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Abstract. Biodiversity assessment is increasingly reliant on acoustic indices de-
rived from bioacoustic recordings. This study evaluates the performance of five
acoustic indices–Acoustic Richness Index (Hs), Von Neumann Entropy (Hv),
Acoustic Diversity Index (ADI), Bioacoustic Index (BIO), and Acoustic Evenness
Index (AEI)–in controlled environments. We generated simulated assemblages
by randomly mixing vocalizations from distinct species and specimens, creating
24,000 bird assemblages and 2,000 anuran assemblages. Each index was cal-
culated for these datasets to assess its relationship with species richness. The
results revealed that these indices exhibited a positive correlation with species
richness in the assemblages. However, background noise significantly distorted
these correlations. Our findings underscore the need for further research to
clarify the specific conditions under which acoustic indices can reliably quan-
tify biodiversity.

1. Introduction
The term “biodiversity” refers to the variety of life on Earth, encompassing both species
richness and ecosystem diversity. Biodiversity can be inferred from acoustic signals
produced by organisms during communication, movement, and interactions with their
environment [Sueur et al. 2008]. These bioacoustic signatures enable researchers to as-
sess biodiversity non-invasively by analyzing natural soundscapes, often through pas-
sive acoustic monitoring (PAM) systems [Sueur et al. 2014]. However, developing robust
methods to monitor and quantify ecological changes in these complex acoustic commu-
nities remains an ongoing challenge.

The analysis of soundscapes provides a powerful framework for qualifying and
quantifying environmental dynamics. This framework enables monitoring ecosystem
changes and assessing animal diversity across spatial and temporal scales. Bioacous-
tic indices, which are mathematical tools derived from soundscape recordings, serve as
unsupervised methods for quantifying species diversity. These indices rely on specific
features of audio signals, such as frequency, amplitude, and temporal patterns, to infer
ecological information [Farina and Gage 2017].

Recent studies have explored bioacoustic indices to quan-
tify biodiversity [Pieretti et al. 2011, Towsey et al. 2014, Zhao et al. 2019,
Sánchez-Giraldo et al. 2021]. While these studies have shown promising results,
the extent to which these indices can serve as reliable proxies for measuring diver-
sity remains unclear [Mammides et al. 2017, Bicudo et al. 2023, Sethi et al. 2023,



Llusia 2024, Mammides et al. 2025]. Several factors may influence the accuracy of
these estimates, including background noise, rainfall, overlapping sounds, the pres-
ence of multiple species vocalizations, and the distance to the microphone, among
others [Bradfer-Lawrence et al. 2024].

Given the discrepancy between authors who support the use of bioacoustic indices
and those who critique their reliability, we aimed to study and compare how five different
bioacoustic indices respond to variations in species number and background noise. To
achieve this, synthetic soundscapes were generated to simulate 24,000 bird assemblages
and 2,000 anuran assemblages, each five seconds long. These soundscapes were created
using real forest audio data, forming random assemblages ranging from one to five species
to simulate an increase in species richness. All our experiments and code are available in
the repository: https://github.com/Yunevda/synthetic_assemblages.
git

2. Related works
[Pieretti et al. 2011] evaluated the practical utility of the Acoustic Complexity Index
(ACI) through correlation analyses. Their findings revealed a significant correlation be-
tween ACI values and the number of bird vocalizations, but only weak associations with
acoustic frequency and intensity ranges. The authors attributed this limitation to interfer-
ence from geophonic (e.g., wind, rain) and anthropophonic (e.g., human activity) noise
within soundscapes. Despite these challenges, they concluded that the ACI remains a
valuable tool for monitoring songbird activity and detecting environmental disturbances.
Similarly, [Towsey et al. 2014] assessed 14 acoustic indices for quantifying avian diver-
sity and found that such indices enhance species identification accuracy compared to tra-
ditional field methods, particularly in automated biodiversity monitoring.

In contrast, [Eldridge et al. 2018] reported mixed results across ecosystems:
acoustic indices exhibited strong correlations with bird species richness in temperate habi-
tats but weaker correlations in tropical regions. The latter, they argued, reflects the height-
ened biodiversity complexity of tropical soundscapes, which include vocalizations from
non-avian taxa. Expanding on this, [Alcocer et al. 2022] identified a moderate positive
correlation between acoustic indices and species diversity metrics but cautioned against
treating indices as direct biodiversity proxies. Their work emphasized the need to account
for methodological limitations when interpreting index-derived data.

Similarly, [Bicudo et al. 2023] highlighted the poor predictive power of acoustic
indices in hyper-diverse tropical ecosystems, drawing on field recordings from the Ama-
zon’s Balbina hydroelectric reservoir. While their results supported a positive correlation
between indices and biodiversity, the authors stressed that acoustic heterogeneity in trop-
ical soundscapes complicates accurate diversity estimation. However, their conclusions
are constrained by the lack of publicly available datasets, necessitating further experimen-
tal validation.

The efficacy of acoustic indices for biodiversity assessment remains con-
tentious. Recent studies propose that combining multiple indices may yield modest
improvements in accuracy, though such approaches remain limited by inherent biases
[Alcocer et al. 2022, Sethi et al. 2023, Bicudo et al. 2023, Mammides et al. 2025]. For
instance, [Bradfer-Lawrence et al. 2024] argued that the compression of complex acous-
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Figure 1. (a) An example of segmentation applied to the audio file XC175797.ogg,
divided into five-second segments with a one-second overlap. (b) The
spectrogram of Segment 7643.wav which consists of two species: White-
rumped Munia and Indian Peafowl.

tic data into simplified index values inherently obscures ecological nuance. They further
noted that most indices rely on unsupervised information quantifiers, underscoring the
importance of identifying and mitigating biases in their application.

To address these challenges, the present study employs a novel approach: simu-
lating controlled acoustic ensembles of bird and amphibian vocalizations and background
noise, to systematically assess the behavior of the bioacoustic index both in isolation (e.g.,
vocalizations or noise alone) and under combined interference conditions.

3. Materials and Methods

The data used to generate realistic avian vocalization ensembles were sourced from the
BirdClef 2024 competition [Klinck et al. 2024], which focuses on biodiversity monitor-
ing in the sky islands of the Western Ghats, a UNESCO World Heritage Site in south-
ern India. This dataset comprises 23,528 audio files (.ogg format) spanning 182 bird
species, with each recording lasting a minimum of five seconds and sampled at fs = 32
kHz. To broaden taxonomic representation, we incorporated 2,000 anuran vocaliza-
tions from nine distinct species, sourced from field recordings in the Amazon rainfor-
est [Colonna et al. 2012]. The assemblage creation procedure follows three stages:

1. Segmentation: Audio files are partitioned into segments to isolate vocalizations
of interest while minimizing silent intervals (Figure 1(a));

2. Mixing: Segments are systematically combined to simulate natural vocalization
overlap. An example of two mixed species can be observed in the spectrogram
shown in Figure 1(b); and

3. Noise Isolation: Background noise profiles are extracted from silent or low-
activity portions of recordings to enable controlled noise-introduction experiments
(Figure 2(b)).

In this stage, the amplitude of each audio file is first normalized to the range
[−1, 1]. Only recordings lasting at least five seconds are segmented using a sliding win-
dow approach with a one-second overlap, as illustrated in Figure 1(a). The root mean
square (RMS) value is then computed for each segment. The segment with the highest
RMS value is selected, as it is expected to contain the clearest and highest-amplitude
syllable of the vocalization.



(a) Random selection and mixing of audio segments. (b) Background noise segment selection.

Figure 2. Procedure for creating assemblages.

3.1. Audio mixing

The audio mixing process, illustrated in Figure 2(a), consists of four steps designed to
create audio segments containing one to five different species. Step 1, the number of
species n in each assemblage is randomly sampled from a uniform distribution, n ∼
U(1, 5). Step 2, the species records are shuffled, ensuring that segments from the same
species remain grouped to prevent species repetition within a single audio mix. Step 3,
one segment is randomly selected from each species using a uniform distribution to form
the ensemble. Finally, at Step 4, a new audio segment is generated. To minimize potential
biases, every step of the process is randomized. As a result of this procedure, two files
are generated: (a) a new audio file (the assemblage with n species), and (b) a .CSV file
containing metadata such as the experiment run identifier, the number of mixed species,
the species included in the mix, the names of the original audio files, and the filename of
the newly created segment, as illustrated in Figure 1.

3.2. Background noise segment selection

As illustrated in Figure 2(b), the process begins with Step 1, which involves segmenting
each species’ audio files into 5-second clips. In Step 2, the RMS value of each five-
second segment is calculated, with the segment exhibiting the lowest RMS value being
extracted. Step 3 then computes the silence threshold by determining the mean (µ) of
all RMS values obtained from these segments. Subsequently, Step 4 constructs a silence
dataset comprising all 5-second clips from Step 2 that fall below the mean RMS value
established in Step 3. Finally, as part of Step 4’s completion, all silence clips are shuffled,
enabling the extraction of the first n segments as required for analysis. It is essential
to emphasize that, a background noise segment is defined as an audio segment with a
minimal root mean square (RMS) value compared to its peers, in which bird or anuran
vocalizations are nearly imperceptible or entirely absent.

3.3. Acoustic Indices

In physics, sound is treated as a time series xt, where the amplitude of the sound wave
corresponds to the pressure variations detected by a microphone. In bioacoustics, a
sound is conceptualized as a medium of animal communication, with applications in



population monitoring, acoustic ecology studies, and the assessment of noise impacts
on species. These acoustic phenomena are measured and quantified through acoustic in-
dices [Towsey et al. 2014].

Acoustic indices are mathematical tools used to characterize digital audio record-
ings of soundscapes. All indices were computed using the scikit-maad library1 in
Python. Among the indices examined in this research, the following have been imple-
mented:

• Acoustic Richness Index: Hs = Ht × Hf , where Ht =
−1/log(n)

∑n
t=1A(t) log(A(t)) is the temporal entropy, A(t) the amplitude

envelope, Hf = −1/log(n)
∑n

f=1 S(f) log(S(f)) is the spectral entropy, and S(f)
the spectrum [Sueur et al. 2008].

• Normalized Von Neumann Entropy: Hv = −1/log(τ)
∑τ

i=1 λi log λi, where λi are
the normalized eigenvalues of the autocorrelation matrix Rxx and τ is the maxi-
mum time lag [Colonna et al. 2020].

• Acoustic Diversity Index: ADI = −
∑S

i=1 pi log pi, where pi is the frac-
tion of sound in each i-th frequency band in S number of frequency bands
[Villanueva-Rivera et al. 2011].

• Bioacoustic Index: BIO =
∑fmax

fmin
FFT(xt), where fmin = 2 kHz, fmax =

8 kHz, x represents the acoustic signal and FFT is the Fast Fourier Trans-
form [Boelman et al. 2007, Rajan et al. 2019].

• Acoustic Evenness Index: the AEI is obtained by dividing the spectrogram
into bins and taking the proportion of spectrogram’s pixels above the thresh-
old (-50dBFS) in each bin, and then the Gini index is calculated from these
bins [Villanueva-Rivera et al. 2011].

4. Results and Discussions
All segmentation, selection, and mixing procedures described in Section 3 were applied
to generate a new set of samples, effectively creating a new dataset. We then computed
all indices described in Section 3.3 for this dataset. The X-axis of Figure 3 indicates
the number of different species mixed in each sample. Here, 0 represents background
noise, while values from 1 to 5 correspond to the number of randomly mixed species.
Each subplot shows how each index varies with an increasing number of species (birds
or anurans). The results show that the Hs, Hv, ADI, and BIO index values increase
proportionally with the number of species, as shown in Figures 3(a), 3(b), 3(c) and 3(d).
In the case of AEI, the index value tends to consistently decrease as the number of species
increases, as shown in Figure 3(e).

According to the values obtained in Figure 3(a) for the bird assemblages, the Hs

value for background noise (0.640) represents a moderately complex acoustic environ-
ment, with a spectral entropy suggesting the presence of multiple acoustic sources. How-
ever, this value is lower than that of the four-species assemblage (0.657), suggesting that
despite its spectral complexity, the noise is less diverse and less dynamic than the acous-
tic environment provided by multiple species. The five-species assemblage (0.681) is
observed to have the highest Hs value, indicating greater spectral occupancy and tem-
poral variation, with the introduction of new frequencies and vocalization patterns that
contribute to greater complexity in the sound environment.

1https://scikit-maad.github.io/
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(c) Acoustic Diversity Index.
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(e) Acoustic Evenness Index.

Figure 3. Acoustic Indices and Species Richness (0 denotes the background
noise, while values from 1 to 5 correspond to the number of randomly
mixed species).

In the anuran assemblage, as illustrated in Figure 3(a), the Hs value for back-
ground noise (0.384) indicates a sound environment characterized by minimal acoustic
complexity. Consequently, these signals are characterized by a limited frequency range
with an equally limited temporal variability. Thereby, a single anuran species (Hs = 0.405)
exhibits augmented temporal and spectral intricacy relative to the background noise. In-
creasing the number of species in the assemblage leads to a more diverse sound envi-
ronment, as evidenced by higher Hs values (e.g., a five-species assemblage has an Hs

of 0.653). This increase in Hs indicates a more efficient distribution of frequencies and
greater temporal variation in vocalizations. Therefore, it can be inferred that the presence
of multiple anuran species results in a more dynamic and diverse sound environment.
Conversely, the presence of background noise provides a more simplistic and repetitive
acoustic environment.



When evaluating the Von Neumann entropy in single-species assemblages, 0.582
(birds) and 0.538 (anurans), it is evident that they predominantly contain a single signal,
which may exhibit periodicity or low spectral diversity. This indicates that the signal fol-
lows certain repetitive patterns. Consequently, the eigenvalues of the Rxx matrix remain
concentrated or follow a predictable distribution, reducing entropy (uncertainty). How-
ever, as the number of vocalizing species increases, the signal becomes more complex,
and the eigenvalues of the Rxx matrix begin to distribute uniformly, increasing uncer-
tainty. This leads to a rise in Hv. As shown in Figure 3(b), entropy values increase as the
number of species per assemblage grows.

Background noise in bird assemblages presents a high Hv value (0.716), indicat-
ing the absence of a discernible organization in the sound, suggesting a loosely defined
structure, possibly composed of multiple mixed frequencies. In this case, the eigenvalues
of the Rxx matrix are highly uniformly dispersed, which increases uncertainty and, con-
sequently, results in a higher Von Neumann entropy value. For anurans, the background
noise has a value of 0.601, indicating that it is not entirely unstructured and may contain
some underlying organization, such as small temporal correlations (a certain degree of
predictability in the sound) or the predominance of specific frequency bands. However,
the level of uncertainty and randomness remains high.

In the results from Figure 3(c), it is observed that the background noise in the bird
assemblage presents a relatively high ADI value (2.180), slightly higher than that of the
assemblage of 4 species (2.178). This result can be interpreted as a scenario where the
energy of the assemblage is occupying multiple frequency bands, and in each frequency
band, the proportion of occupied cells is more or less balanced. Furthermore, the propor-
tion of energy calculated in n-th frequency band is similar across all bands. Therefore,
it is inferred that the noise assemblage exhibits high complexity, with a large diversity
of sound sources, where many different species are present simultaneously, something
typical of biodiversity-rich environments. Thus, the more balanced the energy distribu-
tion and the more occupied cells, the higher the ADI will be, reflecting greater acoustic
diversity.

For anurans, the background noise exhibits a moderate ADI value (1.863), indi-
cating uneven energy distribution across frequency bands—likely due to dominant low-
frequency components (e.g., wind or rain). When only one species is present, the ADI
decreases slightly (1.795) compared to the noise scenario. This reduction occurs because
single-species vocalizations occupy a more limited spectral range specific to that species’
acoustic signature.

The BIO (Biodiversity Index) is calculated based on the sound intensity (in dB)
of animal vocalizations distributed across different frequency ranges in the acoustic spec-
trum. In Figure 3(d), the bird assemblage shows that the background noise value (25.796)
is the highest compared to assemblages with 1 to 5 species. This suggests that the back-
ground noise contains a significant amount of natural sounds (biophony) within the spec-
trum, indicating a wide variety of acoustic events between fmin = 2 kHz, fmax = 8 kHz.
With one species, the BIO drops to 16.291, decreasing relative to the noise scenario. How-
ever, the index increases with the number of species, a trend that aligns with the Hs, Hv,
and ADI indices, all of which exhibit a positive correlation with species richness.



For the anurans, the background noise (as shown in Figure 3(d)) is lower than
in the other species assemblages (1 to 5 species). This suggests a smaller area under
the spectrum, likely due to fewer natural sounds (biophony) within the frequency bands
fmin = 2 kHz, fmax = 8 kHz. As the number of species increases (from 1 to 5), the
BIO value also rises, presumably due to greater frequency diversity expanding the spec-
tral area. Notably, the BIO and Hs indices are the only two metrics with lower values
for background noise in anuran calls compared to multispecies assemblages—a desirable
property for distinguishing biophony from noise.

The AEI index exhibits a negative correlation with species richness—a counter-
intuitive pattern where more species correspond to lower AEI values. This trend is con-
sistent across both bird and anuran assemblages. For birds (Figure 3(e)), the background
noise yields a low AEI (0.188), reflecting moderately high evenness due to acoustic energy
being evenly distributed across frequency bands. This is supported by the high propor-
tion of frequency cells containing signals above the threshold, resulting in low spectral
inequality. In contrast, single-species assemblages show a higher AEI (0.416), indicat-
ing reduced uniformity in energy distribution. This suggests the vocalizations are con-
centrated in fewer frequency bands, with unequal cell proportions amplifying spectral
disparity.

In theory, a greater number of species should produce more uneven soundscapes,
leading to higher AEI values, since the index is based on the Gini coefficient (where
greater inequality yields higher values). However, we observe the opposite pattern: richer
assemblages exhibit lower AEI values. This occurs because multi-species soundscapes
distribute energy more uniformly across frequency bands, resulting in a smaller Gini co-
efficient and thus reduced AEI. With the anuran assemblage, the behavior of the AEI value
is similar to that of the birds; for example, with 5 species, the AEI value (0.301) is lower
than the AEI of 1 species (0.552). Regarding the background noise in anurans, it is high
(0.516), indicating that the distribution of sound energy across the frequency bands is not
uniform, meaning there is a certain concentration of energy in some bands more than in
others.

5. Conclusions

This study aimed to simulate a controlled scenario where the number of vocalizing species
in audio recordings (.wav files) was known, enabling evaluation of five acoustic indices’
performance in relation to species richness and background noise. We simulated bird and
anuran assemblages to (1) test the limits of these indices and (2) observe their responses
under controlled conditions. Our findings provide empirical evidence for applying these
indices in controlled environments. However, future studies incorporating real sound-
scapes would yield more robust results.

Four of the five evaluated indices showed a positive correlation with species rich-
ness. Specifically, the Hs, Hv, ADI, and BIO indices all increased with greater species
numbers, while the AEI index exhibited an inverse relationship, decreasing as species
richness increased. These indices yielded consistent results for both background noise
and species assemblages (birds and anurans), providing relevant information about spec-
tral distribution of sound patterns, temporal variation in sound intensity, and other acoustic
features.



However, all five indices exhibit significant limitations when evaluated in scenar-
ios containing only background forest noise. This occurs because natural background
noise can be highly diverse, encompassing biophony (e.g., distant species vocalizations),
geophony (wind or rain), and other acoustic components. In such cases, the resulting
flat frequency spectrum and temporally even energy distribution (visible in spectrograms)
may produce values similar to species-rich assemblages. These similarities can compro-
mise ecological interpretation by: (1) obscuring accurate species richness estimates and
(2) potentially mischaracterizing ecosystem status.

This limitation has been previously identified in related studies contributing to this
debate [Bicudo et al. 2023, Llusia 2024]. These findings underscore the critical need to
account for acoustic environmental context when applying these indices for ecological
monitoring. However, determining a priori whether an audio segment originates from
noise or species assemblages remains a challenge. Therefore, future studies aiming to
measure the acoustic complexity of soundscapes should consider using a set of multi-
ple acoustic indices simultaneously, enabling a more comprehensive characterization of
biodiversity.
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