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Abstract. This paper explores the prediction of trajectory and expansion poten-
tial of wildfires in heterogeneous forests. Our proposed methodology consists
of modeling the target area as a finite graph following a regular 2D grid topo-
logy, each node representing a specific terrain condition, over which wildfires
propagate according to a heterogeneous adaptation of the well-known SIR epi-
demiological model. As a proof of concept, we performed multiple computer
simulations for two distinct topologies and initial random locations for wildfires
in each configuration. Our results highlight the model’s ability to simulate fire
propagation under various conditions, offering potential for theoretical analysis
and aiding in the development of fire containment strategies.

Resumo. Este estudo explora a previsão da trajetória e da expansão potencial
de incêndios em florestas heterogêneas. Nossa proposta metodológica consiste
em modelar a área-alvo como um grafo finito seguindo uma topologia regular
de grade 2D, onde cada nó representa uma condição especı́fica de terreno, so-
bre os quais incêndios se propagam conforme uma adaptação heterogênea do
notório modelo epidemiológico SIR. Como prova de conceito, realizamos di-
ferentes simulações computacionais para duas topologias distintas com focos
iniciais aleatórios. Nossos resultados destacam a capacidade do modelo de si-
mular a propagação do fogo sob diversas condições, oferecendo potencial para
análise teórica e auxiliando no desenvolvimento de estratégias de contenção.

1. Introdução
Incêndios florestais podem ser definidos como ocorrências não controladas de fogo que
incidem sobre qualquer forma de vegetação, podendo ser provocadas de forma natu-
ral, intencional ou por negligência [de Castro et al. 2006, Duarte 2022]. Por outro lado,
“queimadas” podem ser associadas a práticas de queima controlada realizadas pela ação
antrópica [Duarte 2022]. Contudo, apesar da divergência semântica, ambos são extre-
mamente prejudiciais para a fauna e flora dos locais afetados, não sendo raro que erros
ocorram no processo de “queimada” e o fogo em questão chegue a proporções maio-
res que as previstas. Assim, no cenário atual do Brasil, o escalonamento dos registros
de ocorrências desse tipo de evento vem se tornando tema recorrente em debates gover-
namentais e pesquisas acadêmicas, pois além de gerar a fragmentação de habitats e a
redução de biodiversidade nos biomas afetados, são eventos comprovadamente prejudici-
ais à saúde pública [Ferro et al. 2020].



De acordo com [Ferro et al. 2020], a poluição atmosférica advinda do processo
de queimada é responsável não apenas pelo aumento da taxa de morbimortalidade por
doenças respiratórias, mas também pela ocorrência de efeitos deletérios no coração e no
pulmão em alguns casos. [de Oliveira Alves et al. 2017] afirma ainda que o problema
pode chegar a nı́vel genético, visto que “as partı́culas das queimadas ao entrarem nos
pulmões aumentam a inflamação, o estresse oxidativo e provocam danos genéticos nas
células de pulmão humano. O dano no DNA é tão grave que provoca incapacidade de
sobrevivência, ou perda do controle celular causando uma reprodução desordenada evo-
luindo para câncer de pulmão.”

Neste sentido, faz-se necessário elaborar com certa urgência estratégias e equi-
pamentos que suprimam o espalhamento do fogo e da fumaça oriundos deste pro-
cesso. Em 2024, foram registrados cerca de 29,7 milhões de hectares queimados en-
tre janeiro e novembro, caracterizando a maior extensão de território queimado em seis
anos [Nascimento 2024]. No entanto, a propagação de incêndios ocorre de forma não-
linear e complexa, considerando a interação entre processos bióticos e abióticos, tendo
como quatro fatores principais os aspectos climáticos e antrópicos, fatores topográficos e
caracterı́sticas da vegetação [Duarte 2022].

Notando a complexidade do problema abordado, este trabalho propõe uma nova
estratégia para prever a trajetória e o potencial de expansão de incêndios florestais em
florestas heterogêneas, explorando a aplicação de técnicas das áreas de Ciência de Re-
des e Epidemiologia, em particular o conhecido modelo epidemiológico SIR (suscetı́vel-
infectado-recuperado). O restante deste artigo está estruturado da seguinte forma: na
seção 2 apresenta-se a revisão bibliográfica dos trabalhos relacionados à temática da pes-
quisa; nas seções 3 e 4 explica-se o modelo proposto e apresentam-se os testes realizados
para sua validação; por fim na seção 5 são abordadas as conclusões e os futuros desafios
do projeto.

2. Trabalhos Relacionados
2.1. Incêndios e Queimadas
A modelagem do fogo permanece um desafio recorrente na Computação, tendo uma
vasta quantidade de trabalhos focados em desenvolver métodos melhores para pre-
ver o “next day’s fire danger”, i.e., o nı́vel de risco de incêndio estimado para o dia
seguinte, geralmente baseado em condições meteorológicas como temperatura, umi-
dade, vento e precipitação, mas sem considerar fatores de vegetação, ou atividade hu-
mana [Kondylatos et al. 2022]. Tais riscos costumam ser calculados usando ı́ndices como
o Fire Weather Index (FWI), que avaliam a probabilidade de ocorrência e propagação de
incêndios, mas se mostram abertos a erros significativos, considerando a natureza intrin-
secamente estocástica de incêndios florestais reais.

Técnicas de Inteligência Artificial têm sido utilizadas nesse contexto para tais
predições. Por exemplo, [Duarte 2022] infere a Suscetibilidade à Incêndios e Queimadas
(SIQ) a partir de dados de sensoriamento remoto, através de um método misto de aprendi-
zagem de máquina e inferência fuzzy. [Kondylatos et al. 2022] utiliza dados em três mo-
dalidades (instância, temporal e espaço-temporal) e emprega algoritmos de aprendizagem
profunda para processar diferentes entradas e obter uma saı́da em forma de classificação
binária ao fim do processo.



Apesar da recorrência do tema, modelos eficientes que foquem na previsão da
trajetória adotada pela frente do fogo ainda se mostram escassos. Dentre os modelos
encontrados, o estudo de [Brasiel and Lima 2023], propõe o uso de autômatos celula-
res como ferramenta para modelar a propagação de incêndios florestais em ambientes
heterogêneos. Esta abordagem permitiu simular as dinâmicas de propagação conside-
rando a interação entre diferentes tipos de vegetação, vetores de vento e a influência de
barreiras naturais, como rios, sem necessariamente utilizar dados de sensoriamento re-
moto, como nos demais estudos citados. Apesar do desafio em validar o modelo quanto a
comparações reais inicialmente, o estudo traz à luz a importante comparação entre mode-
los homogêneos, que assumem uma cobertura vegetal uniforme em toda a área simulada
e são úteis para estudos especı́ficos, e modelos heterogêneos, que apresentam maior fi-
dedignidade ao mundo real uma vez que consideram a distribuição espacial de diferentes
tipos de vegetação e elementos naturais, sendo mais compatı́veis a biomas como o cerrado
brasileiro. Contudo, o modelo apresenta limitações como a ausência de representação da
dinâmica de recuperação da vegetação após a queima, um aspecto crucial considerando
a notável resiliência do Cerrado após incêndios, e a falta de discussão sobre a eficiência
computacional do modelo proposto, um fator determinante para aplicações práticas, es-
pecialmente em simulações de larga escala que seriam necessárias para gerenciamento
ambiental e tomada de decisões em criações de estratégias de contenção.

2.2. Modelos Epidemiológicos

Esta subseção se propõe a explicar primeiramente as definições que caracterizam um mo-
delo epidemiológico, bem como o funcionamento do modelo SIR, a fim de criar uma
contextualização adequada antes da devida apresentação da proposta.

Modelos epidemiológicos são técnicas matemáticas de modelagem e análise, utili-
zadas no estudo e compreensão da disseminação de doenças em populações. Apesar deste
foco, os preceitos fundamentais destes modelos também podem ser aplicados a contextos
de saúde cujas dinâmicas não são estritamente epidêmicas, como prevalência de obe-
sidade [Christakis and Fowler 2007], e fenômenos de espalhamento de naturezas diver-
sas, como propagação de malwares em redes de computadores [Chernikova et al. 2023],
disseminação de desinformação em redes sociais [Govindankutty and Gopalan 2024] e
adoção de inovações tecnológicas [Valente 1996].

Historicamente, modelos epidemiológicos são baseados em duas premissas fun-
damentais: compartimentalização e mistura homogênea [Barabási and Pósfai 2016].
Compartimentalização se refere à classificação dos indivı́duos em diferentes estados ca-
racterizando estágios únicos de avanço da doença, com transições individuais entre estes
estados ocorrendo em função de eventos como infecção e recuperação. Modelos dife-
rem em função de quais estados, transições e eventos são considerados, cada um se ade-
quando à modelagem de doenças especı́ficas em função de especificidades do fenômeno
epidêmico. Já a premissa de mistura homogênea assume que contatos par-a-par entre
indivı́duos ocorrem de maneira igualitária, sem favorecimento a nenhum tipo de contato
especı́fico.

A combinação destas premissas evita a necessidade de se conhecer a rede de
contatos precisa pela qual a doença se espalha e, naturalmente, favorece a utilização
de abordagens de campo médio, que são particularmente adequadas a técnicas de



análise baseadas em equações diferenciais, seja para modelos determinı́sticos ou es-
tocásticos [Kendall 1956]. Para ilustrar isso, é interessantes analisar em detalhes um dos
modelos mais tradicionais da área, conhecido como modelo SIR.

2.3. Modelo SIR

O modelo SIR (suscetı́vel-infectado-recuperado) prevê a utilização de três compartimen-
tos para os indivı́duos [Kermack and McKendrick 1927]: no estado infectado, o indı́viduo
porta a doença e pode infectar outros indivı́duos, enquanto no estado suscetı́vel (S), o in-
divı́duo não porta a doença mas está sujeito a adquiri-la via contato com um indivı́dio
infectado. O estado removido ou recuperado (R) representa indivı́duos anteriormente in-
fectados, mas que não portam mais a doença (logo não estão mais infecciosos) nem podem
readquiri-la, representando em geral uma recuperação com imunidade adquirida (embora
a remoção de indivı́duos do sistema por outros eventos também possa ser representada
por este estado). Na Figura 1 podemos observar o diagrama que ilustra este fluxo.

Figura 1. Diagrama de fluxo do modelo SIR

As transições dos indivı́duos entre estes estados são baseadas nas interações entre
eles e em dois parâmetros principais: a taxa de infecção (β) e a taxa de recuperação (γ).
Na versão tradicional do modelo, que utiliza uma abordagem de campo médio, a evolução
da população em cada compartimento é descrita por um sistema de equações diferenciais:

dS

dt
= −βSI

N
,

dI

dt
=

βSI

N
− γI,

dR

dt
= γI.

Desta forma, através da solução analı́tica ou numérica deste sistema de equações,
é possı́vel prever a evolução temporal da distribuição da população entre os diferentes
estados, fornecendo percepções interessantes sobre o comportamento da disseminação de
doenças em diferentes populações.

3. Proposta
Um incêndio florestal segue um padrão de desenvolvimento em três etapas distintas: a
ignição inicial, onde o fogo começa pequeno e com propagação relativamente lenta;
a fase de aceleração, na qual a largura da frente de fogo aumenta e sua taxa de
propagação acelera; e o estado estacionário, quando o fogo atinge uma taxa de propagação
estável que corresponde às condições predominantes de combustı́vel, clima e topografia
[Sullivan and Gould 2020].



Esta dinâmica de propagação é similar ao processo de disseminação de doenças
proposto pelo modelo SIR, o que permite sua modelagem através de uma adaptação do
modelo. Realizando um trabalho simples de abstração, podemos associar a forma de
contato entre indivı́duos suscetı́veis e infectados à propagação do fogo através do contato
entre áreas em chamas e áreas com potencial para queima. A taxa de progressão do fogo,
que pode ser medida tanto pelo tempo necessário para percorrer uma distância conhecida,
quanto pela distância percorrida em um tempo determinado [Sullivan and Gould 2020]
é outro fator onde encontramos um paralelo, neste caso com a taxa de transmissão de
doenças do modelo epidemiológico.

Assim, na proposta em questão foram realizados experimentos em redes de Grid
2D, com o intuito de simular um espaço cartesiano onde fosse possı́vel obter uma
visualização clara dos terrenos analisados. Na criação da rede foram atribuidas carac-
terı́sticas distintas a 4 tipos de nós, pois como trazido por [Brasiel and Lima 2023] a in-
flamabilidade em diferentes tipos de vegetação é variada.

Esta variação seguiu a lógica de representação de [Brasiel and Lima 2023] ao ca-
tegorizar a suscetibilidade ao fogo de cada tipo de vegetação dentro de um Cerrado. Desta
forma, os nós são divididos em: nós laranja (florestas úmidas), que possuem baixa chance
de infecção e são similares a indivı́duos com alta resistência a uma doença; nós azuis
(matas de transição) apresentam probabilidade moderada de propagação; e nós verdes
(vegetação seca), que possuem alta probabilidade de inflamar. Por fim, os rios, repre-
sentados por nós vermelhos, atuam como barreiras naturais à propagação do fogo nas
simulações, similar a indivı́duos imunes em um modelo epidemiológico. Na Figura 2 é
possı́vel observar um exemplo desta distribuição.

Figura 2. Exemplo de configuração inicial para o modelo.

A dinâmica de transmissão e recuperação no modelo é baseada em probabili-
dades, mas diferente do modelo SIR padrão, o cálculo dessa probabilidade foi adap-
tado para se adequar melhor aos diferentes terrenos. Para cada nó suscetı́vel, calcula-
se a probabilidade de infecção com base na suscetibilidade da cor do nó e na taxa de
transmissão beta, considerando o número de vizinhos infectados. Paralelamente, para
cada nó infectado, verifica-se a probabilidade de recuperação em cada passo tempo-
ral, comparando um número gerado aleatoriamente com o parâmetro gamma. Esta é



uma abordagem fundamentalmente baseada em modelos epidêmicos modernos em re-
des [Pastor-Satorras and Vespignani 2001], sendo as principais diferenças a especificação
de uma topologia regular para a rede subjacente e a heterogeneidade da taxa de infecção
(i.e. propagação do fogo) em função do tipo de vegetação representada.

Por fim, o modelo inicia sua simulação considerando duas formas de infecção:
“Random”, em que os nós infectados inicialmente são selecionados aleatoriamente, e
“Manual”, que permite a escolha especı́fica dos nós a serem infectados. A partir dessa
configuração inicial, a propagação do fogo ocorre conforme a suscetibilidade de seus
vizinhos, até atingir um estado estacionário ao final dos passos temporais (steps). Para
tornar a representação visual da simulação mais clara, os nós onde o fogo está ativo são
representados na cor preta, enquanto aqueles por onde o fogo já passou, mas se extinguiu,
aparecem em cinza.

Esta proposta possui alguns diferenciais relevantes em relação a modelos an-
teriores para previsão de incêndios. Em particular, os trabalhos de [Duarte 2022] e
[Kondylatos et al. 2022] têm como objetivo prever o inı́cio de incêndios, não sua tra-
jetória, sendo aplicáveis em escalas de tempo mais longas que a duração em um
incêndio em atividade tı́pico. A utilização de um modelo estocástico, em oposição à
dinâmica determinı́stica de [Brasiel and Lima 2023], permite um processo mais flexı́vel
de representação de cenários reais, nos quais não é possı́vel medir ou controlar todas as
variáveis relevantes.

4. Testes e Resultados

A fim de testar seu funcionamento, o modelo foi rodado em uma máquina com processa-
dor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz com 8 GB de RAM, 2GB de placa de
vı́deo e 2 núcleos.

Inicialmente foram criadas redes aleatórias com diferentes probabilidades de sur-
gimento de nós. Assim, cada categoria de nó possuı́a mais ou menos chances de aparecer
no Grid. Uma vez que terrenos reais não seguem normas de equilı́brio claras quanto a sua
distribuição, a variação de ocorrência de determinadas “cores” se mostrou interessante
para diferentes análises. Dentro das primeiras simulações propostas ocorreram variações
no número inicial de nós infectados, número total de nós da rede (que variaram de 100 a
2500 nós), probabilidade de ocorrência de determinados nós e número de passos tempo-
rais.

Subsequentemente, adaptamos o modelo para que ele realizasse ao menos 50
simulações, mantendo o mesmo mapa e os mesmos nós iniciais a cada vez que o sis-
tema fosse iniciado. Retornando ao final um arquivo com a contagem de nós em cada
um dos estados por step, bem como uma animação gerada com base na análise de todas
as simulações decorrentes a partir da criação de uma matriz de probabilidade de infecção
para cada nó ao longo do tempo. Para isso, calculamos a frequência com que cada nó
esteve infectado ou recuperado em cada etapa da simulação e normalizamos esses valores
pelo número total de execuções. O cálculo para criação desta matriz é mostrado abaixo,
de forma que Ninf(t, n) representa o número de vezes que o nó n esteve infectado no passo
t, Nrec(t, n) representa o número de vezes que o nó n esteve recuperado no passo t, e Ntotal

representa o número total de simulações.



Pinfectado(t, n) =
Ninf(t, n)

Ntotal
(1)

Precuperado(t, n) =
Nrec(t, n)

Ntotal
(2)

Assim, obtivemos uma probabilidade acumulada de infecção e recuperação para
cada nó, permitindo determinar seu estado com base em um limiar (threshold). O valor
definido para este limiar no estudo foi de 50%. Caso a soma das probabilidades seja igual
ou ultrapasse o valor, o nó é considerado infectado; já se a probabilidade de recuperação
se iguala ou excede o limiar e o nó foi infectado anteriormente, ele é classificado como
recuperado.

Os experimentos a este ponto apresentaram potencial para serem expandidos, as-
sim o sistema foi ajustado para gerar uma rede com cerca de 10.000 nós por simulação.
Mas apesar da expansão considerável da rede e do aumento no número de instanciações,
o tempo total de execução das simulações foi, em média, abaixo de 8 minutos. Assim,
testamos uma variação onde foram realizadas 200 simulações, ao que o código levou
aproximadamente 33 minutos para ser executado. No intuito de posteriormente espelhar
ambientes reais nas simulações, também foram testadas redes projetadas, como é possı́vel
observar na Figura 3.

Figura 3. Exemplo de Rede Projetada. À esquerda, a configuração inicial, in-
cluindo focos iniciais de fogo. Ao centro e à direita, estados tı́picos de
propagação do fogo após 200 e 400 passos de simulação, respectiva-
mente.

Alguns dos resultados em comum entre a fase inicial do modelo e a fase mais
recente mostram que conforme a ocorrência de rios aumenta, a tendência de que o fogo
fique limitado a locais especı́ficos aumenta em acordo, comprovando a dificuldade de
espalhamento diante de barreiras naturais, ou agentes imunes. Uma exemplificação deste
padrão ocorre na Figura 4(a). Já em ambientes onde os nós vermelhos ocorrem com
menos frequência, as simulações se mostraram mais favoráveis à propagação, como na
Figura 4(b). Os experimentos atestaram também a variância na progressão do fogo a
depender dos locais onde os primeiros focos são atribuı́dos, mesmo mantendo o restante
dos parâmetros, bem como os diferentes resultados obtidos conforme o número de focos
de incêndio iniciais é alterado.



(a) Rede aleatória com muitos nós imunes. (b) Rede aleatória com poucos nós imunes.

Figura 4. Dois exemplos de redes aleatórias.

O fluxo dos resultados, apesar de variar conforme o número de passos tempo-
rais simulados e do número de nós infectados, apresentou uma tendência semelhante
à definida por [Sullivan and Gould 2020] em relação ao padrão de desenvolvimento de
incêndios florestais, como podemos notar na Figura 5. Neste contexto, os resultados ge-
rais do modelo adaptado apresentam grande potencial teórico para predir a trajetória de
focos de incêndio em biomas com vegetações diversificadas como o Cerrado. Graças a
natureza majoritariamente visual dos resultados propostos, a interpretação das previsões
obtidas se torna mais democrática. E os resultados obtidos demonstraram também a ver-
satilidade do sistema em lidar com parâmetros diferentes sem a necessidade de perı́odos
exponenciais para sua execução. Além disso, uma vez que todos os testes foram realiza-
dos em um notebook i5 de sétima geração, com memória SSD de 446 GB, pressupõe-se
que com máquinas mais potentes seu tempo de execução se mantenha aceitável mesmo
com redes consideravelmente maiores.

5. Conclusões e trabalhos futuros

A modelagem inicial demonstrou que os modelos epidemiológicos possuem um vasto
potencial inexplorado dentro deste tema, apresentando similaridades relevantes com o
processo de propagação do fogo. A aplicação desses modelos no contexto de incêndios
florestais pode fomentar o desenvolvimento de novas teorias e análises de redes voltadas
para estratégias de contenção.

A proposta tem como objetivo, a longo prazo, gerar uma ferramenta útil para os
órgãos que atuam na prevenção e no combate a incêndios florestais. Fato que justifica a
busca por resultados visualmente intuitivos e um tempo de execução otimizado, mesmo
diante de possı́veis limitações de hardware. Os resultados obtidos até o momento abrem
caminho para novos estudos que investiguem diferentes biomas e refinem ainda mais os
fatores que influenciam a propagação do fogo.



Figura 5. Proporção média de nós vulneráveis (S), em chamas (I) e queima-
dos (R) ao longo do tempo. Regiões hachuradas representam intervalo
de confiança de 95%.

Contudo, para tornar os testes mais próximos de ambientes reais, trabalhos futuros
buscarão criar redes baseadas em áreas existentes como APA’s ou parques nacionais para
que possamos comparar o fluxo de incêndios passados, às simulações realizadas pelo mo-
delo adaptado. Ademais, pretende-se ampliar a diversidade de vegetações consideradas
no modelo, refinando a taxa de suscetibilidade de cada nó. Outros fatores, como direção
do vento e topografia do terreno, também serão incorporados para aumentar a precisão da
análise.
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