Supporting Students through a Recommendation System for Knowledge Acquisition in MOOCs Ecosystems

Resumo


With the growth of MOOCs (Massive Open Online Courses), students face difficulties in choosing more suitable courses for a knowledge demand. Some recommendation systems have proposed solutions, but not exploring the student's prior knowledge. In this context, this work contributes to identifying and reducing the students' knowledge gap in MOOCs. To do so, we model and analyze the MOOCs ecosystems and propose a solution for recommending parts of courses to students, exploring the software ecosystem approach in the educational domain. After evaluating our solution based on three experiments, we observed that our recommendations present new content to fill users? knowledge gaps, being accurate, useful, and reliable.

Palavras-chave: Knowledge Acquisition, MOOCs ecosystems, Recommendation Systems

Referências

Apaza, R. G., Cervantes E. V. and Quispe L. C. (2014). "Online Courses Recommendation based on LDA". In: 1st Symposium on Information Management and Big Data, Cusco, Peru, pp. 42-48.


Araujo, R. (2016). "Information Systems and the Open World Challenges". In: Boscarioli, C., Araujo, R. M. and Maciel, R. S. P. (eds.), I GranDSI-BR - Grand Research Challenges in Information Systems in Brazil 2016-2026. SBC, pp. 42-51.


Barbosa, O. A. L. P., Santos, R. P., Alves, C. F., Werner, C. M. L. and Jansen, S. (2013) "A Systematic Mapping Study on Software Ecosystems from a Three-Dimensional Perspective". In: Jansen, S., Brinkkemper, S. and Cusumano, M. A. (eds.), Software Ecosystems: Analyzing and Managing Business Networks in the Software Industry. Edward Elgar Publishing, pp. 59-81.


Bhatt, C., Cooper, M. and Zhao J. (2018). "SeqSense: Video Recommendation Using Topic Sequence Mining". In: International Conference on Multimedia Modeling, Cham, Switzerland, pp. 252-263.


Campos, R. (2019). Recommendation System for Knowledge Acquisition in MOOCs Ecosystems. Master’s Thesis in Informatics. PPGI/UFRJ, Rio de Janeiro, Brazil.


Campos, R., Santos, R. P. and Oliveira, J. (2018a). "Recommendation Systems for Knowledge Reuse Management in MOOCs Ecosystems". In: Anais Estendidos - XIV Simpósio Brasileiro de Sistemas de Informação, Caxias do Sul, Brasil, pp. 146-148.


Campos, R., Santos, R. P. and Oliveira, J. (2018b). "Web-Based Recommendation System Architecture for Knowledge Reuse in MOOCs Ecosystems". In: IEEE 19th International Conference on Information Reuse and Integration, Salt Lake City, USA, pp. 193-200.


Campos, R., Santos, R. P. and Oliveira, J. (2018c). "Using Multilayer Social Networks in an Analysis of Higher Education for Professional Demand". In: I Workshop on Big Social Data and Urban Computing (BIDU), 44th International Conference on Very Large Data Bases (VLDB), Rio de Janeiro, Brazil. Aachen: CEUR-WS, vol. 2247.


Campos, R., Santos, R. P. and Oliveira, J. (2019). "A Recommendation System Enhanced by Topic Modeling for Knowledge Reuse in MOOCs Ecosystems". In: Rubin, S. H. and Bouzar-Benlabiod, L. (eds.), Reuse in Intelligent Systems. CRC Press, pp. 116-142.


Campos, R., Santos, R. P. and Oliveira, J. (2020a). "A Recommendation System based on Knowledge Gap Identification in MOOCs Ecosystems". In: XVI Brazilian Symposium on Information Systems (SBSI), São Bernardo do Campo, Brazil.


Campos, R., Santos, R. P. and Oliveira, J. (2020b). "Recommendation System for Knowledge Acquisition in MOOCs Ecosystems". In: Anais Estendidos - XVI Simpósio Brasileiro de Sistemas de Informação. Porto Alegre: SBC.


Jing, X. and Tang, J. (2017). "Guess You Like: Course Recommendation in MOOCs". In: International Conference on Web Intelligence, Leipzig, Germany, pp. 783–789.


Li, C., Song, Z. and Tang, J. (2018). "User Tagging in MOOCs Through Network Embedding". In: 2018 IEEE Third International Conference on Data Science in Cyberspace, Guangzhou, China, pp. 235–241.


Marinho, L. H., Campos, R., Santos, R. P., Silva, M. F. and Oliveira, J. (2019). "Conceitos, Implementação e Dados Privados de Algoritmos de Recomendação". In: VI Escola Regional de Sistemas de Informação do Rio de Janeiro (ERSI), Rio de Janeiro, Brasil, pp. 06-37.


Nolasco, D. (2016). Identificação Automática de Áreas de Pesquisa em C&T. Master’s Thesis in Informatics. PPGI/UFRJ, Rio de Janeiro, Brazil.


Pereira, C. K., Siqueira, S. W. M. and Nunes, B. P. (2017). "Dados Conectados na Educação". In: Workshop de Desafios da Computação aplicada à Educação (DesafIE!), São Paulo, Brasil, pp. 740-747.


Ricci, F., Rokach, L., Shapira, B. and Kantor, P. B. (2015). Recommender Systems Handbook. Springer.


Salgado, A. C., Motta, C. L. R. and Santoro, F. M. (2015). Grandes Desafios da Computação no Brasil - Relatos do 3o Seminário. SBC.


Silveira, I. F. and Borges, P. R. S. (2017). Desafios para a Localização e Recuperação de Informação em Conteúdos Educacionais Audiovisuais. In: Workshop de Desafios da Computação aplicada à Educação (DesafIE!), São Paulo, Brasil, pp. 702-709.


Song, J., Zhang, Y., Duan, K. and Hossain, M. S. (2017). "TOLA: Topic-oriented learning assistance based on cyber-physical system and big data". Future Generation Computer Systems, v. 75, pp. 200-205.


Wang, J., Xiang, J. and Uchino, K. (2015). "Topic-Specific Recommendation for Open Education Resources". In: International Conference on Web-Based Learning, Cham, Switzerland, pp. 71-81.
Publicado
24/11/2020
Como Citar

Selecione um Formato
CAMPOS, Rodrigo; SANTOS, Rodrigo Pereira dos; OLIVEIRA, Jonice. Supporting Students through a Recommendation System for Knowledge Acquisition in MOOCs Ecosystems. In: S WORKSHOPS DO CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (WCBIE), 9. , 2020, Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 62-71. DOI: https://doi.org/10.5753/cbie.wcbie.2020.62.