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Abstract. This paper explores the prediction of trajectory and expansion poten-
tial of wildfires in heterogeneous forests. Our proposed methodology consists
of modeling the target area as a finite graph following a regular 2D grid topo-
logy, each node representing a specific terrain condition, over which wildfires
propagate according to a heterogeneous adaptation of the well-known SIR epi-
demiological model. As a proof of concept, we performed multiple computer
simulations for two distinct topologies and initial random locations for wildfires
in each configuration. Our results highlight the model’s ability to simulate fire
propagation under various conditions, offering potential for theoretical analysis
and aiding in the development of fire containment strategies.

Resumo. Este estudo explora a previsdo da trajetoria e da expansdo potencial
de incéndios em florestas heterogéneas. Nossa proposta metodologica consiste
em modelar a drea-alvo como um grafo finito seguindo uma topologia regular
de grade 2D, onde cada no representa uma condigdo especifica de terreno, so-
bre os quais incéndios se propagam conforme uma adaptacdo heterogénea do
notorio modelo epidemiologico SIR. Como prova de conceito, realizamos di-
ferentes simulagcées computacionais para duas topologias distintas com focos
iniciais aleatorios. Nossos resultados destacam a capacidade do modelo de si-
mular a propagacdo do fogo sob diversas condicdes, oferecendo potencial para
andlise teorica e auxiliando no desenvolvimento de estratégias de contencdo.

1. Introducao

Incéndios florestais podem ser definidos como ocorréncias ndo controladas de fogo que
incidem sobre qualquer forma de vegetacdo, podendo ser provocadas de forma natu-
ral, intencional ou por negligéncia [de Castro et al. 2006, Duarte 2022]. Por outro lado,
“queimadas” podem ser associadas a praticas de queima controlada realizadas pela acao
antrépica [Duarte 2022]. Contudo, apesar da divergéncia semantica, ambos sdo extre-
mamente prejudiciais para a fauna e flora dos locais afetados, ndo sendo raro que erros
ocorram no processo de “queimada” e o fogo em questdo chegue a propor¢des maio-
res que as previstas. Assim, no cendrio atual do Brasil, o escalonamento dos registros
de ocorréncias desse tipo de evento vem se tornando tema recorrente em debates gover-
namentais e pesquisas académicas, pois além de gerar a fragmentacdo de habitats e a
reducgdo de biodiversidade nos biomas afetados, sao eventos comprovadamente prejudici-
ais a saude publica [Ferro et al. 2020].



De acordo com [Ferro et al. 2020], a poluicdo atmosférica advinda do processo
de queimada € responsavel ndo apenas pelo aumento da taxa de morbimortalidade por
doencas respiratdrias, mas também pela ocorréncia de efeitos deletérios no coracio e no
pulmado em alguns casos. [de Oliveira Alves et al. 2017] afirma ainda que o problema
pode chegar a nivel genético, visto que “as particulas das queimadas ao entrarem nos
pulmdes aumentam a inflamacdo, o estresse oxidativo e provocam danos genéticos nas
células de pulmdao humano. O dano no DNA € tdo grave que provoca incapacidade de
sobrevivéncia, ou perda do controle celular causando uma reproducao desordenada evo-
luindo para cancer de pulmao.”

Neste sentido, faz-se necessario elaborar com certa urgéncia estratégias e equi-
pamentos que suprimam o espalhamento do fogo e da fumaga oriundos deste pro-
cesso. Em 2024, foram registrados cerca de 29,7 milhdes de hectares queimados en-
tre janeiro e novembro, caracterizando a maior extensdo de territério queimado em seis
anos [Nascimento 2024]. No entanto, a propagacdo de incéndios ocorre de forma nao-
linear e complexa, considerando a interagdo entre processos bidticos e abidticos, tendo
como quatro fatores principais os aspectos climéticos e antropicos, fatores topograficos e
caracteristicas da vegetacao [Duarte 2022].

Notando a complexidade do problema abordado, este trabalho propde uma nova
estratégia para prever a trajetéria e o potencial de expansdo de incéndios florestais em
florestas heterogéneas, explorando a aplicagdo de técnicas das dreas de Ciéncia de Re-
des e Epidemiologia, em particular o conhecido modelo epidemioldgico SIR (suscetivel-
infectado-recuperado). O restante deste artigo estd estruturado da seguinte forma: na
secdo 2 apresenta-se a revisdo bibliogréfica dos trabalhos relacionados a tematica da pes-
quisa; nas secoes 3 e 4 explica-se o modelo proposto e apresentam-se os testes realizados
para sua validacdo; por fim na se¢do 5 sdo abordadas as conclusdes e os futuros desafios
do projeto.

2. Trabalhos Relacionados

2.1. Incéndios e Queimadas

A modelagem do fogo permanece um desafio recorrente na Computagdo, tendo uma
vasta quantidade de trabalhos focados em desenvolver métodos melhores para pre-
ver o “next day’s fire danger”, i.e., o nivel de risco de incéndio estimado para o dia
seguinte, geralmente baseado em condi¢des meteoroldgicas como temperatura, umi-
dade, vento e precipitacdo, mas sem considerar fatores de vegetacdo, ou atividade hu-
mana [Kondylatos et al. 2022]. Tais riscos costumam ser calculados usando indices como
o Fire Weather Index (FWI), que avaliam a probabilidade de ocorréncia e propagacao de
incéndios, mas se mostram abertos a erros significativos, considerando a natureza intrin-
secamente estocdstica de incéndios florestais reais.

Técnicas de Inteligéncia Artificial t€ém sido utilizadas nesse contexto para tais
predi¢coes. Por exemplo, [Duarte 2022] infere a Suscetibilidade a Incéndios e Queimadas
(SIQ) a partir de dados de sensoriamento remoto, através de um método misto de aprendi-
zagem de mdquina e inferéncia fuzzy. [Kondylatos et al. 2022] utiliza dados em trés mo-
dalidades (instancia, temporal e espaco-temporal) e emprega algoritmos de aprendizagem
profunda para processar diferentes entradas e obter uma saida em forma de classificacao
bindaria ao fim do processo.



Apesar da recorréncia do tema, modelos eficientes que foquem na previsdo da
trajetoria adotada pela frente do fogo ainda se mostram escassos. Dentre os modelos
encontrados, o estudo de [Brasiel and Lima 2023], propde o uso de automatos celula-
res como ferramenta para modelar a propagacao de incéndios florestais em ambientes
heterogéneos. Esta abordagem permitiu simular as dinamicas de propagagao conside-
rando a interacdo entre diferentes tipos de vegetacdo, vetores de vento e a influéncia de
barreiras naturais, como rios, sem necessariamente utilizar dados de sensoriamento re-
moto, como nos demais estudos citados. Apesar do desafio em validar o modelo quanto a
comparacdes reais inicialmente, o estudo traz a luz a importante comparagao entre mode-
los homogéneos, que assumem uma cobertura vegetal uniforme em toda a drea simulada
e sdo uteis para estudos especificos, e modelos heterogéneos, que apresentam maior fi-
dedignidade ao mundo real uma vez que consideram a distribui¢do espacial de diferentes
tipos de vegetacdo e elementos naturais, sendo mais compativeis a biomas como o cerrado
brasileiro. Contudo, o modelo apresenta limitagdes como a auséncia de representacdo da
dindmica de recuperacdo da vegetacdo apds a queima, um aspecto crucial considerando
a notavel resiliéncia do Cerrado ap6s incéndios, € a falta de discussdo sobre a eficiéncia
computacional do modelo proposto, um fator determinante para aplicagdes praticas, es-
pecialmente em simulagdes de larga escala que seriam necessdrias para gerenciamento
ambiental e tomada de decisdes em criagdes de estratégias de contengao.

2.2. Modelos Epidemiologicos

Esta subsecdo se propde a explicar primeiramente as defini¢des que caracterizam um mo-
delo epidemioldgico, bem como o funcionamento do modelo SIR, a fim de criar uma
contextualizacdo adequada antes da devida apresentacdo da proposta.

Modelos epidemiol6gicos sao técnicas matematicas de modelagem e andlise, utili-
zadas no estudo e compreensao da disseminacdo de doencas em populagdes. Apesar deste
foco, os preceitos fundamentais destes modelos também podem ser aplicados a contextos
de saude cujas dinamicas ndo siao estritamente epidémicas, como prevaléncia de obe-
sidade [Christakis and Fowler 2007], e fendmenos de espalhamento de naturezas diver-
sas, como propagacao de malwares em redes de computadores [Chernikova et al. 2023],
disseminagdo de desinformacdo em redes sociais [Govindankutty and Gopalan 2024] e
adogdo de inovagdes tecnoldgicas [Valente 1996].

Historicamente, modelos epidemioldgicos sdo baseados em duas premissas fun-
damentais: compartimentalizacdo e mistura homogénea [Barabdsi and Pdsfai 2016].
Compartimentalizagdo se refere a classificacao dos individuos em diferentes estados ca-
racterizando estdgios unicos de avango da doenga, com transicdes individuais entre estes
estados ocorrendo em fungdo de eventos como infec¢dao e recuperacdo. Modelos dife-
rem em funcdo de quais estados, transi¢des e eventos sdo considerados, cada um se ade-
quando a modelagem de doencas especificas em fungdo de especificidades do fendmeno
epidémico. J4 a premissa de mistura homogénea assume que contatos par-a-par entre
individuos ocorrem de maneira igualitdria, sem favorecimento a nenhum tipo de contato
especifico.

A combinacdo destas premissas evita a necessidade de se conhecer a rede de
contatos precisa pela qual a doenca se espalha e, naturalmente, favorece a utilizagdo
de abordagens de campo médio, que sdao particularmente adequadas a técnicas de



andlise baseadas em equagdes diferenciais, seja para modelos deterministicos ou es-
tocasticos [Kendall 1956]. Para ilustrar isso, € interessantes analisar em detalhes um dos
modelos mais tradicionais da area, conhecido como modelo SIR.

2.3. Modelo SIR

O modelo SIR (suscetivel-infectado-recuperado) prevé a utilizacdo de trés compartimen-
tos para os individuos [Kermack and McKendrick 1927]: no estado infectado, o individuo
porta a doenga e pode infectar outros individuos, enquanto no estado suscetivel (S), o in-
dividuo ndo porta a doenga mas estd sujeito a adquiri-la via contato com um individio
infectado. O estado removido ou recuperado (R) representa individuos anteriormente in-
fectados, mas que nao portam mais a doenca (logo nao estdo mais infecciosos) nem podem
readquiri-la, representando em geral uma recuperacao com imunidade adquirida (embora
a remocao de individuos do sistema por outros eventos também possa ser representada
por este estado). Na Figura 1 podemos observar o diagrama que ilustra este fluxo.

Suscetivel Infectado Recuperado

(S) ()] (R)

Figura 1. Diagrama de fluxo do modelo SIR

As transi¢des dos individuos entre estes estados sdo baseadas nas interacdes entre
eles e em dois pardmetros principais: a taxa de infeccdo () e a taxa de recuperacdo ().
Na versao tradicional do modelo, que utiliza uma abordagem de campo médio, a evolucao
da populacao em cada compartimento € descrita por um sistema de equacdes diferenciais:

as _ _psiI
dt N’
ar_psr_
dt N ’
dR

= ~I.

a !

Desta forma, através da solu¢@o analitica ou numérica deste sistema de equagoes,
€ possivel prever a evolucdo temporal da distribuicdo da populagdo entre os diferentes
estados, fornecendo percepcoes interessantes sobre o comportamento da disseminacgado de
doencas em diferentes populagdes.

3. Proposta

Um incéndio florestal segue um padrdao de desenvolvimento em trés etapas distintas: a
ignicdo inicial, onde o fogo comeca pequeno e com propagacdo relativamente lenta;
a fase de aceleracdo, na qual a largura da frente de fogo aumenta e sua taxa de
propagacdo acelera; e o estado estaciondrio, quando o fogo atinge uma taxa de propagacao
estavel que corresponde as condi¢des predominantes de combustivel, clima e topografia
[Sullivan and Gould 2020].



Esta dinamica de propagacdo € similar ao processo de disseminacdo de doencas
proposto pelo modelo SIR, o que permite sua modelagem através de uma adaptacido do
modelo. Realizando um trabalho simples de abstracdo, podemos associar a forma de
contato entre individuos suscetiveis e infectados a propagacao do fogo através do contato
entre dreas em chamas e areas com potencial para queima. A taxa de progressao do fogo,
que pode ser medida tanto pelo tempo necessério para percorrer uma distancia conhecida,
quanto pela distancia percorrida em um tempo determinado [Sullivan and Gould 2020]
€ outro fator onde encontramos um paralelo, neste caso com a taxa de transmissio de
doencas do modelo epidemiolégico.

Assim, na proposta em questdo foram realizados experimentos em redes de Grid
2D, com o intuito de simular um espaco cartesiano onde fosse possivel obter uma
visualizacdo clara dos terrenos analisados. Na criagdo da rede foram atribuidas carac-
teristicas distintas a 4 tipos de nés, pois como trazido por [Brasiel and Lima 2023] a in-
flamabilidade em diferentes tipos de vegetacdo € variada.

Esta variacdo seguiu a logica de representacdo de [Brasiel and Lima 2023] ao ca-
tegorizar a suscetibilidade ao fogo de cada tipo de vegetacao dentro de um Cerrado. Desta
forma, os nés sdo divididos em: nds laranja (florestas imidas), que possuem baixa chance
de infec¢do e sdo similares a individuos com alta resisténcia a uma doenca; nds azuis
(matas de transicao) apresentam probabilidade moderada de propagacdo; e nds verdes
(vegetacdo seca), que possuem alta probabilidade de inflamar. Por fim, os rios, repre-
sentados por nés vermelhos, atuam como barreiras naturais a propagacao do fogo nas
simulacdes, similar a individuos imunes em um modelo epidemiolégico. Na Figura 2 é
possivel observar um exemplo desta distribuicao.
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Figura 2. Exemplo de configuracao inicial para o modelo.

A dindmica de transmissdo e recuperacdo no modelo é baseada em probabili-
dades, mas diferente do modelo SIR padrdo, o calculo dessa probabilidade foi adap-
tado para se adequar melhor aos diferentes terrenos. Para cada né suscetivel, calcula-
se a probabilidade de infeccdo com base na suscetibilidade da cor do né e na taxa de
transmissao beta, considerando o ndmero de vizinhos infectados. Paralelamente, para
cada né infectado, verifica-se a probabilidade de recuperagdo em cada passo tempo-
ral, comparando um ndmero gerado aleatoriamente com o parametro gamma. Esta €



uma abordagem fundamentalmente baseada em modelos epidémicos modernos em re-
des [Pastor-Satorras and Vespignani 2001], sendo as principais diferengas a especificagao
de uma topologia regular para a rede subjacente e a heterogeneidade da taxa de infec¢ao
(i.e. propagacdo do fogo) em fungdo do tipo de vegetacdo representada.

Por fim, o modelo inicia sua simula¢ido considerando duas formas de infeccao:
“Random”, em que os nods infectados inicialmente sdo selecionados aleatoriamente, e
“Manual”, que permite a escolha especifica dos nds a serem infectados. A partir dessa
configuracdo inicial, a propagacdo do fogo ocorre conforme a suscetibilidade de seus
vizinhos, até atingir um estado estaciondrio ao final dos passos temporais (steps). Para
tornar a representacdo visual da simulagdo mais clara, os n6és onde o fogo esta ativo sdo
representados na cor preta, enquanto aqueles por onde o fogo ja passou, mas se extinguiu,
aparecem em cinza.

Esta proposta possui alguns diferenciais relevantes em relacdo a modelos an-
teriores para previsdo de incéndios. Em particular, os trabalhos de [Duarte 2022] e
[Kondylatos et al. 2022] tém como objetivo prever o inicio de incéndios, ndo sua tra-
jetdria, sendo aplicdveis em escalas de tempo mais longas que a duracdo em um
incéndio em atividade tipico. A utilizagdo de um modelo estocdstico, em oposicdo a
dindmica deterministica de [Brasiel and Lima 2023], permite um processo mais flexivel
de representacdo de cendrios reais, nos quais nao é possivel medir ou controlar todas as
variaveis relevantes.

4. Testes e Resultados

A fim de testar seu funcionamento, o modelo foi rodado em uma maquina com processa-
dor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz com 8 GB de RAM, 2GB de placa de
video e 2 nucleos.

Inicialmente foram criadas redes aleatdrias com diferentes probabilidades de sur-
gimento de ndés. Assim, cada categoria de n6 possuia mais ou menos chances de aparecer
no Grid. Uma vez que terrenos reais nao seguem normas de equilibrio claras quanto a sua
distribui¢do, a variacdo de ocorréncia de determinadas “cores” se mostrou interessante
para diferentes andlises. Dentro das primeiras simula¢des propostas ocorreram variagoes
no ndmero inicial de nds infectados, niimero total de nés da rede (que variaram de 100 a
2500 nds), probabilidade de ocorréncia de determinados nds e nimero de passos tempo-
rais.

Subsequentemente, adaptamos o modelo para que ele realizasse ao menos 50
simulagdes, mantendo 0 mesmo mapa € os mesmos nds iniciais a cada vez que o sis-
tema fosse iniciado. Retornando ao final um arquivo com a contagem de nds em cada
um dos estados por step, bem como uma animacdo gerada com base na andlise de todas
as simulagdes decorrentes a partir da criagdo de uma matriz de probabilidade de infec¢ao
para cada n6 ao longo do tempo. Para isso, calculamos a frequéncia com que cada no
esteve infectado ou recuperado em cada etapa da simulagdo e normalizamos esses valores
pelo ndmero total de execugdes. O célculo para criacdo desta matriz € mostrado abaixo,
de forma que Ny¢(t, n) representa o nimero de vezes que o né n esteve infectado no passo
t, Niec(t, n) representa o nimero de vezes que o né n esteve recuperado no passo ¢, € Ny
representa o nimero total de simulagoes.
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Assim, obtivemos uma probabilidade acumulada de infec¢ao e recuperacio para
cada n6, permitindo determinar seu estado com base em um limiar (threshold). O valor
definido para este limiar no estudo foi de 50%. Caso a soma das probabilidades seja igual
ou ultrapasse o valor, o n6 é considerado infectado; j4 se a probabilidade de recuperagdo
se iguala ou excede o limiar e o n6 foi infectado anteriormente, ele € classificado como
recuperado.

Os experimentos a este ponto apresentaram potencial para serem expandidos, as-
sim o sistema foi ajustado para gerar uma rede com cerca de 10.000 nos por simulagao.
Mas apesar da expansdo consideravel da rede e do aumento no nimero de instanciagdes,
o tempo total de execucdo das simulacdes foi, em média, abaixo de 8 minutos. Assim,
testamos uma variacdo onde foram realizadas 200 simulag¢des, ao que o codigo levou
aproximadamente 33 minutos para ser executado. No intuito de posteriormente espelhar
ambientes reais nas simulacdes, também foram testadas redes projetadas, como € possivel
observar na Figura 3.

Provavel Caminho de Infecgao (Passo 0/200) Provavel Caminho de Infecgao (Passo 44/200) Provéavel Caminho de Infecgao (Passo 195/200)
Baseado em 20 simulagdes, limiar de probabilidade: 50% Baseado em 20 simulagdes, limiar de probabilidade: 50% Baseado em 20 simulagoes, limiar de probabilidade: 50%

Infectado (>=50%)
Recuperado (>=50%)
Rios/Barreiras
Florestas Umidas
Florestas de Transicao
Vegetagao Seca

Figura 3. Exemplo de Rede Projetada. A esquerda, a configuracao inicial, in-
cluindo focos iniciais de fogo. Ao centro e a direita, estados tipicos de
propagacao do fogo apds 200 e 400 passos de simulacao, respectiva-
mente.

Alguns dos resultados em comum entre a fase inicial do modelo e a fase mais
recente mostram que conforme a ocorréncia de rios aumenta, a tendéncia de que o fogo
fique limitado a locais especificos aumenta em acordo, comprovando a dificuldade de
espalhamento diante de barreiras naturais, ou agentes imunes. Uma exemplificacio deste
padrdo ocorre na Figura 4(a). J4 em ambientes onde os nds vermelhos ocorrem com
menos frequéncia, as simulacdes se mostraram mais favoraveis a propaga¢ao, como na
Figura 4(b). Os experimentos atestaram também a variancia na progressao do fogo a
depender dos locais onde os primeiros focos sdo atribuidos, mesmo mantendo o restante
dos parametros, bem como os diferentes resultados obtidos conforme o nimero de focos
de incéndio iniciais € alterado.
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Figura 4. Dois exemplos de redes aleatérias.

O fluxo dos resultados, apesar de variar conforme o niimero de passos tempo-
rais simulados e do nimero de nés infectados, apresentou uma tendéncia semelhante
a definida por [Sullivan and Gould 2020] em relacdo ao padrdo de desenvolvimento de
incéndios florestais, como podemos notar na Figura 5. Neste contexto, os resultados ge-
rais do modelo adaptado apresentam grande potencial tedrico para predir a trajetoria de
focos de incéndio em biomas com vegetacdes diversificadas como o Cerrado. Gragas a
natureza majoritariamente visual dos resultados propostos, a interpretacao das previsoes
obtidas se torna mais democratica. E os resultados obtidos demonstraram também a ver-
satilidade do sistema em lidar com parametros diferentes sem a necessidade de periodos
exponenciais para sua execucdo. Além disso, uma vez que todos os testes foram realiza-
dos em um notebook i5 de sétima geracdo, com memoria SSD de 446 GB, pressupde-se
que com maquinas mais potentes seu tempo de execucdo se mantenha aceitdvel mesmo
com redes consideravelmente maiores.

5. Conclusoes e trabalhos futuros

A modelagem inicial demonstrou que os modelos epidemiol6gicos possuem um vasto
potencial inexplorado dentro deste tema, apresentando similaridades relevantes com o
processo de propagagao do fogo. A aplicagdo desses modelos no contexto de incéndios
florestais pode fomentar o desenvolvimento de novas teorias e andlises de redes voltadas
para estratégias de contengao.

A proposta tem como objetivo, a longo prazo, gerar uma ferramenta ttil para os
orgdos que atuam na prevencao e no combate a incéndios florestais. Fato que justifica a
busca por resultados visualmente intuitivos e um tempo de execu¢@o otimizado, mesmo
diante de possiveis limitagdoes de hardware. Os resultados obtidos até 0 momento abrem
caminho para novos estudos que investiguem diferentes biomas e refinem ainda mais os
fatores que influenciam a propagacio do fogo.



Resultados de 50 Simulagdes (Média com IC 95%)
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Figura 5. Proporcdao média de nds vulneraveis (S), em chamas (I) e queima-
dos (R) ao longo do tempo. Regioes hachuradas representam intervalo
de confianca de 95%.

Contudo, para tornar os testes mais proximos de ambientes reais, trabalhos futuros
buscardo criar redes baseadas em areas existentes como APA’s ou parques nacionais para
que possamos comparar o fluxo de incéndios passados, as simulacdes realizadas pelo mo-
delo adaptado. Ademais, pretende-se ampliar a diversidade de vegetacdes consideradas
no modelo, refinando a taxa de suscetibilidade de cada né. Outros fatores, como direcao
do vento e topografia do terreno, também serdo incorporados para aumentar a precisao da
analise.
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