
Computação em Borda para o Monitoramento de Abelhas:
Detecção da Ausência da Rainha por Análise de Áudio

Jorge F. Ramos Bezerra1, Sandy F. da Costa Bezerra2, Ícaro de Lima Rodrigues2,
Elias Teodoro da Silva Jr.1, Danielo G. Gomes2, Antonio Rafael Braga1

1Programa de Pós-Graduação em Ciências da Computação (PPGCC)
Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)

2Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)
Centro de Tecnologia – Universidade Federal do Ceará (UFC)

jorge.fernando60@aluno.ifce.edu.br, {icarodelima, sandycosta}@alu.ufc.br

elias@ifce.edu.br, {danielo, rafaelbraga}@ufc.br

Abstract. The preservation of bees is essential for biodiversity, and the presence
of the queen bee is crucial for the organization of the hive. Using cutting-edge
computing, this work proposes a method to detect its absence through the analy-
sis of hive audio in a fast, feasible and accessible way. The recordings were pro-
cessed, extracting relevant acoustic features, used in the classification by Naive
Bayes, KNN, MLP and Random Forest. These algorithms achieved accuracies
ranging from 87.66% to 97.54%. MLP was chosen for implementation in a
microcontroller, where it achieved 88.50% accuracy with an average inference
time of 109 ms.

Resumo. A preservação das abelhas é essencial para a biodiversidade, e a
presença da abelha-rainha é crucial para a organização da colmeia. Utili-
zando a computação em borda esse trabalho propõe um método para detectar
sua ausência por meio da análise de áudios da colmeia de forma rápida, viável
e acessı́vel. As gravações foram processadas, extraindo-se caracterı́sticas
acústicas relevantes, utilizadas na classificação por Naive Bayes, KNN, MLP e
Random Forest. Esses algoritmos alcançaram acurácias que variam de 87,66%
até 97,54%. O MLP foi escolhido para implementação em microcontrolador,
onde atingiu 88,50% de precisão com um tempo médio de inferência de 109 ms.

1. Introdução
A sobrevivência das abelhas impacta diretamente a biodiversidade e a segurança alimentar
global. Responsáveis por cerca de 90% dos serviços de polinização comercial e 35% das
culturas alimentares mundiais [Kanelis et al. 2023], elas sustentam ecossistemas e cadeias
produtivas essenciais. No Brasil, 85 das 141 espécies cultivadas dependem da polinização
animal [Pires et al. 2016], reforçando a importância de práticas eficazes de manejo.

Diversos fatores têm contribuı́do para o declı́nio populacional das abelhas,
como mudanças climáticas, doenças e uso intensivo de pesticidas [Danieli et al. 2024,
Lu et al. 2024]. Além disso, a perda da abelha-rainha — responsável pela reprodução
na colmeia — compromete diretamente a continuidade e a organização social de uma
colônia [Santos et al. 2025]. Detectar precocemente essa ausência é essencial, mas os



métodos tradicionais baseiam-se em inspeções manuais, as quais são invasivas e normal-
mente imprecisas e operacionalmente limitadas.

A Apicultura de Precisão (AP), integrada à Internet das Coisas (IoT), tem se mos-
trado promissora para modernizar esse cenário [Braga, R. et al. 2020]. No entanto, em
ambientes rurais, limitações como falta de conectividade e difı́cil acesso às colmeias po-
dem comprometer a adoção prática dessas tecnologias computacionais. Alguns estudos
recentes buscaram identificar a ausência da rainha com base em parâmetros como tem-
peratura, umidade e som, aplicando algoritmos de aprendizado de máquina em computa-
dores de alto desempenho [Otesbelgue et al. 2025]. Avanços também foram obtidos com
a execução de modelos em dispositivos móveis [Santos et al. 2025], e em classificado-
res otimizados para resposta rápida [Rodrigues et al. 2022]. Contudo, essas abordagens
ainda dependem de equipamentos relativamente caros ou processamento remoto.

Por outro lado, o paradigma da Computação em Borda pode ser uma alternativa
eficaz na medida que permite o processamento de dados diretamente no local, com menor
dependência de energia e conectividade [Lai et al. 2018]. Entretanto, soluções embarca-
das especı́ficas para monitorar a presença da rainha ainda são escassas, sobretudo com
foco em viabilidade técnica e custo acessı́vel.

Neste artigo, propomos um sistema de monitoramento acústico embarcado base-
ado em um microcontrolador ESP32, utilizando aprendizado de máquina para classificar
localmente o estado da colônia. A partir da análise de áudios capturados na colmeia,
caracterı́sticas acústicas foram extraı́das por Transformada de Fourier e processadas por
redes neurais do tipo MLP (Multi-Layer Perceptron). Com isso, nossa proposta permite
identificar com precisão a ausência da rainha sem necessidade de computação em nu-
vem, oferecendo uma alternativa prática, acessı́vel e não-invasiva para apicultores. Nossa
hipótese cientı́fica é que padrões sonoros registrados no interior da colmeia apresentam
variações detectáveis, associadas à ausência da abelha-rainha, e que essas variações po-
dem ser reconhecidas com precisão por classificadores treinados, mesmo em dispositivos
com recursos computacionais limitados.

2. Materiais e Métodos
O desenvolvimento deste estudo foi estruturado em etapas sequenciais, executadas em
dois ambientes computacionais complementares:

1. Ambiente de desenvolvimento e análise: computador com processador Intel Core
i3 (11ª geração, 3 GHz), 16 GB de memória RAM, utilizamos a linguagem Python
no ambiente Jupyter Notebook para processamento de dados e treinamento dos
modelos de aprendizado de máquina;

2. Ambiente embarcado: microcontrolador ESP32 modelo WROOM-32U, com pro-
cessador Xtensa Dual-Core 32-bit LX6 (240 MHz), 520 KB de RAM e 16 MB de
memória Flash. Selecionamos esse microcontrolador, baseado em uma pesquisa
por dispositivos que oferecessem conectividade Wi-Fi integrada, dispensando a
necessidade de módulos adicionais. Entre os modelos disponı́veis no mercado lo-
cal, priorizou-se aquele com menor custo e que apresentasse maior frequência
de clock, de memória flash e RAM. A Figura 1 apresenta o ESP32 utilizado.
Nesse ambiente, implementamos o tratamento, a extração de caracterı́sticas e a
classificação dos áudios, em linguagem C, por meio da plataforma Arduino IDE.



Figura 1. ESP32 WROOM-32U.

As etapas de desenvolvimento, os resultados obtidos em cada etapa e em qual
ambiente as etapas foram executadas, são ilustradas na Figura 2.

Figura 2. Fluxograma metodológico.

2.1. Obtenção, segmentação e balanceamento de classes dos áudios

Os áudios utilizados neste artigo provêm de 5 arquivos de áudio de aproximadamente
4 horas cada [Rodrigues et al. 2024]. Destes, 4 são com abelha-rainha e 1 sem abelha-
rainha. Dessa forma, todos possuem um rótulo que permite identificar a presença ou
ausência da abelha-rainha.

Os áudios adquiridos foram segmentados em janelas de 1 segundo e cada seg-
mento foi convertido para o formato WAV, utilizando codificação PCM de 16 bits, canal
mono e taxa de amostragem de 16 kHz. No total, foram obtidos 13974 segmentos de



áudios de 1 segundo, identificados devido ao rótulo original e alocados em uma pasta
identificada como ”sem abelha-rainha”, além destes, foram obtidos 66015 segmentos de
áudios de 1 segundo identificados devido aos rótulos originais. Neste último conjunto foi
aplicado a técnica Random Undersampling (redução da classe majoritária) que remove
aleatoriamente exemplos da classe majoritária para balancear as proporções, selecionando
13974 segmentos sem repetições, para armazenar em uma pasta identificada como ”com
abelha-rainha”.

2.2. Tratamento e extração de caracterı́sticas dos segmentos de áudios
Para tratar os segmentos de áudio aplicamos a Transformada de Fourier (Fourier
Transform (FT)) [Schwartzbach 2015] e os Coeficientes Cepstrais de Frequência Mel
(Mel-Frequency Cepstral Coefficients (MFCC)) [Abdul and Al-Talabani 2022], que são
técnicas amplamente utilizadas para esta finalidade. Após esse tratamento, utiliza-
mos as funções do módulo ShortTermFeatures da biblioteca pyAudioAnalysis
[Giannakopoulos 2015] para a extração de caracterı́sticas de curto prazo (short-term fe-
atures) dos sinais de áudio. Com isso, foi extraı́do um conjunto de 68 caracterı́sticas
relevantes (features), gerando um conjunto de dados (dataset). Nesta tarefa foram usados
20 mil segmentos de áudios, sendo 10 mil com abelha-rainha e 10 mil sem abelha-rainha,
escolhidos aleatoriamente e sem repetição, de suas respectivas pastas.

2.3. Análise e seleção das principais caracterı́sticas
Nesta etapa utilizamos a técnica de Análise de Componentes Principais (PCA, Principal
Component Analysis) [Shlens 2014] como método estatı́stico para redução de dimensi-
onalidade dos dados e preservando a sua máxima variabilidade. Sendo implementado
em Python com auxilio da biblioteca scikit-learn [Pedregosa et al. 2011]. O que
permitiu a redução de 68 para 19 componentes ou caracterı́sticas, sendo elas:

• MFCC 1 a MFCC 13, representando a envoltória espectral do sinal.
• Energy, energia total do sinal, indicando a intensidade do som.
• Entropy, entropia do sinal, medida da dispersão da energia no tempo.
• Centroid, centróide espectral, frequência média ponderada do espectro.
• Bandwidth, largura de banda espectral, dispersão das frequências ao redor do

Centróide.
• Rolloff, frequência de roll-off, ponto onde uma porcentagem especı́fica da energia

espectral está contida.
• RMS (Root Mean Square), valor quadrático médio, potência do sinal.

A Figura 3 ilustra a relação entre os componentes principais e suas respectivas
variâncias. A Figura 4 mostra a projeção dos dados nos dois primeiros componentes prin-
cipais, permitindo uma visualização 2D da distribuição das classes. A Figura 5 estende
essa análise ao incluir o terceiro componente principal, oferecendo uma perspectiva tridi-
mensional para evidenciar padrões não perceptı́veis em 2D. Caso as classes ”com abelha-
rainha”e ”sem abelha-rainha”estejam concentradas em regiões distintas, isso indica que o
PCA foi eficaz na redução da dimensionalidade e na separação das classes.

Então, implementamos a FFT e a extração dos principais componentes em Python
para gerar um novo dataset de dimensionalidade reduzida, com os 20 mil segmentos
previamente selecionados. Essa implementação ocorreu sem o auxı́lio de bibliotecas para
evitar divergências significativas quando os dados fossem processados posteriormente em
linguagem C no ESP32.



Figura 3. Variância Explicada Acumulada

Figura 4. Os Dois Principais Com-
ponentes pelo PCA Figura 5. Os Três Principais Com-

ponentes pelo PCA

2.4. Seleção de modelo e de hiperparâmetros

Nesta etapa, implementamos quatro classificadores em Python, utilizando a biblioteca
Scikit-Learn [Pedregosa et al. 2011]. Os avaliamos considerando duas métricas princi-
pais: tempo de execução, como indicador de custo computacional, e acurácia, como
medida de desempenho dos modelos. Para, então, selecionar o modelo que seria imple-
mentado no ESP32. Em alguns casos, o custo computacional aumentava sem melhorias
significativas na acurácia.

Os classificadores que utilizamos foram: Naive Bayes Gaussiano (Gaussian NB),
K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP) e Random Forest (RF). O
Gaussian NB implementamos uma única vez, por não requerer ajuste de hiperparâmetros.
O KNN implementamos quatro vezes, com diferentes valores para o número de vizinhos
(neighbors). O MLP foram nove vezes, com variações na quantidade de neurônios das
duas camadas ocultas. A camada de entrada foi mantida com vinte neurônios, corres-
pondente ao número de caracterı́sticas extraı́das por segmento, e a camada de saı́da com
dois neurônios, representando as classes possı́veis. O Random Forest também foram nove



vezes, com diferentes combinações do número de estimadores (estimators) e valores do
random state. Para aferirmos os resultados dos classificadores, utilizamos a validação
cruzada estratificada de dez dobras (10-fold cross-validation) e o intervalo de confiança
(95%).

2.5. Implementação e testes no ESP32

Na implementação no ESP32, utilizamos o plugin SPIFFS que permite carregar os arqui-
vos na memória flash. Foram carregados 10 segmentos de áudios por rodada de teste,
sendo aproximadamente 1,37 MB, no total. Realizamos 100 rodadas de testes, com 1000
segmentos de áudio, selecionados aleatoriamente e sem repetição das pastas com abelha-
rainha e sem abelha-rainha. Esses segmentos não fizeram parte da elaboração dos datasets
utilizados no treinamento e teste. Além disso, elaboramos um arquivo de referência con-
tendo a identificação de cada segmento e a respectiva pasta de origem.

Para a classificação dos áudios na ESP32, foi utilizado um arquivo gerado a partir
do treinamento do MLP no computador. Esse arquivo armazena os pesos calculados para
cada neurônio da rede neural e é empregado na classificação dos áudios carregados na
memória flash, após a aplicação da FFT e a extração de caracterı́sticas.

Após cada rodada, os resultados foram exibidos no monitor serial do Arduino IDE
e salvos em um documento de texto. Os resultados continham as seguintes informações:
identificação do segmento, tempo gasto na aplicação do FFT, tempo gasto calculando
as caracterı́sticas, tempo gasto classificando, tempo total processando o segmento e o
resultado da classificação (com abelha-rainha ou sem abelha-rainha).

2.6. Análise e Avaliação dos Resultados do ESP32

Nesta etapa, analisamos os resultados obtidos na classificação realizada no ESP32 e os
comparamos com o arquivo de referência preparado durante a seleção dos segmentos uti-
lizados. A partir dessa comparação, calculamos as seguintes métricas de desempenho:
acurácia, recall, F1-score e Fβ -score (β = 0, 5), acompanhadas de seus respectivos inter-
valos de confiança. Além disso, foi gerada uma matriz de confusão.

3. Resultados

Nesta seção, apresentamos os resultados obtidos a partir da aplicação de diferentes
técnicas e classificadores sobre os dados extraı́dos de áudios de uma colmeia de abelhas.

3.1. Resultados dos Testes dos Classificadores no Computador

Os classificadores seguiram a mesma proporção de treino e teste, respectivamente 80%
e 20%. Seus resultados, apresentados na Tabela 1, indicam que o modelo RF obteve
o melhor desempenho na classificação, mas com um custo computacional bem supe-
rior ao MLP, que apresentou o segundo melhor desempenho, com uma acurácia muito
próxima ao primeiro. Por outro lado, o NB e o KNN apresentaram acurácia inferior,
sendo que este último teve o maior custo computacional. O MLP (64x20) foi escolhido
para implementação no ESP32.

Quanto às métricas de avaliação dos classificadores, presentes na Tabela 1, o
Tempo Médio por Segmento (TMS), é o tempo da inferência de um segmento e está



apresentado em milissegundos. As métricas de Acurácia, Recall e F1-score são acompa-
nhadas de seus respectivos Desvios Padrão (DP). Já os classificadores são apresentados
junto dos hiperparâmetros testados.

Tabela 1. Comparação dos Resultados dos Classificadores

Classificador Acurácia (DP) Recall (DP) F1-score (DP) TMS (ms)

NB 0,9032 (0,0038) 0,8669 (0,0081) 0,8993 (0,0042) 0,0012
KNN (5) 0,8798 (0,0051) 0,8899 (0,0083) 0,8805 (0,0052) 0,0872
KNN (10) 0,8778 (0,0052) 0,8679 (0,0093) 0,8762 (0,0051) 0,1002
KNN (15) 0,8788 (0,0050) 0,8827 (0,0081) 0,8798 (0,0053) 0,0787
KNN (20) 0,8766 (0,0051) 0,8684 (0,0059) 0,8684 (0,0054) 0,1018
MLP (32x10) 0,9634 (0,0157) 0,9592 (0,0390) 0,9629 (0,0182) 0,0007
MLP (64x10) 0,9622 (0,0081) 0,9618 (0,0255) 0,9624 (0,0086) 0,0005
MLP (128x10) 0,9670 (0,0036) 0,9714 (0,0104) 0,9671 (0,0034) 0,0012
MLP (32x20) 0,9618 (0,0064) 0,9640 (0,0207) 0,9618 (0,0067) 0,0007
MLP (64x20) 0,9662 (0,0060) 0,9627 (0,0221) 0,9663 (0,0060) 0,0005
MLP (128x20) 0,9604 (0,0115) 0,9509 (0,0297) 0,9598 (0,0128) 0,0012
MLP (32x30) 0,9596 (0,0081) 0,9608 (0,0198) 0,9597 (0,0084) 0,0006
MLP (64x30) 0,9560 (0,0221) 0,9507 (0,0544) 0,9550 (0,0259) 0,0008
MLP (128x30) 0,9569 (0,0127) 0,9596 (0,0365) 0,9568 (0,0134) 0,0013
RF (50x21) 0,9746 (0,0026) 0,9720 (0,0041) 0,9745 (0,0026) 0,0046
RF (100x21) 0,9750 (0,0019) 0,9739 (0,0032) 0,9750 (0,0020) 0,0087
RF (200x21) 0,9750 (0,0025) 0,9733 (0,0034) 0,9749 (0,0026) 0,0168
RF (50x42) 0,9745 (0,0028) 0,9722 (0,0046) 0,9744 (0,0027) 0,0043
RF (100x42) 0,9750 (0,0018) 0,9718 (0,0041) 0,9748 (0,0019) 0,0100
RF (200x42) 0,9748 (0,0023) 0,9726 (0,0036) 0,9748 (0,0023) 0,0158
RF (50x84) 0,9741 (0,0022) 0,9707 (0,0037) 0,9741 (0,0022) 0,0045
RF (100x84) 0,9754 (0,0028) 0,9736 (0,0036) 0,9754 (0,0026) 0,0087
RF (200x84) 0,9735 (0,0018) 0,9713 (0,0039) 0,9734 (0,0019) 0,0166

3.2. Resultados do MLP 64x20
A Tabela 2 apresenta os resultados da implementação em Python, que justificam a escolha
do classificador MLP, com 64 e 20 neurônios nas camadas ocultas. As métricas indicam
que o modelo apresentou desempenho consistente, com altos nı́veis de acurácia e estabili-
dade, conforme observado pelos baixos desvios padrão. A aplicação da validação cruzada
reforça a confiabilidade dos resultados. As demais métricas, como recall, F1-score e Fβ-
score, também revelam um bom equilı́brio entre sensibilidade e precisão nas predições, e
os tempos de execução registrados são úteis como referência de desempenho.

3.3. Tempos de processamentos de Áudios no ESP32
Nas 100 rodadas de testes que realizamos, cada uma com 10 segmentos de áudios arma-
zenados na memória flash do ESP32. Calculamos os tempos de execução para a aplicação
da FFT, da extração de caracterı́sticas, classificação dos segmentos e do tempo total de
processamento de cada áudio. Esses tempos foram analisados, suas médias e Intervalos
de Confiança (IC) foram calculados. Os resultados, em milissegundos, são apresentados
na Tabela 3.



Tabela 2. Resultados para MLP 64x20

Métrica Valor IC Desvio Padrão

Acurácia Média 0,9662 0,9589 – 0,9656 0,0060
Acurácia Média (Validação Cruzada) 0,9613 0,9502 – 0,9724 0,0179
Recall Médio 0,9627 0,9530 – 0,9724 0,0221
F1 Score Médio 0,9663 0,9584 – 0,9656 0,0060
Fβ -score (β = 0, 5) Médio 0,9619 0,9574 – 0,9664 0,0103

Tempo Total de Execução 75,18 segundos
Tempo de Validação Cruzada 37,07 segundos
Tempo Médio por Amostra (teste) 0,0005 0,0001 – 0,0009 0,0009

Tabela 3. Tempos de Execução e Intervalos de Confiança, no ESP32

Etapa Tempo Médio (ms) IC (ms)

FFT 52,01 51,91–52,11
Extração de caracterı́sticas 16,4 16,27–16,41
Classificação 2,03 2,01–2,05
Processamento Total 109,61 108,97–110,25

3.4. Resultados da Classificação no ESP32

Os resultados obtidos foram analisados para calcular métricas de desempenho, como
acurácia, intervalo de confiança da acurácia, recall e F1-score. Os resultados da
classificação são ilustrados na Figura 6 e as métricas estão presentes na Tabela 4.

Figura 6. Matriz de Confusão.

Tabela 4. Resultados da
Classificação no ESP32

Métrica Valor

Acertos 885
Erros 115
Acurácia 0,8850
IC- Acurácia (95%) (0,8652;0,9048)
Recall 0,8688
F1 Score 0,8837
Fβ -score (β = 0,5) 0,8929

4. Conclusão
Neste artigo propomos uma solução acessı́vel, não invasiva e de resposta rápida, com po-
tencial para auxiliar apicultores no monitoramento automático de colmeias, especialmente
em contextos com infraestrutura limitada. Mostramos a viabilidade do uso do microcon-
trolador ESP32 para a classificação local da ausência da abelha-rainha em colmeias com



base em caracterı́sticas acústicas processadas por modelos de aprendizado de máquina.
O sistema apresentou desempenho compatı́vel com aplicações de computação em borda,
com tempo médio de inferência de 109, 61 ms e acurácia de 0, 8850. Embora inferior à
acurácia observada no ambiente de desenvolvimento (0, 9656 em Python), essa redução
não inviabiliza o uso prático, sobretudo considerando as limitações computacionais do
dispositivo.

Em perspectiva, sugerimos a integração do sistema a módulos de aquisição de
áudio em campo, permitindo o envio de alertas ao apicultor via conectividade Wi-Fi.
Avaliações também poderão ser estendidas para microcontroladores com maior capaci-
dade de processamento e para arquiteturas de redes neurais mais complexas. Adicional-
mente, recomenda-se a inclusão de novas fontes de dados, como sinais de vibração e
imagens, visando aprimorar a acurácia e robustez do sistema em ambientes reais.

Agradecimentos

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior - Brasil (CAPES) - Código de Financiamento 001. Danielo G.
Gomes agradece ao Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico
(CNPq) pela bolsa de produtividade (processo 311845/2022-3).

Referências

Abdul, Z. K. and Al-Talabani, A. K. (2022). Mel frequency cepstral coefficient and its
applications: A review. IEEE Access, 10:122136–122158.

Braga, R., A., G. Gomes, D., Rogers, R., E. Hassler, E., M. Freitas, B., and A. Cazier,
J. (2020). A method for mining combined data from in-hive sensors, weather and
apiary inspections to forecast the health status of honey bee colonies. Computers and
Electronics in Agriculture, 169:105161.

Danieli, P. P., Addeo, N. F., Lazzari, F., Manganello, F., and Bovera, F. (2024). Precision
beekeeping systems: State of the art, pros and cons, and their application as tools for
advancing the beekeeping sector. Animals, 14(1).

Giannakopoulos, T. (2015). pyaudioanalysis: An open-source python library for audio
signal analysis. GitHub repository, https://github.com/tyiannak/pyAudioAnalysis.

Kanelis, D., Liolios, V., Papadopoulou, F., Rodopoulou, M.-A., Kampelopoulos, D., Sio-
zios, K., and Tananaki, C. (2023). Decoding the behavior of a queenless colony using
sound signals. Biology, 12(11).

Lai, L., Suda, N., and Chandra, V. (2018). Cmsis-nn: Efficient neural network kernels for
arm cortex-m cpus. arXiv preprint arXiv:1801.06601.

Lu, Y., Hong, W., Fang, Y., Wang, Y., Liu, Z., Wang, H., Lu, C., Xu, B., and Liu, S.
(2024). Continuous monitoring the queen loss of honey bee colonies. Biosystems
Engineering, 244:67–76.

Otesbelgue, A., Rodrigues, I., dos Santos, C., Gomes, D., and Blochtein, B. (2025). The
missing queen: a non-invasive method to identify queenless stingless bee hives. In
Apidologie. Springer.



Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). scikit-learn: Machine learning
in Python.

Pires, C. S. S., Pereira, F. d. M., Lopes, M. T. d. R., Nocelli, R. C. F., Malaspina, O., Pettis,
J. S., and Teixeira, E. W. (2016). Enfraquecimento e perda de colônias de abelhas no
brasil: há casos de ccd? Pesquisa Agropecuária Brasileira, 51(5):422–442.

Rodrigues, I., Melo, D., and Gomes, D. (2024). Bioacoustic dataset of sudden queen loss
in an apis mellifera l. honeybee colony. In Anais do XV Workshop de Computação Apli-
cada à Gestão do Meio Ambiente e Recursos Naturais, pages 215–218, Porto Alegre,
RS, Brasil. SBC.

Rodrigues, I., Melo, D., Silva, D., Rybarczyk, Y., and Gomes, D. (2022). Padrões bi-
oacústicos como identificadores precisos da presença de rainha em colmeias de abe-
lhas melı́feras. In Anais do XIII Workshop de Computação Aplicada à Gestão do Meio
Ambiente e Recursos Naturais, pages 11–20, Porto Alegre, RS, Brasil. SBC.

Santos, I. R. d., Araújo, F. H. D. d., and Magalhães, D. M. V. (2025). Análise comparativa
de modelos de classificação de áudio de colmeias de abelhas em dispositivos portáteis
android com onnxruntime. Brazilian Journal of Development, 11(2):e78007.

Schwartzbach, C. (2015). A transformada de fourier e o processamento eletrônico dos
sinais.

Shlens, J. (2014). A tutorial on principal component analysis. arXiv preprint ar-
Xiv:1404.1100.


