeneous wildfire spread model based on cellular au-
tomata (CA), optimized using genetic algorithms (GA), to simulate fire propa-
gation in areas with different vegetation types, such as Pau Furado State Park.
The model accounts for the interaction between wind, vegetation, and soil con-
ditions, and employs the GA to adjust parameters such as fire intensity and
wind direction, aiming to align the simulations with reference data. The results
showed that the model accurately reproduced fire spread dynamics, demonstrat-
ing the effectiveness of GA in parameter optimization.

1. Introduction
The spread of wildfires is a phenomenon that can result in substantial environmental,
social, and economic damage. In Brazil, wildfires have intensified in recent years, partic-
ularly in biomes such as the Amazon, the Cerrado, and the Pantanal [Mota et al. 2019].
The increasing frequency of fires is closely linked to climate change, which leads to longer
drought periods and rising temperatures. Additionally, environmental degradation caused
by human activities further hinders the maintenance of ecological balance and biodiversity
preservation [Ramos-Neto and Pivello 2000]. This scenario aligns with the Sustainable
Development Goals (SDGs), particularly SDG 15, which “aims to protect, restore, and
promote the sustainable use of terrestrial ecosystems, combat desertification, halt and re-
verse land degradation, and halt biodiversity loss.” Effective wildfire modeling and mon-
itoring are key strategies for achieving this objective, enabling a more assertive approach
to fire prevention and control.

The Cerrado biome, in particular, is naturally fire-prone due to its vegetation and
climatic regime. Although fire is a natural component in many ecosystems, including
the Cerrado, uncontrolled and unscheduled burning leads to irreversible habitat destruc-
tion and species loss [Brasiel and Lima 2024]. Therefore, computational modeling of fire
spread becomes essential to predict and mitigate such damage, providing valuable infor-
mation for fire prevention and management.

Within this context, cellular automata (CA) have emerged as an effective tool for



modeling natural phenomena, including wildfire spread [Tinoco et al. 2019]. CAs are
dynamic systems that use a grid of interactive cells to simulate evolutionary and propaga-
tion processes in complex systems [Oliveira et al. 2001]. In the case of wildfires, they can
represent the interaction between fire, wind, vegetation type, and soil conditions, allow-
ing the simulation of fire evolution across different scenarios [Alexandridis et al. 2008].
However, to ensure the reliability of such models, effective parameter calibration is cru-
cial. This task is particularly challenging due to the complexity and high dimensionality
of the factors involved. Genetic algorithms (GAs), a class of bioinspired optimization
techniques, have shown promise in automatically tuning CA parameters to improve the
consistency between simulations and target scenarios [Martins et al. 2019], [Ferreira et al.
2022a], [Murilo et al. 2025].

In this paper, we propose a heterogeneous wildfire spread model based on cellular
automata, designed to simulate fire behavior in areas with four distinct vegetation types.
Unlike studies focused on reproducing real wildfire data, our primary goal is to evaluate
the effectiveness of genetic algorithms in calibrating the parameters of the CA model. To
this end, we generate synthetic reference scenarios and assess whether the GA is capable
of recovering the original parameter configurations that produced them. The study is con-
textualized in the region of Pau Furado State Park, located in Uberlândia, Minas Gerais,
whose environmental characteristics inform the construction of the synthetic scenarios
used for model evaluation.

2. Related Work
In the field of evolutionary computation, several researchers have investigated the use
of GAs to calibrate the parameters of CA models for the spread of insects and disease
vectors [Fraga et al. 2021] [Monteiro et al. 2020]. The results demonstrated that the evo-
lutionary approach can significantly enhance simulation accuracy by automatically and
efficiently tuning model parameters. Similarly, GAs have been applied to calibrate homo-
geneous wildfire models [Ferreira et al. 2022a, Ferreira et al. 2022b, Murilo et al. 2025].

However, many existing studies still focus on homogeneous or simplified sce-
narios, and the application of GAs in heterogeneous contexts — such as those found in
biomes like the Cerrado — remains a challenge. The present work aims to advance in
this direction by proposing a heterogeneous model incorporating four types of vegetation
and using GAs to optimize the CA parameters, thereby more accurately representing fire
spread in a realistic environment, such as the Pau Furado State Park.

3. Methods
The main objective of this study is to develop a wildfire spread model based on proba-
bilistic cellular automata, using genetic algorithms to optimize the model parameters. The
model is designed to simulate heterogeneous scenarios with different vegetation types and
is applied to study wildfire propagation in the Pau Furado State Park. The following sec-
tions describe the main components of the model, the optimization methodology, and the
scenarios used to evaluate model performance.

3.1. Heterogeneous Cellular Automata Model for Wildfire Spread

The CA model used in this study is two-dimensional and probabilistic, representing a
terrain area subdivided into cells. Each cell can assume one of two states: vegetation or



fire. Fire spreads from cells currently burning to neighboring vegetation cells, depending
on factors such as wind direction and intensity.

A key feature of the model is the wind matrix W3×3, which defines wind direction
and intensity in each terrain cell. Wind is one of the main factors influencing the speed and
direction of fire spread, as fire tends to propagate more quickly in the direction of the wind
and in areas with stronger wind intensity. The wind matrix is dynamically configured and
can be adjusted to represent different climatic and geographic conditions. Each cell of
the W3×3 matrix contains information about wind direction (e.g., north, south, east, west)
and its intensity (wind strength). This matrix plays a crucial role in the model’s behavior,
allowing fire propagation to be influenced by changing wind conditions, resulting in a
more realistic and locally adaptable simulation. The model also includes two essential
parameters to control fire spread and vegetation recovery:

LQ (Burning Limit): This parameter determines the fire spread rate in vegetation cells.
The higher the LQ value, the greater the probability of fire spreading to neighbor-
ing cells. This parameter reflects vegetation characteristics such as density and fire
resistance. High LQ values represent highly flammable vegetation, while lower
values indicate more fire-resistant vegetation.

LR (Recovery Limit): The LR parameter controls the speed of vegetation recovery
after a fire. Once a cell has burned, the vegetation regeneration time is determined
by LR. A higher LR value implies faster recovery, whereas lower values indicate
slower recovery or an inability to regenerate.

3.2. Genetic Algorithm

The purpose of the GA is to optimize the CA model parameters by tuning the LQ, LR,
and the wind matrix W3×3, in order to improve the accuracy of fire spread simulations,
aligning them with reference data. In this study, W3×3, LQ, and LR are calibrated by the
GA to test its ability to recover model parameters from synthetic scenarios.

In a GA, each individual represents a potential solution to the optimization prob-
lem. In this case, the individual is a parameter vector describing fire behavior in a specific
scenario, considering the different vegetation types in the model. Each individual con-
sists of 10 genes per vegetation type, totaling 40 genes for the model with four vegetation
types. For each vegetation type, the chromosome includes: LQ, represented by an inte-
ger value between 1 and 10; LR, represented by an integer between 1 and 100; and the
W3×3 matrix, represented by 8 real values between 0 and 1, with each value indicating the
probability of fire propagation in the cardinal (north, south, east, west) and intercardinal
directions. With four vegetation types, the chromosome is represented as a 40-gene vec-
tor: 8 integers and 32 real values.

The initial population is randomly generated with 100 individuals. Parent se-
lection is performed via simple tournament selection with a tournament size of 2. The
crossover operator is two-point crossover, with a 90% crossover rate. The mutation rate is
20%, randomly altering genes. Two techniques are employed to determine which genes
are mutated: applying a mutation mask and randomly selecting a gene to mutate. Addi-
tionally, the top 25% of individuals from each generation are preserved. The GA evolves
over 100 generations. The GA parameters used in this study (mutation rate, crossover
probability, and population size) were adopted from a previous sensitivity analysis [Fer-
reira et al. 2022a].



Each individual’s fitness is calculated based on the difference between fire cells
generated by the simulation and those in the reference dataset. To account for the spa-
tial dispersion of fire cells, the grid is divided into nine parts, and the differences in the
number of fire cells are computed for each part. The sum of these differences is then
calculated. To reduce the effect of simulation stochasticity, cell values are recorded at
each time step of a complete simulation. A total of 102 executions are performed for
each scenario, recording the average number of fire cells in each of the nine grid regions.
Each individual is evaluated over five different simulations using the parameters defined
in its chromosome. For each simulation, the average number of fire cells across the nine
grid regions is calculated. In heterogeneous vegetation scenarios, each vegetation type is
evaluated separately. Fitness values are normalized using the min-max method, and the
simple average of the fitness values for each vegetation type is computed.

At this stage of the study, synthetic datasets generated through wildfire simulations
with varying parameters were used to create diverse scenarios. The goal was to evaluate
the GA’s ability to identify appropriate parameters for representing fire spread. Temporal
sequences of grids were generated, with 50 grids representing the temporal evolution of
fire. These reference datasets were used to optimize the model parameters. To reduce
stochasticity and bias, 100 executions were carried out for each scenario, recording the
average number of fire cells in each grid region. Differences between the simulations
and the reference dataset were calculated by comparing the average values of the 100
executions with the individual simulation values.

4. Results
In this section, we present the main results obtained from the simulations. First, we
describe the simulations using a heterogeneous model with four distinct vegetation types,
followed by the simulation of a wildfire scenario in the Pau Furado State Park.

4.1. Heterogeneous Model with Four Vegetation Types

Figure 1 compares the reference parameters with those adjusted by the GA for the four
simulated vegetation types. The LQ and LR parameters adjusted by the GA closely match
the reference values, ensuring efficient fire propagation while maintaining intensity con-
trol. The W3×3 matrix obtained through the GA indicates that fire propagation occurs
predominantly westward, with slight variations in vector forces, especially in Veg1 and
Veg3. This suggests that the GA successfully captured subtle differences in propagation
conditions.

Figure 2 illustrates the temporal evolution of the wildfire, highlighting the burned
areas over time. The propagation behavior across different time steps reflects the fire dy-
namics, taking into account both vegetation type and wind influence. Variations in fire
spread are most evident in Veg1 and Veg3, with fire remaining confined to a single
vegetation type in the third and fourth simulations. Despite these variations, the overall
propagation behavior follows the expected pattern, realistically capturing fire dynamics,
which is essential for effective wildfire prevention and control.

4.2. Pau Furado State Park

Validating a CA model in real-world scenarios is essential to ensure its practical applica-
bility, particularly for wildfire spread simulations. In the context of Pau Furado State Park,



(a) Reference Model. (b) Genetic Algorithm.

Figure 1. Parameter sets and force vectors used in the heterogeneous scenario
with four vegetation types: (a) reference; and (b) obtained by the genetic algo-
rithm based on simulations with different fire ignition points.

(a) Reference model. (b) Genetic Algorithm.

Figure 2. Temporal evolution of the cellular automata in a heterogeneous sce-
nario with four vegetation types (in shades of green), where columns represent
time steps and rows represent different ignition points: (a) reference model; and
(b) model configured by the GA.

the application of the model enabled the observation of its response to natural variations,
such as vegetation types and wind direction, contributing to improving model robustness
by adapting it to unforeseen real-world conditions.

To construct this scenario, specific vegetation segments were extracted from the
park’s vegetation map, which was generated using satellite imagery. Due to the unavail-
ability of official georeferenced vector data for the region, a conceptual representation of
the landscape was created manually using Adobe Photoshop, for the purpose of a proof
of concept. This approach allowed the simulation to proceed despite data limitations, and
does not aim to reproduce exact geographic accuracy.

These segments were represented using distinct RGB colors, each corresponding



to a vegetation type, forming a gridded matrix processed in MATLAB. The final config-
uration included four vegetation types represented by green, yellow, purple, and brown,
simulating a heterogeneous area, as shown in Figure 3. To adjust the wildfire propagation,
a genetic algorithm (GA) was employed to optimize the CA model parameters, including
wind direction and intensity. The parameters LQ and LR were adjusted to optimize the
model and better match real conditions, using specific values represented by the pairs:
(3, 30), (2, 90), (6, 20), and (8, 60). Additionally, the preference matrices were adjusted

Figure 3. Region of Pau Furado State Park represented in the first evaluated
scenario.

with a clockwise rotation, maintaining the same wind intensities but changing the direc-
tion to northwest. The objective of the GA was to automatically tune these parameters
to improve the fire spread simulation, making it as close as possible to real-world obser-
vations. When compared to the reference parameters, the GA-adjusted vectors exhibited
very similar intensities and directions (Figure 4), indicating that the algorithm effectively
calibrated the parameters. The best individual found by the GA achieved a fitness value
of 0.093, while the average fitness across runs was 0.094 ± 0.0009, suggesting a good
model fit.

(a) Reference model. (b) Genetic Algorithm.

Figure 4. Parameter sets and force vectors used in the first scenario representing
Pau Furado State Park: (a) reference; and (b) obtained by the genetic algorithm
based on simulations with different fire ignition points.

In the temporal evolution simulation, fire spread was observed to verify how it
developed within the scenario. Initially, the fire spread consistently from the ignition point
toward the northwest. Figure 5 shows that the fire propagated through all vegetation types



proportionally, with intensity variations depending on vegetation characteristics. The GA-
adjusted model presented behavior very similar to the reference model, with the exception
of a slight discrepancy in Veg3 (brown), where the fire spread with less intensity. This
difference was more pronounced when fire started near the edges of the mapped area.

(a) Reference model. (b) Genetic Algorithm.

Figure 5. Temporal evolution of the cellular automaton considering different igni-
tion points in the first scenario representing Pau Furado State Park: (a) reference
model; and (b) model configured by the GA.

Overall, the CA model adjusted by the GA was able to satisfactorily simulate
fire behavior in a heterogeneous vegetation area, validating its capacity to represent fire
spread in more complex and realistic environments, such as those found in Pau Furado
State Park. Despite minor discrepancies, the general propagation behavior was preserved,
demonstrating the GA’s effectiveness in tuning the model parameters.

The second scenario, shown in Figure 6, was designed to test the CA model un-
der a configuration different from the previous one, involving horizontal and vertical re-
flection of the preference matrices. This change altered the wind direction to southeast
while keeping the intensity unchanged. Additionally, the second scenario introduced the
presence of a river in the mapped area, modeled as a natural barrier to fire spread. The
river served as a containment line in the simulated area, which was important to assess
the model’s ability to handle natural obstacles and how these affect fire behavior. For
this scenario, the GA was again used to calibrate the CA model parameters under the new
conditions. While the preference matrices were adjusted, slight differences were observed
when compared to the reference model (Figure 7).

For instance, in Veg1, the center-right cell of the preference matrix had a lower
value than in the reference, resulting in a vector with a slightly larger angle. In Veg2, the
center-bottom cell had a lower value, resulting in a weaker and slightly misaligned vector.
For Veg3, the left-side cells had lower values, producing a vector with a flatter angle. In
Veg4, the top-right cell had a slightly higher value than in the reference, causing a minor



Figure 6. Region of Pau Furado State Park represented in the second evaluated
scenario.

increase in vector intensity while maintaining a similar direction.

(a) Ref . (b) GA.

Figure 7. Parameter sets and force vectors used in the second scenario repre-
senting Pau Furado State Park: (a) reference; and (b) obtained by the genetic
algorithm based on simulations with different fire ignition points.

Despite these small differences in the parameters, results showed that fire propaga-
tion in the GA-adjusted model followed the same direction and intensity as the reference
model, with fire spreading southeast and being contained by the river. The overall propa-
gation behavior was adequately replicated, with the river acting as a containment barrier
and preventing fire from crossing to the other side. However, some discrepancies were
observed in Veg2, where the fire spread more discretely in the GA-adjusted model com-
pared to the reference, especially in simulations where the fire started in central or lower
regions of the grid, as shown in Figure 8.

In terms of performance, the best GA individual achieved a fitness value of 0.124,
and the average fitness across runs was 0.125 ± 0.0002, indicating that the algorithm ef-
fectively adjusted the parameters, albeit with slight differences from the reference model.
Overall, this second scenario validated the CA model’s ability — when adjusted by a GA
— to simulate fire propagation in an environment with natural obstacles, such as rivers,
and heterogeneous vegetation, maintaining consistency with the reference model’s behav-
ior, except for minor variations in the simulations involving Veg2.

5. Final Considerations
Wildfire spread modeling is an essential tool for understanding and mitigating the envi-
ronmental, social, and economic impacts caused by such events, particularly in vulnerable



(a) Reference Model. (b) Genetic Algorithm.

Figure 8. Temporal evolution of the cellular automaton considering different ig-
nition points in the second scenario representing Pau Furado State Park: (a)
reference model; and (b) model configured by the GA.

biomes like the Cerrado. This study proposed a heterogeneous CA model, optimized us-
ing GAs, to simulate fire propagation in realistic scenarios, with a focus on Pau Furado
State Park.

The results demonstrated that the GA - adjusted model was capable of satisfac-
torily reproducing wildfire propagation behavior, accounting for environmental variables
such as vegetation type and wind direction. Although minor discrepancies were observed
— especially in specific vegetation types — the overall fire propagation behavior was
preserved, validating the model’s potential to realistically represent fire dynamics.

These findings underscore the importance of using computational models to pre-
dict and monitor wildfires, enabling more effective approaches to fire prevention and sup-
pression. Furthermore, the ability to automatically calibrate model parameters using GAs
offers a powerful tool to deal with dynamic and complex scenarios, such as those found
in biomes like the Cerrado.

Future work should include comparisons with other fire models — such as 3D
simulations — and incorporate additional variables like topography and soil moisture.
Validation with real-world data (e.g., satellite imagery, remote sensing, field measure-
ments) is also essential for assessing model accuracy under different climatic conditions
and improving its generalizability across seasons and landscapes.
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