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Abstract. Bees are the main pollinators of most wild and cultivated plant
species, thus being essential for the maintenance of plant ecosystems and for
food production. But they are threatened due to a series of drivers such as
pesticides, habitat loss and climate change. Here, we propose a method to iden-
tify the loss of thermoregulation capacity in honeybee colonies. We applied the
Long Short-Term Memory (LSTM) algorithm, which is based on Recurrent Neu-
ral Networks (RNN), to six real datasets of the Arnia remote hive monitoring
system. From brood temperatures gathered along the European fall season in
2017, the LSTM was able to detect when a honeybee colony is about to lose its
thermoregulation capacity. Our results showed an error of only 0.5% in predic-
tion for well-thermoregulated beehives.

1. Introduction

Pollinators are among the most important biotic agents and the pollination service they
provide ensures ecosystems stability, maintenance of the biodiversity of wild plants
species and agricultural yield [Potts et al. 2016, Bezerra et al. 2019]. However, pollina-
tors have declined considerably in agricultural landscapes, and pollinator decline affects
significantly the reproduction of plant species, crop production, food security and human
well-being [Potts et al. 2010, Garibaldi et al. 2013].

Bees are the most important group of pollinators [Klein et al. 2007,
Brown et al. 2016] and the Western honeybee (Apis mellifera) is the
species most commonly wused for pollination purpose around the world
[Gallai et al. 2009, Potts et al. 2016]. But honeybee colonies have dwindled in
many parts of the globe and average rates of 30% colony deaths overwinter have become
common in recent years. Many drivers can be blamed for these figures such as diseases,
weak workers due to parasites, low population for overwintering, workers with low fat
body reserves, low honey stores [IPBES 2016].



Whatever the causes, they all converge to the same point; harming the thermoreg-
ulation capacity of the colonies and killing bees of cold decimating the entire colony or
producing weak colonies next spring. As a consequence, the pollination service carried
out by honeybees as well as their honey production is threatened every year. It is clear that
protecting the population of honey bees (A. mellifera) worldwide, as well as enabling them
to maximize their productivity, is an important concern [Edwards-Murphy et al. 2016].

To mitigate this concern, we apply the Long Short-Term Memory (LSTM) al-
gorithm to forecast the thermoregulation capacity (i.e. homeostasis) loss in honeybee
colonies. Here, we used datasets collected from the Arnia ! remote hive monitoring sys-
tem as illustrated in Figure 1.
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Figure 1. Dashboard overview of a general remote beehive monitoring system.

2. Related works

The thermoregulation capacity loss in beehives may be associated with different health
problems in the colony. For example, the Bee Counted initiative? supported by Brood-
Minder? identified 5 phenomena directly related to thermoregulation: (i) brood onset for
a new bee package, (ii) brood onset for an overwintering hive, (iii) second brood box
coming online, (iv) small colony unable to fully thermoregulate and (v) queen loss. Nev-
ertheless, each phenomenon was identified through the analysis of a specialist in beekeep-
ing (i.e., non-automatically). However, unwanted phenomena, such as queen loss, can be
extremely dangerous to colony health and survival and, ideally, an automatic detection
should be much more useful to the beekeeper.

In tropical climate conditions, it is possible to observe bee abandonment scenarios
due to the internal hive temperature. For example, it is possible to recognize thermal pat-
terns to detect bees’ pre-abandonment scenarios [Kridi et al. 2016]. In temperate climate
conditions, the hotter the bees perform the foraging, which impacts the development of
the pupae and the division of labor of the bees [Winston 1991]. Thus, the presence of all
stages of brood can be affected by ambient (external) temperature.

The seasons of the year are also very important to the colony behavior
[Maciel et al. 2018]. Over thousands of years, honey-bees have developed mechanisms

Thttp://www.arnia.co.uk
Zhttps://www.beecounted.org/
3https://broodminder.com/



to control the internal temperature of the nest, both in the hottest period of summer or
when the outside temperature is very low (e.g., 0°C), as in the winter in temperate regions
[Winston 1991]. Among other mechanisms developed, we may mention (i) ventilation or
waving of wings if the intention is to conduct hot air out of the colony and (ii) heating by
pooling and metabolic heat generation if the purpose is to keep the colony warm.

Thus, the loss of internal temperature control is an important indicator related
to the colony health, and may indicate if it is facing a problem. In this paper, we used
machine learning techniques to predict homeostasis loss. The use of machine learning has
become widespread in the analysis of beekeeping data [de Carvalho et al. 2018].

3. Material and methods

3.1. Dataset

The datasets used are from six different beehives and they were obtained from an apiary
located in the city of Newcastle upon Tyne, England, distant 277 miles (446 km) from
north London. They were collected from September to November in 2017, along the
fall. The data has 7 features; (i) brood temperature (internal temperature), (ii) internal
humidity, (iii) hive activity, (iv) mean fanning, (v) mean flight noise, (vi) weight, and (vii)
external temperature. The internal temperature of the beehive and the external tempera-
ture has been measured in Celsius.The Table 1 presents a summary of sampling performed
for each beehive, including the number of samples in each dataset. In the column “therm.”
(i.e, thermoregulation) w.r. means well regulated and n.r. means not regulated.

Table 1. Summary of beehive analyzed with good thermoregulation

beehives | latitude | longitude | #samples period sampling | therm.
9803 -1.628 | 54.971 603 Sep 3th-Nov 6th 2hs W.I.
9837 -1.516 | 54.994 1456 Sep 3th-Nov 6th 1h n.r.
9841 -1.617 | 54.979 638 Sep 5th-Nov 6th 2hs n.r.
9848 -1.599 | 55.016 502 Sep 5th-Nov 2th 2hs n.r.
54440 | -1.628 | 54.971 606 Sep 3th-Nov 6th 2hs n.r.
54460 | -1.616 | 54.970 1024 | Aug 5th-Nov 6th 2hs W.I.

The data was collected using the software Arnia. Arnia system uses three sen-
sors inside the hive to collect the attributes that describe the internal conditions of the
hive. A temperature sensor, a humidity sensor, a digital scale, and a sound sensor (mi-
crophone). The attributes can be grouped by objective, hive homeostasis (brood tempera-
ture/humidity), bee activity (flight/foraging and fanning acoustics) and productivity (hive
weight). The colonies under study are of the species Apis mellifera.

3.2. Preprocessing

Initially, the Exploratory Data Analysis (EDA) using statistical methods was performed,
in order to familiarize with the data and to maximize the retrieval of information hidden
in its structure. After that, it was calculated basic statistics (mean, the standard deviation,
and quartiles), and the skewness. Lastly, we performed the detection and removal of
outliers and the scaling of the data set by the min-max method.



3.3. Detection and removal of anomalies

Taken this analysis, the plotted boxplot of the dataset showed that there were some outliers
in the internal temperature. To detect which were the outliers it was used the interquartile
range, which is the difference between quartiles 1 and 3 of the data set. The numbers
that were in the quartiles outside of this range were transformed into NULL. Because the
dataset wasn’t to big, it was chosen to impute the places that used to be anomalies. The
imputation method chosen was of the mean, which replaces the missing value with the
mean of the feature.

3.4. Data Resizing (Min-Max scaling)

Since LSTMs are sensitive to the scale of the input data, the data was resized to be used in
the algorithm. Also, this is generally used to improve the numerical stability of a model.
The min-max technique takes the values of the attributes in their original intervals and
resizes them to a range of [0,1]. This can be useful in some cases where all parameters
need to have the same positive scale. The samples set was normalized by the Equation 1
below:

T — Tmy
Tpew = —mln' (1)

Tmax — Tmin

3.5. Long Short-Term Memory (LSTM)

A Recurrent Neural Network (RNN) is a type of artificial neural network designed to
recognize patterns in sequences of data. For this, they take into account data that was
perceived previously in time. They do this by that feedback loop connected to their past
decisions, ingesting their own outputs moment after moment as input. It is often said that
recurrent networks have memory.

Long Short-Term Memory (LSTM) is a specific RNN architecture that was de-
signed to model temporal sequences and their long-range dependencies more accurately
than conventional RNNs [Sak et al. 2014]. As any Neural Network it has neurons and
their connections with each other, every connection has a weight that is calculated through
Back Propagation. Back Propagation moves backward from the final error through the
outputs, weights, and inputs of each hidden layer, assigning those weights responsibility
for a portion of the error and recalculating different weights until it finds the composition
that minimizes the error.

In a neural network, the leftmost layer of the network is called the input layer,
and the rightmost layer the output layer. The middle layer of nodes is called the hidden
layer, because its values are not observed in the training set. In the LSTM architecture,
the hidden layer has LSTM cells. As shown in Figure 2, each cell has 3 gates: an input
gate, which controls if the memory cell is updated, a forget gate that controls if the cell
is reset to zero, and an output gate that controls rather the information of the cell is made
visible. This way information can be stored in, written to, or read from a cell, much like
data in a computer’s memory.

3.6. Experiment Setup

Our approach started by choosing a dataset among the six options of beehive‘s dataset.
Afterwards it was performed a min-max scaling in the data so that distincts ranges of data
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Figure 2. A LSTM memory cell

did not affect the results. Then the data was separated in train and test sets, with 67%
being the data to be trained and 33% the data to be tested.

The LSTM model was build in a sequential manner by adding the layers of the
neural network to create an ideal model. The model that best suited this problem was
composed of a LSTM architecture with 4 hidden layers, a Dropout layer that is used to
prevent overfitting and a Dense Layer that is a fully connected layer, meaning all the
neurons in this layer are connected to those in the next layer.

To fit the model above in our dataset it was chosen the number of times the dataset
would be passed forward and backward through the neural net refitting the weights every-
time. Since LSTM is a iterative process, updating the weights with a single pass or one
epoch is not enough. This would cause underfitting, where the model would not predict
the values. However, a big epoch number could cause an overfitting because the weights
would be so fixed for that particular dataset that it would not be able to predict alternatives
ones. In sume, an epoch 100 was find ideal.

Moreover, to fit the model the back propagation parameter was set. This parameter
is called look back and it represents the number of previous timestamps that are used by
the model to predict the next timestamp. Initially, it was tested at 2, however this number
didn’t capture the complete pattern of the time series so the look back was setted in 4
timestamps.

With this, we fitted the model in the training dataset so that it could learn the
patterns of the data.

Later on, the model predicted the results of the train and the test data, this way
we obtained the predictions of our algorithm. To evaluate our model it was chosen a few
metrics that will be detailed at section 3.7. This process was repeated for all six datasets,
that way we could evaluate how the model created performed in datasets with different
patterns, of a well-thermoregulated beehive or not.

3.7. Evaluation Metrics

In order to to summarize and evaluate the quality of the proposed solution, 4 metrics were
used: (i) Mean Absolute Error (MAE), (ii) Mean Absolute Percentage Error (MAPE), (iii)
Root Mean Squared Error (RMSE), and R? (coefficient of determination), defined as:

(i) MAE is the mean for all recorded absolute errors.
(i1)) MAPE is the mean absolute percentage error.



(iii) RMSE measures the average of the squares of the errors, that is, the average squared
difference between the estimated values and what is estimated.

(iv) R? provides a measure of how well observed outcomes are replicated by the model,
based on the proportion of total variation of outcomes explained by the model.

The metrics MAE, RMSE, and MAPE will show low values for a good model and
R? will give high values to indicate a more precisely predictive model.

4. Results

Initially, the algorithm was executed in 4 different beehives which were not thermoregu-
lating well.

The first beehive analyzed was the 9837 which was chosen because of the down-
ward trend of the internal temperature. Measures of the internal temperature starts around
36°C and dropped to 20°C. The algorithm was executed to predict the internal temper-
ature and to check if the colony has lost control of the temperature. The next beehive
analyzed was the 9841, Figure 4, which pattern is a bit different of 9837 because de-
spite its, overall descending temperature, the colony tried unsuccessfully to restore and
maintain its temperature to the normal range.
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Figure 3. LSTM fitting (hive #9837) Figure 4. LSTM fitting (hive #9841)

In the graphs present in Figures 3 and 4, the blue line is the original data, the or-
ange part is the training dataset, and the green is the test. Upon looking at these graphs we
can see that the model follows the descending pattern and the wide temperature amplitude
variation pretty well. As shown in Table 2, we can see the results of the algorithm in these
two beehives in the form of some metrics. The RMSE shows small values, as expected,
and analyzing the MAPE we can see that the algorithm only showed around 2% of error
when trying to fit the model in these datasets. So, the model predicts the outcome with a
satisfactory performance.

The algorithm follows the pattern and predicts satisfactory temperature and the
descendant nature of the beehives internal temperature. The model predicts the outcome
with a satisfactory performance. Figures 5 and 6 show the regression obtained for bee-
hives 9848 and 54440. It is possible to see that the internal temperature starts around
35°C and drops to around 12°C in beehive 9848 and 15°C in beehive 54440. In these
beehives, it is possible to observe a very accentuated variation on internal temperatures



and the colonies can not perform the thermoregulation. In Section 5, the likely causes for
this loss of control will be discussed.
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Figure 5. LSTM fitting (hive #9848) Figure 6. LSTM fitting (hive #54440)

Looking at the values calculated for metrics in Table 2 for these two beehives, it
is noticeable that the RMSE is bigger compared to the beehives 9837 and 9841, but it
is still a small value. This can be explained because of the intense variation in a large
amplitude of temperature. Also, the R? is smaller, but with these values we can say that

approximately more than three fifths of the observed variation can be explained by the
model’s inputs.

Table 2. Evaluation Metrics for LSTM Algorithm for not thermoregulated beehives

Beehive | RMSE Train | RMSE Test | MAE | MAPE R?
9837 0.49 0.73 0.5651 | 2.3424 | 0.8876
9841 0.77 0.83 0.5658 | 1.9388 | 0.8543
9848 1.79 1.72 1.4282 | 8.3675 | 0.6978

54440 1.74 2.46 2.0794 | 13.614 | 0.7427

Then, we chose two beehives, 9803 and 54460 which were capable of maintaining
the temperature in a range of 33°C to 36°C, which is considered a healthy range. The
same model with the parameters configured and described above was set to execute the
algorithm for these beehives.

In the beehive 9803, Figure 7, we had an internal temperature always in a range
of a range of 32.4°C to 36°C meaning that the colony was capable of performing good
thermoregulation and achieving homeostasis. Even thought this temperature has a de-
scendent pattern because of the slow progression rate of fall, it does not represent any risk
to the colony. Moreover, one can see from Table 3, that the metrics of RMSE, MAE and
MAPE are very small values, for example, with a MAPE of only 0.5%. So, the algorithm
predicted well the temperatures in the range which was previously cited.

In regard to the beehive 54460 (Figure 8), its colony faced a great fall in the
internal temperature but managed to rise temperature back and stabilize around 32°C to
36°C. The algorithm was executed in this dataset and the results showed good evaluation
metrics with only 0.64 RMSE (Table 3). This indicates that the model detects a rise in
the temperature and predicts satisfactorily when the temperature rises and stabilizes. The
values calculated for metrics can be seen in the Table 3.
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Figure 7. LSTM fitting (hive #9803)

Figure 8. LSTM fitting (hive #54460)

Table 3. Evaluation Metrics for LSTM Algorithm for thermoregulated beehives

Beehive | RMSE Train | RMSE Test | MAE | MAPE R?
9803 0.38 0.25 0.1854 | 0.5478 | 0.8677
54460 0.93 0.64 0.3102 | 0.9098 | 0.1276

5. Discussion

We have shown that the algorithm could predict the amplitude and values of temperature
and assess the state of beehives whether it is capable or not of thermoregulating.

The high amplitude of temperature and a declining pattern indicate a sign of ther-
moregulation losses. According to [Heldmaier 1987] the colony capacity to survive cold
depends on maintenance of a steady state temperature, about 35°C, in the colony’s central
brood area. In the datasets used in this work the season in which the data was collected
through sensorring was the fall. During fall the temperature gradually drops, especially
at night, in preparation for winter. So it was expected that the internal temperature would
also falls following the external one. However, given the fact that in some beehives the
temperature fell more than 10°C, this could already be a sign of trouble, that could lead
to several problems in the colony health.

If the internal temperature is too low the consequence is the brood dying off and
the nectar not dehydrating fast enough to make honey. In extreme conditions of cold
weather the bees take a protective behavior and start a phonomena called the diapause. It
is a gradual and progressive interruption in development or ontogeny of the bees in order
to survive these unfavorable environmental conditions[Winston 1991].

Another case of loss in the thermoregulation capability can be a beehive with high
temperatures. The overheating happens when the beehive temperature is up to 36°C, and
it can lead to the brood death, wax melting and the honey getting dehydrated too quickly
[Winston 1991].

Also, in our work we showed beehives where the inhabitant bee colony thermoreg-
ulated well and our algorithm can also predict this pattern. An appropriate control in tem-
perature is crucial for the survival of the honeybees and the reproduction in this species.
The effects of our results are of importance to the beekeeper’s everyday work because



he/she will be able to prepare or even prevent this problem before it happens. Besides
that, the beekeeper will be able to adapt the handling of the colonies to prepare them,
improving their micro-climate according to the results given from the prediction.

6. Conclusion

Our results showed it is possible to foresee when honeybee colonies lose their ability to
thermoregulate. The algorithm used was efficient in predicting loss of homeostasis in
the nest some time in advance. The algorithm was configured to use 4 predicted times-
tamps, and in the case of the hives here monitored, the proposed solution is capable of
predicting the trend of thermoregulatory capacity loss of a colony up to 8 hours before the
homeostasis is lost in the nest.

Therefore, a beekeeper will have a good prediction of the moment temperature
begins to fall inside the nest demonstrating the bees are no longer capable of thermoregu-
late the nest. It is worth mentioning that the algorithm used performs predictions in time
series. Thus, with the trained algorithm, it can be used in other hives to predict eminent
states of loss of thermoregulatory control.

As future perspectives, we intend to inform others features to LSTM, like internal
humidity, hive activity, mean fanning, mean flight noise, weight, external temperature, and
external humidity to take the patterns of inability to thermoregulate and define the possible
reasons for it happens in a specific environment. We also plan to create an interface
allowing to notify in advance beekeepers when any of the colonies begin to loose its
thermoregulating abilities, thus, the beekeeper can intervene and also determine causes
that lead to loss of thermoregulation and apply the best practice to help the colony.
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