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Abstract: This study proposes a methodology for spatial interpolation using 
machine learning algorithms, with an emphasis on incorporating spatial 
anisotropy through azimuth classification. Using the Meuse dataset, we 
compare the performance of machine learning models while testing the 
hypotheses that decision tree-based algorithms are more efficient than in 
predicting regionalized variables and that incorporating anisotropy improves 
predictive results when an anisotropic component is present in the data. The 
results demonstrate that the inclusion of the classified azimuth variable as a 
predictor enhances the models’ predictive capability, as evidenced by 
interpolated maps that capture the orientation of spatial patterns. 

1. Introduction 
Spatial modeling is essential for predicting environmental variables at unsampled 
locations, supporting decision-making in areas such as environmental monitoring and 
contaminated site remediation. Traditional interpolation methods, such as Inverse 
Distance Weighting (IDW), and geostatistical techniques, such as kriging, have been 
successfully used, but they present limitations when the relationships between variables 
are nonlinear or when complex directional patterns are present (Li and Heap, 2014). 

With the advancement of machine learning algorithms, techniques such as 
Random Forest, have shown promise due to their robustness, ability to capture nonlinear 
interactions, and tendency to avoid overfitting (Breiman, 2001). Recent studies have 
demonstrated that the integration of spatial attributes—such as distances—can further 
enhance predictions (Hengl et al., 2018). Kim et al. (2022) point out that machine learning 
methods (including Random Forests) proved to be more accurate in predicting housing 
prices compared to the spatial interpolation methods (IDW and kriging) used in the study. 

Kopczewska (2022) states that Random Forest has frequently been the most 
accurate method in studies comparing machine learning models for spatial tasks, which 
has contributed to its growing popularity. According to this author, compared to 
geostatistical models, Random Forest requires fewer spatial assumptions and performs 
better with big data. 

In this paper, we reproduce and expand existing approaches by applying three 
different decision tree-based machine learning algorithms to the Meuse dataset. An 
innovation of this study is the inclusion of variables that capture anisotropy through the 



calculation and classification of azimuths between points, allowing the identification of 
directional patterns inherent to the distribution of contaminants or other natural 
phenomena. 

According to Caers (2011), directions are important because spatial phenomena 
are often oriented according to a preferential direction. Anisotropy refers to the variation 
in the spatial structure of data as a function of direction (Goovaerts, 1997). Moreover, 
regionalized variables—i.e., variables with spatial dependence—are rarely truly isotropic 
(Leuangthong, 2008, as cited in Yamamoto, 2020). 

Ordinary Kriging, a widely used geostatistical technique, already incorporates the 
concept of anisotropy through the use of the variogram (or covariance function), which 
is direction-specific (Caers, 2011). This means that when estimating a value at a given 
location, kriging assigns higher weights to points that lie in a direction of greater 
continuity (lower variability) and lower weights to points in directions of lesser 
continuity, even when the Euclidean distance is the same (Caers, 2011). 

Thus, the hypotheses posed in this study are: (a) that decision tree-based machine 
learning algorithms are as efficient or more efficient in predicting regionalized variables, 
and (b) that incorporating anisotropy into machine learning models improves predictive 
outcomes in cases where an anisotropic component is associated with the data. 

2. Materials and Methods 

2.1 Dataset 
The analysis relies on the Meuse dataset, which contains 155 irregularly spaced soil 
samples collected on the flood-plain of the River Meuse, the Netherlands. For each 
location the dataset reports planar coordinates (X, Y), concentrations of environmentally 
relevant metals expressed in ppm, and several ancillary covariates that may influence 
contaminant behaviour. 

A distinctive feature of Meuse is its marked geometric anisotropy: spatial 
continuity is strongest along a northeast–southwest axis oriented at roughly 45 °. This 
directional structure makes the data a benchmark for interpolation studies and is explicitly 
modelled here through an azimuth-based predictor that links each sample to its nearest 
neighbours. The present work focuses on the zinc concentration field, using it as a test 
case to evaluate model performance under strongly anisotropic conditions. 

2.2 Calculation of Geospatial Attributes 
Distances between each pair of points were calculated using functions from the NumPy 
and SciPy libraries. These distances are used as predictor variables (features) to represent 
geographic proximity. The azimuth was calculated using the formula: azimuth = 
atan2(Δy, Δx), where Δy and Δx and are the coordinate differences. 

Subsequently, the distance values were classified and weights were assigned to 
each class. For distances, higher weights were assigned to shorter distances, with weights 
decreasing as distance increased, based on the premise that geographically closer points 
are more similar. The distance classification was performed by dividing the maximum 
distance value by the number of intervals, generating equally sized bins. Then, each 
distance value was iteratively checked to determine its corresponding bin, receiving an 



integer classification (from 1 to the number of intervals) that reflects the “distance class” 
to which it belongs. 

Azimuth was computed for every pair formed by a target sample i and each of its 
k = 8 nearest neighbors j, using the standard convention θ = atan2(yᵢ – yⱼ, xᵢ – xⱼ) measured 
clockwise from geographic north. Directional variograms (Figure 1) revealed a major 
continuity axis at N45°, which we adopted as the reference. To encode this anisotropy, 
azimuths were discretised into three classes: (i) aligned: θ within ±22.5° of 45° (weight = 
+1); (ii) perpendicular: θ within ±22.5° of 135° (weight = –1); and (iii) other directions 
(weight = 0). This categorical azimuth feature was added to the predictor set, so that 
neighbours oriented along the principal trend exerted greater influence on the machine-
learning models while still keeping the input dimensionality low. 

 
Figure 1 – Example of azimuth classification under 45° anisotropy 

2.3 Algorithms and Implementation in scikit-learn 
The following algorithms were implemented and compared: 

(a) Random Forest (RF): introduced by Breiman (2001), this machine learning 
method builds multiple decision trees during training and combines their predictions to 
improve accuracy and control overfitting. It is effective for nonlinear data and can be used 
for both classification and regression tasks. 

(b) ExtraTrees Regressor: a decision tree-based model similar to Random Forest, 
but it introduces more randomness in the selection of split points at each node. This 
improves generalization and reduces the risk of overfitting, making it efficient for 
nonlinear and high-dimensional problems (Geurts et al., 2006). 

(c) XGBoost Regressor: a boosting algorithm that combines multiple weak 
decision trees to form a strong predictor. Introduced by Chen and Guestrin (2016), it 
incorporates optimizations such as regularization, parallelization, and overfitting control, 
making it efficient and popular in machine learning competitions. 

These algorithms are widely used in machine learning tasks, all based on decision 
trees, but each with specific characteristics that make them suitable for different types of 
problems. 



Each algorithm was trained using different combinations of predictor variables 
(features), and each combination was assigned an identification code. The initial letters 
refer to the algorithm—namely: RF for Random Forest, ET for ExtraTrees, and XGB for 
XGBoost—and the remaining letters indicate the features used, as follows: (1) XY: only 
coordinates; (2) XY Dist: coordinates and Euclidean distances; (3) Dist: only Euclidean 
distances; (4) XY Azim: coordinates and azimuths; (5) Azim: only azimuths; (6) XY Dist 
Azim: coordinates, distances, and azimuths; (7) Dist Azim: distances and azimuths; (8) 
ClassDist: classified distances; (9) ClassAzim: classified azimuths; (10) ClassDist 
ClassAzim: classified azimuths and classified distances; (11) XY ClassDist ClassAzim: 
coordinates, classified distances, and classified azimuth. 

Hyperparameter optimization was performed using grid search (GridSearchCV) 
with 5-fold cross-validation, aiming to minimize the Mean Squared Error (MSE). 

2.4 Data partitioning and validation 
To ensure spatial representativeness and full reproducibility, the 155 samples were split 
using five-fold spatial block cross-validation. Blocks were defined via k-means clustering 
on standardized X/Y coordinates (random_state = 42), generating approximately 31 
points per block with a minimum inter-centroid distance of ≈ 250 m. In each 
GridSearchCV iteration, four blocks (~80% of the data) were used for training while the 
remaining block was used for validation, ensuring that each block served once as test 
data. Because the target variable is continuous, no additional class balancing was 
required. The reproducibility of the entire procedure is ensured through a Python script 
available in the associated GitHub repository. 1. 

2.5 Evaluation Metrics 
To assess model performance, the following metrics were calculated: RMSE (Root Mean 
Squared Error) and R² (Coefficient of Determination). In addition, the spatial quality of 
each interpolated surface was evaluated both visually and quantitatively. We computed 
the global Structural Similarity Index (SSIM) between each model’s prediction grid and 
the Ordinary Kriging reference surface—after normalizing the grids to [0,1] and filling 
missing values with the map-wise mean—to quantify overall structural resemblance. 
Furthermore, Moran’s I was calculated on the model residuals at the original sampling 
locations (using an 8-nearest-neighbors weight matrix) to test for any remaining spatial 
autocorrelation. 

3. Results 
The results showed that including azimuth as a predictor variable—particularly in its 
classified form—contributed to improved predictive performance from the perspective of 
the adopted evaluation metrics. 

Visual analysis of the predictions is highly important when evaluating the 
performance of spatial interpolation methods. The study by Li et al. (2011) demonstrates 
that methods with similar prediction errors can produce different spatial patterns, making 
visual inspection an essential step in assessing the performance of predictive methods. 
According to the authors, visual analysis helps detect artifacts or anomalies in the 

 
1 https://github.com/leogarcez75/ml_spatial_interpolation 



predictions and allows verification of whether the predictions are realistic and consistent 
with knowledge of the study area. 

From this perspective, the use of azimuths led to the appearance of block artifacts 
in the maps. The best results were obtained when azimuths (or classified azimuths) were 
used in combination with distance, rather than in isolation. In cases where the data exhibit 
a well-defined anisotropic component, as is the case with the Meuse dataset, azimuths 
appear to better capture this behavior compared to using distances alone. 

As expected, the results from ExtraTrees were similar to those of Random Forest, 
since both are based on decision trees and use the Bagging (Bootstrap Aggregating) 
method—that is, training several decision trees independently and aggregating the results 
(using the mean in regression tasks). However, ExtraTrees introduces more randomness 
because the split points are selected randomly, rather than based on MSE as in Random 
Forest. This may explain its slightly superior performance in cross-validation, as it 
reduces overfitting. 

The XGB model using classified distances and azimuths produced the best results 
in terms of evaluation metrics, even outperforming kriging. However, it produced 
predictions outside the range of the original data. To address this, the code was adjusted 
so that predictions remain within the data range: predictions above the maximum were 
replaced with the maximum value, and those below the minimum were replaced with the 
minimum value. 

Figure 2 presents a comparison between kriging, IDW, and the best-performing 
model, taking into account both the metrics and visual assessment. Figures 3 illustrate 
selected interpolation maps obtained from the three algorithms, considering only a subset 
of the four tested feature combinations. 

 

 
Figure 2. Comparison of Ordinary Kriging, Inverse Distance Weighting, and Random Forest 
using classified distances and azimuths (best result for random forest) 
 



 
Figure 3. Interpolated zinc maps (subset of feature combinations). Columns: algorithms 
(RF, ET, XGB); rows: feature sets. Colors show predicted concentrations (µg/kg); R² and 
RMSE on each map. 



Figure 4 presents a forest plot showing the R² results of all models at their best fit. 
Models shown in blue are those whose R² values exceeded that of kriging, which was 
adopted as the reference value. 

 
Figure 4. Model comparison across different combinations of predictor features. Blue 
values outperform ordinary kriging. 
 

To better understand the spatial behavior of the predictors used by the XGBoost 
model, SHAP (SHapley Additive exPlanations) values were computed and aggregated by 
feature group. Figure 5 shows aggregated SHAP maps for distance-based and azimuth-
based predictors. Positive (red) values denote locations where the corresponding feature 
group increases the zinc estimate, whereas negative (blue) values lower it. The azimuth 
map clearly reproduces the NE–SW anisotropic trend, confirming that directional 
information is effectively captured. Distance classes exert stronger influence in the central 
flood-plain, whereas azimuth dominates along the 45° structural axis, illustrating the 
complementary roles of both feature groups. 

For the best-performing XGBoost model (using classified distances and 
azimuths), residuals showed no significant spatial autocorrelation (Moran’s I = -0.033, p 
= 0.235), indicating that the model adequately captured the spatial pattern in the data.  

 



 
Figure 5. SHAP contribution maps for predictor groups: classified distances (left) and 
classified azimuths (right).  

4. Discussion 
Several studies have demonstrated that machine learning-based methods can 

outperform traditional interpolation approaches, especially in scenarios with complex 
variability and nonlinear relationships. Breiman (2001) showed that Random Forest 
combines multiple decision trees to reduce overfitting and capture nonlinear interactions. 
In our results, Random Forest outperformed ordinary kriging by 0.9% in R² and 0.1% in 
RMSE, validating its effectiveness in modeling complex spatial patterns. 

Li and Heap (2014) highlighted that machine learning methods often surpass both 
IDW and kriging in nonlinear contexts. Our findings confirm this trend: XGBoost showed 
the best performance, with a 5.9% increase in R² and 4.9% reduction in RMSE over 
kriging. Random Forest and Extra Trees also achieved gains, though more modest. By 
contrast, IDW had the weakest performance, with R² 21.5% lower and RMSE 19.1% 
higher than kriging. These results reinforce the value of ML-based interpolators in 
environmental modeling. 

Hengl et al. (2018) demonstrated the value of spatial features derived from 
coordinates. Our SHAP maps support this, revealing that distance-based classes strongly 
influence predictions in the central floodplain, underscoring the benefit of including 
spatial features. 

Nwaila et al. (2024) emphasize the practicality of ML over classical kriging. Our 
spatial validation supports this: even without variograms, the RF model (cDist + cAzim) 
produced patterns very similar to kriging (Moran’s I ≈ 0). 

To further assess spatial reliability, we computed Moran’s I on model residuals. 
Kriging showed high and significant spatial autocorrelation (I = 0.403, p = 0.001), 
indicating incomplete capture of spatial structure. In contrast, RF (I = –0.037) and XGB 
(I = –0.033) had non-significant results, suggesting better spatial coverage. Extra Trees 
showed significant but negative autocorrelation (I = –0.074, p = 0.021), indicating 
residual spatial bias. 



Júnior et al. (2019) warn about artifacts when using coordinates alone. We 
observed similar effects: models using only X/Y produced blocky maps, which improved 
with the addition of classified distances and azimuths, or mild post-processing. 

Block artifacts observed in some predictions stem from discretizing continuous 
features into distance and azimuth bins, leading to piecewise-constant surfaces. This can 
be smoothed using Gaussian kernels or finer binning to improve readability without 
losing anisotropic structure. 

Yamamoto (2020) defined anisotropy as directional variation in spatial behavior, 
and Journel and Huijbregts (1978) emphasized its importance in improving predictions. 
Our study confirmed that adding directional features (classified azimuths along N45°) 
significantly improves results. For instance, adding azimuths to Random Forest increased 
R² from 0.560 to 0.652 (+9.2%) and reduced RMSE from 234.7 to 209.9 (–10.6%). 
Similar gains occurred for Extra Trees and XGBoost, confirming that encoding 
directionality strengthens model performance. 

The literature supports this integrative approach: combining spatially informative 
features like azimuths enhances model fidelity and overcomes limitations of traditional 
methods. 

Nonetheless, some challenges remain. Direction selection (N45° here) may not 
generalize. The method was tested only on an anisotropic dataset. XGBoost required post-
hoc clipping to the observed range. Results remain sensitive to hyperparameter choices 
and feature discretization. Future work should explore hybrid strategies like co-kriging 
or RF-kriging to leverage both ML and geostatistical strengths. 

5. Conclusion 
This study demonstrated that tree-based machine learning models, particularly Random 
Forest, Extra Trees, and XGBoost, can surpass ordinary kriging in both accuracy and 
spatial consistency when applied to environmental data interpolation. A key driver of this 
improvement was the incorporation of directional features—specifically, classified 
azimuths—which allowed the models to better capture anisotropic patterns typical of real-
world geospatial processes. 

While the models achieved higher performance metrics overall, their use also 
introduced sharper transitions in the interpolated surfaces, reflecting the influence of 
discretized spatial features. Nevertheless, the ability to model nonlinear relationships and 
reduce spatial autocorrelation in the residuals highlights the potential of ML-based 
approaches as robust alternatives to traditional geostatistical methods. 

Future research could explore broader applications across different spatial 
contexts, test hybrid techniques (e.g., RF-kriging), and refine feature engineering 
strategies to balance predictive accuracy with cartographic smoothness. 
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