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Abstract: This study proposes a methodology for spatial interpolation using
machine learning algorithms, with an emphasis on incorporating spatial
anisotropy through azimuth classification. Using the Meuse dataset, we
compare the performance of machine learning models while testing the
hypotheses that decision tree-based algorithms are more efficient than in
predicting regionalized variables and that incorporating anisotropy improves
predictive results when an anisotropic component is present in the data. The
results demonstrate that the inclusion of the classified azimuth variable as a
predictor enhances the models’ predictive capability, as evidenced by
interpolated maps that capture the orientation of spatial patterns.

1. Introduction

Spatial modeling is essential for predicting environmental variables at unsampled
locations, supporting decision-making in areas such as environmental monitoring and
contaminated site remediation. Traditional interpolation methods, such as Inverse
Distance Weighting (IDW), and geostatistical techniques, such as kriging, have been
successfully used, but they present limitations when the relationships between variables
are nonlinear or when complex directional patterns are present (Li and Heap, 2014).

With the advancement of machine learning algorithms, techniques such as
Random Forest, have shown promise due to their robustness, ability to capture nonlinear
interactions, and tendency to avoid overfitting (Breiman, 2001). Recent studies have
demonstrated that the integration of spatial attributes—such as distances—can further
enhance predictions (Hengl et al., 2018). Kim et al. (2022) point out that machine learning
methods (including Random Forests) proved to be more accurate in predicting housing
prices compared to the spatial interpolation methods (IDW and kriging) used in the study.

Kopczewska (2022) states that Random Forest has frequently been the most
accurate method in studies comparing machine learning models for spatial tasks, which
has contributed to its growing popularity. According to this author, compared to
geostatistical models, Random Forest requires fewer spatial assumptions and performs
better with big data.

In this paper, we reproduce and expand existing approaches by applying three
different decision tree-based machine learning algorithms to the Meuse dataset. An
innovation of this study is the inclusion of variables that capture anisotropy through the



calculation and classification of azimuths between points, allowing the identification of
directional patterns inherent to the distribution of contaminants or other natural
phenomena.

According to Caers (2011), directions are important because spatial phenomena
are often oriented according to a preferential direction. Anisotropy refers to the variation
in the spatial structure of data as a function of direction (Goovaerts, 1997). Moreover,
regionalized variables—i.e., variables with spatial dependence—are rarely truly isotropic
(Leuangthong, 2008, as cited in Yamamoto, 2020).

Ordinary Kriging, a widely used geostatistical technique, already incorporates the
concept of anisotropy through the use of the variogram (or covariance function), which
is direction-specific (Caers, 2011). This means that when estimating a value at a given
location, kriging assigns higher weights to points that lie in a direction of greater
continuity (lower variability) and lower weights to points in directions of lesser
continuity, even when the Euclidean distance is the same (Caers, 2011).

Thus, the hypotheses posed in this study are: (a) that decision tree-based machine
learning algorithms are as efficient or more efficient in predicting regionalized variables,
and (b) that incorporating anisotropy into machine learning models improves predictive
outcomes in cases where an anisotropic component is associated with the data.

2. Materials and Methods

2.1 Dataset

The analysis relies on the Meuse dataset, which contains 155 irregularly spaced soil
samples collected on the flood-plain of the River Meuse, the Netherlands. For each
location the dataset reports planar coordinates (X, Y), concentrations of environmentally
relevant metals expressed in ppm, and several ancillary covariates that may influence
contaminant behaviour.

A distinctive feature of Meuse is its marked geometric anisotropy: spatial
continuity is strongest along a northeast—southwest axis oriented at roughly 45 °. This
directional structure makes the data a benchmark for interpolation studies and is explicitly
modelled here through an azimuth-based predictor that links each sample to its nearest
neighbours. The present work focuses on the zinc concentration field, using it as a test
case to evaluate model performance under strongly anisotropic conditions.

2.2 Calculation of Geospatial Attributes

Distances between each pair of points were calculated using functions from the NumPy
and SciPy libraries. These distances are used as predictor variables (features) to represent
geographic proximity. The azimuth was calculated using the formula: azimuth =
atan2(Ay, Ax), where Ay and Ax and are the coordinate differences.

Subsequently, the distance values were classified and weights were assigned to
each class. For distances, higher weights were assigned to shorter distances, with weights
decreasing as distance increased, based on the premise that geographically closer points
are more similar. The distance classification was performed by dividing the maximum
distance value by the number of intervals, generating equally sized bins. Then, each
distance value was iteratively checked to determine its corresponding bin, receiving an



integer classification (from 1 to the number of intervals) that reflects the “distance class”
to which it belongs.

Azimuth was computed for every pair formed by a target sample i and each of its
k = 8 nearest neighbors j, using the standard convention 0 = atan2(yi — yj, X; — X;) measured
clockwise from geographic north. Directional variograms (Figure 1) revealed a major
continuity axis at N45°, which we adopted as the reference. To encode this anisotropy,
azimuths were discretised into three classes: (i) aligned: 0 within £22.5° of 45° (weight =
+1); (i1) perpendicular: 6 within +22.5° of 135° (weight = —1); and (iii) other directions
(weight = 0). This categorical azimuth feature was added to the predictor set, so that
neighbours oriented along the principal trend exerted greater influence on the machine-
learning models while still keeping the input dimensionality low.
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Figure 1 — Example of azimuth classification under 45° anisotropy

2.3 Algorithms and Implementation in scikit-learn
The following algorithms were implemented and compared:

(a) Random Forest (RF): introduced by Breiman (2001), this machine learning
method builds multiple decision trees during training and combines their predictions to
improve accuracy and control overfitting. It is effective for nonlinear data and can be used
for both classification and regression tasks.

(b) ExtraTrees Regressor: a decision tree-based model similar to Random Forest,
but it introduces more randomness in the selection of split points at each node. This
improves generalization and reduces the risk of overfitting, making it efficient for
nonlinear and high-dimensional problems (Geurts et al., 2006).

(c) XGBoost Regressor: a boosting algorithm that combines multiple weak
decision trees to form a strong predictor. Introduced by Chen and Guestrin (2016), it
incorporates optimizations such as regularization, parallelization, and overfitting control,
making it efficient and popular in machine learning competitions.

These algorithms are widely used in machine learning tasks, all based on decision
trees, but each with specific characteristics that make them suitable for different types of
problems.



Each algorithm was trained using different combinations of predictor variables
(features), and each combination was assigned an identification code. The initial letters
refer to the algorithm—mnamely: RF for Random Forest, ET for ExtraTrees, and XGB for
XGBoost—and the remaining letters indicate the features used, as follows: (1) XY: only
coordinates; (2) XY Dist: coordinates and Euclidean distances; (3) Dist: only Euclidean
distances; (4) XY Azim: coordinates and azimuths; (5) Azim: only azimuths; (6) XY Dist
Azim: coordinates, distances, and azimuths; (7) Dist Azim: distances and azimuths; (8)
ClassDist: classified distances; (9) ClassAzim: classified azimuths; (10) ClassDist
ClassAzim: classified azimuths and classified distances; (11) XY ClassDist ClassAzim:
coordinates, classified distances, and classified azimuth.

Hyperparameter optimization was performed using grid search (GridSearchCV)
with 5-fold cross-validation, aiming to minimize the Mean Squared Error (MSE).

2.4 Data partitioning and validation

To ensure spatial representativeness and full reproducibility, the 155 samples were split
using five-fold spatial block cross-validation. Blocks were defined via k-means clustering
on standardized X/Y coordinates (random_state = 42), generating approximately 31
points per block with a minimum inter-centroid distance of = 250m. In each
GridSearchCV iteration, four blocks (~80% of the data) were used for training while the
remaining block was used for validation, ensuring that each block served once as test
data. Because the target variable is continuous, no additional class balancing was
required. The reproducibility of the entire procedure is ensured through a Python script
available in the associated GitHub repository. !.

2.5 Evaluation Metrics

To assess model performance, the following metrics were calculated: RMSE (Root Mean
Squared Error) and R? (Coefficient of Determination). In addition, the spatial quality of
each interpolated surface was evaluated both visually and quantitatively. We computed
the global Structural Similarity Index (SSIM) between each model’s prediction grid and
the Ordinary Kriging reference surface—after normalizing the grids to [0,1] and filling
missing values with the map-wise mean—to quantify overall structural resemblance.
Furthermore, Moran’s I was calculated on the model residuals at the original sampling
locations (using an 8-nearest-neighbors weight matrix) to test for any remaining spatial
autocorrelation.

3. Results

The results showed that including azimuth as a predictor variable—particularly in its
classified form—contributed to improved predictive performance from the perspective of
the adopted evaluation metrics.

Visual analysis of the predictions is highly important when evaluating the
performance of spatial interpolation methods. The study by Li et al. (2011) demonstrates
that methods with similar prediction errors can produce different spatial patterns, making
visual inspection an essential step in assessing the performance of predictive methods.
According to the authors, visual analysis helps detect artifacts or anomalies in the

L https://github.com/leogarcez75/ml_spatial_interpolation



predictions and allows verification of whether the predictions are realistic and consistent
with knowledge of the study area.

From this perspective, the use of azimuths led to the appearance of block artifacts
in the maps. The best results were obtained when azimuths (or classified azimuths) were
used in combination with distance, rather than in isolation. In cases where the data exhibit
a well-defined anisotropic component, as is the case with the Meuse dataset, azimuths
appear to better capture this behavior compared to using distances alone.

As expected, the results from ExtraTrees were similar to those of Random Forest,
since both are based on decision trees and use the Bagging (Bootstrap Aggregating)
method—that is, training several decision trees independently and aggregating the results
(using the mean in regression tasks). However, ExtraTrees introduces more randomness
because the split points are selected randomly, rather than based on MSE as in Random
Forest. This may explain its slightly superior performance in cross-validation, as it
reduces overfitting.

The XGB model using classified distances and azimuths produced the best results
in terms of evaluation metrics, even outperforming kriging. However, it produced
predictions outside the range of the original data. To address this, the code was adjusted
so that predictions remain within the data range: predictions above the maximum were
replaced with the maximum value, and those below the minimum were replaced with the
minimum value.

Figure 2 presents a comparison between kriging, IDW, and the best-performing
model, taking into account both the metrics and visual assessment. Figures 3 illustrate
selected interpolation maps obtained from the three algorithms, considering only a subset
of the four tested feature combinations.
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Figure 2. Comparison of Ordinary Kriging, Inverse Distance Weighting, and Random Forest
using classified distances and azimuths (best result for random forest)
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Figure 3. Interpolated zinc maps (subset of feature combinations). Columns: algorithms
(RF, ET, XGB); rows: feature sets. Colors show predicted concentrations (ug/kg); R? and
RMSE on each map.



Figure 4 presents a forest plot showing the R? results of all models at their best fit.
Models shown in blue are those whose R? values exceeded that of kriging, which was
adopted as the reference value.
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Figure 4. Model comparison across different combinations of predictor features. Blue
values outperform ordinary kriging.

To better understand the spatial behavior of the predictors used by the XGBoost
model, SHAP (SHapley Additive exPlanations) values were computed and aggregated by
feature group. Figure 5 shows aggregated SHAP maps for distance-based and azimuth-
based predictors. Positive (red) values denote locations where the corresponding feature
group increases the zinc estimate, whereas negative (blue) values lower it. The azimuth
map clearly reproduces the NE-SW anisotropic trend, confirming that directional
information is effectively captured. Distance classes exert stronger influence in the central
flood-plain, whereas azimuth dominates along the 45° structural axis, illustrating the
complementary roles of both feature groups.

For the best-performing XGBoost model (using classified distances and
azimuths), residuals showed no significant spatial autocorrelation (Moran’s I = -0.033, p
=0.235), indicating that the model adequately captured the spatial pattern in the data.
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Figure 5. SHAP contribution maps for predictor groups: classified distances (left) and
classified azimuths (right).

4. Discussion

Several studies have demonstrated that machine learning-based methods can
outperform traditional interpolation approaches, especially in scenarios with complex
variability and nonlinear relationships. Breiman (2001) showed that Random Forest
combines multiple decision trees to reduce overfitting and capture nonlinear interactions.
In our results, Random Forest outperformed ordinary kriging by 0.9% in R? and 0.1% in
RMSE, validating its effectiveness in modeling complex spatial patterns.

Li and Heap (2014) highlighted that machine learning methods often surpass both
IDW and kriging in nonlinear contexts. Our findings confirm this trend: XGBoost showed
the best performance, with a 5.9% increase in R? and 4.9% reduction in RMSE over
kriging. Random Forest and Extra Trees also achieved gains, though more modest. By
contrast, IDW had the weakest performance, with R? 21.5% lower and RMSE 19.1%
higher than kriging. These results reinforce the value of ML-based interpolators in
environmental modeling.

Hengl et al. (2018) demonstrated the value of spatial features derived from
coordinates. Our SHAP maps support this, revealing that distance-based classes strongly
influence predictions in the central floodplain, underscoring the benefit of including
spatial features.

Nwalila et al. (2024) emphasize the practicality of ML over classical kriging. Our
spatial validation supports this: even without variograms, the RF model (cDist + cAzim)
produced patterns very similar to kriging (Moran’s [ = 0).

To further assess spatial reliability, we computed Moran’s I on model residuals.
Kriging showed high and significant spatial autocorrelation (I = 0.403, p = 0.001),
indicating incomplete capture of spatial structure. In contrast, RF (I =—-0.037) and XGB
(I =-0.033) had non-significant results, suggesting better spatial coverage. Extra Trees
showed significant but negative autocorrelation (I = —0.074, p = 0.021), indicating
residual spatial bias.



Junior et al. (2019) warn about artifacts when using coordinates alone. We
observed similar effects: models using only X/Y produced blocky maps, which improved
with the addition of classified distances and azimuths, or mild post-processing.

Block artifacts observed in some predictions stem from discretizing continuous
features into distance and azimuth bins, leading to piecewise-constant surfaces. This can
be smoothed using Gaussian kernels or finer binning to improve readability without
losing anisotropic structure.

Yamamoto (2020) defined anisotropy as directional variation in spatial behavior,
and Journel and Huijbregts (1978) emphasized its importance in improving predictions.
Our study confirmed that adding directional features (classified azimuths along N45°)
significantly improves results. For instance, adding azimuths to Random Forest increased
R? from 0.560 to 0.652 (+9.2%) and reduced RMSE from 234.7 to 209.9 (-10.6%).
Similar gains occurred for Extra Trees and XGBoost, confirming that encoding
directionality strengthens model performance.

The literature supports this integrative approach: combining spatially informative
features like azimuths enhances model fidelity and overcomes limitations of traditional
methods.

Nonetheless, some challenges remain. Direction selection (N45° here) may not
generalize. The method was tested only on an anisotropic dataset. XGBoost required post-
hoc clipping to the observed range. Results remain sensitive to hyperparameter choices
and feature discretization. Future work should explore hybrid strategies like co-kriging
or RF-kriging to leverage both ML and geostatistical strengths.

5. Conclusion

This study demonstrated that tree-based machine learning models, particularly Random
Forest, Extra Trees, and XGBoost, can surpass ordinary kriging in both accuracy and
spatial consistency when applied to environmental data interpolation. A key driver of this
improvement was the incorporation of directional features—specifically, classified
azimuths—which allowed the models to better capture anisotropic patterns typical of real-
world geospatial processes.

While the models achieved higher performance metrics overall, their use also
introduced sharper transitions in the interpolated surfaces, reflecting the influence of
discretized spatial features. Nevertheless, the ability to model nonlinear relationships and
reduce spatial autocorrelation in the residuals highlights the potential of ML-based
approaches as robust alternatives to traditional geostatistical methods.

Future research could explore broader applications across different spatial
contexts, test hybrid techniques (e.g., RF-kriging), and refine feature engineering
strategies to balance predictive accuracy with cartographic smoothness.
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