Supporting Multiple Smart-City Applications based on
MUSANet, a Common IoMT Middleware

Alexandre Meslin'2, Noemi Rodriguez', Markus Endler!

!Departamento de Informdtica
Pontificia Universidade Catdlica do Rio de Janeiro (PUC-Rio)
Rua Marqués de Sao Vicente, 225, Gavea
Caixa Postal 38097 — 22451-900 — Rio de Janeiro — RJ — Brasil

2Niicleo de Computagio Eletrdnica
Universidade Federal do Rio de Janeiro (UFRJ)
Avenida Athos da Silveira Ramos, 274 — Cidade Universitaria — I1ha do Fundao
21941-916 — Rio de Janeiro — RJ — Brazil

{meslin, noemi,endler}@inf.puc-rio.br

Abstract. The MUSANet system is a three-tier middleware for smart cities im-
plemented using InterSCity, ContextNet, and Mobile-Hub. In order to decentral-
ize processing from the cloud, the system includes stationary layer processing in
the fog and collection of mobile data in the edge. In this article, we explore the
flexibility and decoupling offered by MUSANet. We present two different appli-
cations for smart cities and discuss how they can be implemented in MUSANet,
showing that, using the basic infrastructure, we can build new applications with-
out interfering in existing ones due to the low coupling between the entities that
make up the tiers of MUSANet. A third application illustrates how the distri-
bution of data processing among MUSANet layers can help reduce the network
load, preserving energy.

1. Introduction

According to the United Nations [United Nations 2918], in 2018, 55% of the world’s
population lives in urban areas, and this percentage is expected to increase significantly
in the coming years. To manage these ever-growing cities, administrators need accurate,
up-to-date city information. This information is also beneficial for the general population
- knowing where traffic is jammed, when the next bus will pass, or even the air quality
and temperature of some regions can make life easier in large urban centers. To pro-
vide information to administrators and the inhabitants, city and third-party organizations
are continually developing applications that collect sensor data distributed throughout the
city, process, and make the information available to administrators and the public. Using
a single platform capable of hosting different types of applications developed by sepa-
rate entities enables to optimize computing resources, increasing application efficiency,
scalability, and elasticity.

Our previous work [Meslin et al. 2018] describes the MUSANet project, where
we present the system architecture in detail, how it provides support for [oMT (Internet
of Mobile Things), and a public transportation case study, focusing on scalability and
performance studies. However, we did not discuss specific cases and how they would

be implemented in different tiers. Our goal in this paper is to discuss how our three-tier
architecture allows the development of smart city applications sharing the same infras-
tructure, without interfering with other applications. We show that due to its modular-
ity and low degree of coupling, the platform supports different services for mobile and
stationary users, possibly designed and deployed by independent groups over the same
infrastructure. To illustrate our point, we describe three different systems that can be used
to implement several independent applications related to smart cities sharing the same in-
frastructure: a bus monitoring system, a system for user notifications, and an application
to detect and monitor heat islands in a city. This approach allows the city hall offices
to supply the system with data that will be administered by different organizations that
would be responsible for processing and distributing the data to their users. This mod-
ularization also allows the implemented applications to share actors with well-defined
tasks, without overlapping assignments, but who together perform all the functions of the
systems, differently from what happens in more monolithic systems.

The remainder of this paper is structured as follows. In Section 2, we give the
necessary background and definition of the MUSANet system architecture. In Section 3,
we present some prototypes developed to validate the MUSANet architecture, and in all
of them, we present a case study using some scenarios as examples. In Section 4, we
present and discuss the results. In Section 5, we analyze some related work. In Section 6,
we present some concluding remarks.

2. Overview

In this section, we present the architecture of the MUSANet middleware, shown in Fig-
ure 1, as well as the elements that make up its three tiers implemented in the cloud, fog,
and mobile edge levels reflecting different degrees of abstraction, as we discuss next.

2 Storage o
Q Data Visualization % g
E Structured Queries & 8
£ Resource Catalog ”n
E Gateway ,E’
"5 Group Definer 2 '§_
€ ProcessingNode WL ¢
S (CEP 8
§ Bluetooth ,E’
5 WiFi S §
T 3GlM4G i S
2 cep 2

Figure 1. MUSANet three-tier architecture and its distribution.

The top tier, implemented by the InterSCity (ISC) [Batista et al. 2016], forms the
cloud storage system, including a broker publisher/subscriber module. This tier is respon-
sible for the permanent storage of structured data and high-level queries. These queries
can be done either by the tier below or by external applications to MUSANet using its
HTTP API. ISC provides native support for mobile devices, so all the resources of the
city can be stored with references to their geographic position (coordinates) to later be
retrieved with a query, for example, we can ask for a specific type of resource near any
point of the city. ISC also has the role of a broker for actuators to register to receive com-
mands. Each device, a sensor or an actuator, is registered in ISC as a city resource. Each

resource has a list of capabilities, representing what can be obtained from sensors or what
the actuators can perform. No data processing occurs in this tier!.

We implemented the middle tier using ContextNet (CN) [Endler et al. 2011]. To
decentralize the system, we divided the ContextNet deployment in slices distributed on
the fog. Each slice consists of a set of gateways, processing nodes, group definer, and
point of access manager as follows.

Edge elements connect to the stationary infrastructure using ContextNet Gateways
(CN-Gateways), which can be placed throughout the city. The Point-of-Access Manager
(PoA-Manager) module is responsible for choosing the CN-Gateway. Together with the
ContextNet protocol, which provides transparent re-connections for both the programmer
and the end user, they can keep the mobile node connected to the best Gateway as it moves
around the city.

A ContextNet Processing Node (PN) processes data received from the edge or re-
trieved from the cloud. PNs are programmed in Java and can count on a CEP? (Complex
Event Processing) engine. CEP enables the PN to handle information flows using the
EPL language [Luckham 2008], which is very similar to SQL. After processing or con-
solidating the data, the PN can either send them to the top tier to be stored in ISC or send
commands to actuators at the edges.

ContextNet also allows mobile nodes to be grouped according to criteria estab-
lished by system operators, such as geographic areas, as explored in this article, or by in-
terest groups, types of employees, or even affinities. The ContextNet Group Definer (GD)
defines the groups and associates them with mobile edge devices. This module allows
the programmer to create classes containing methods that define the criteria for grouping
mobile or stationary devices. Using these criteria, the GD determines the groups in which
each of the edge devices is contained and informs the Gateway so that it can send group
messages to each of the devices on the Internet.

To make data acquisition and processing faster, MUSANet includes a third pro-
cessing layer at the edge tier of the system, where Android-based mobile devices (smart-
phones or tablets) running Mobile-Hub [Gomes et al. 2017] capture data, trigger actua-
tors, and send and receive messages to the users. Mobile applications use Mobile-Hub
to pre-process data, sending consolidated data enriched with location and timestamp con-
text to the stationary infrastructure. Data consolidation allows power savings, which is
critical for mobile devices powered by batteries since the power consumption during
data transmission and reception far outweighs the consumption of the rest of the sys-
tem [Estrin 2002] apud [Boukerche et al. 2003].

3. MUSANet Applications

In this section, we present three MUSANet example applications. We first introduce
RegionAlert, a system to send context-aware messages to users. Next, we present Bus
Monitor, a public-transportation suite compounded by Where is my Bus?, Bus Arriving,
and Delayed Bus, to compare their programming models and their actors’ roles, and then
we describe the Heat Island Detector, an application developed to analyze CEP actuation

IThere is a CEP engine currently under development for ISC.
2We use the engine from Espertech (http://www.espertech.com)

on different layers.

3.1. RegionAlert

The RegionAlert application sends announcements from external entities such as the Civil
Defense, Highway Patrol, or Tourism Secretary to end users. RegionAlert consists of
a set of two Web Services for publishing announcements, a PN capable of retrieving
published announcements, and a mobile application installed on the end-user’s mobile
phone implemented over the infrastructure provided by the MUSANet system.

When using RegionAlert, users can register several areas of interest created by
the city administration, such as areas near their residence, their work, their most common
route, the place where their elderly parents live, and more. The user’s smartphone keeps
the system up-to-date as to their location using the Android mobile application. Whenever
a new alert is generated for the user’s areas of interest or the area where the user is, the
application notifies the user via text, beep, or vibration of their smartphone, according to
the settings made in the mobile application by them. Alerts generated for regions outside
the user’s areas of interest and outside the area where the user is currently located will not
be sent. A sequential-numbering message system ensures that the user will not receive
repeated messages. All of this guarantees that all messages received by users are of ef-
fective interest to them. To the best of our knowledge, most alert systems implemented in
large cities send messages without considering the positioning of users.

3.1.1. RegionAlert system architecture

The RegionAlert system is composed of two independent parts as shown in Figure 2: alert
generation, maintained — possibly by a Civil Defense Department — as part of the city’s
infrastructure, and user management, maintained by a third-party organization. There is
also a third part of the system: the user smartphone with the third-party mobile application
running over M-Hub.

The lower tier, composed of the M-Hub, periodically sends contextualized infor-
mation from the user to the infrastructure, keeping the PN updated continuously. The PN,
located in the central layer, can send broadcast or unicast messages over the Internet to
notify users.

To allow the city hall administration, or any other designated entity, to issue an-
nouncements, we have created the PutAlert Web Service, accessible through the HTTP
POST method that requires the announcement start timestamp, its lifetime or end times-
tamp, the announcement text, and the list of areas affected by the announcement. After
storing the new announcement in ISC, the PutAlert publishes in the InterestedInNotices
topic managed by the ISC broker to let all outsourced organizations interested in an-
nouncements know that a new alert has been registered. The creation of new announce-
ments has restricted access because it modifies the ISC database. A second web service,
called GetRegion, is used to get the list of created regions.

The upper tier, composed of ISC, is responsible for storing alerts with their region
location, expiration date, and text. Since the ISC can accept complex queries, including
geographic locations, alerts can be quickly recovered.

Final users

—- m
J= BCLF

| | \I/'
Government .
Third-Party Company Final users

Gateway |—|
e ¥g

Web Group Processing
Service Interscity Definer Node

Figure 2. RegionAlert system architecture: each module (inside a delimiter) can
be deployed by an independent developer.

The implementation of user management is entirely up to the outsourced organi-
zation. In our prototype, we used a MySQL database to store user data, including the
areas which they would like to be warned. To be notified whenever a new alert is gener-
ated, the outsourced organization PN must subscribe to the ISC broker as an actuator with
“InterestedInNotices” capability as a topic and provide a service through a public URL
and a TCP port. In this case, the ISC will notify all registered resources with “Intereste-
dInNotices” capability.

3.1.2. RegionAlert system operation

There are the following three different types of actors involved in this system: (1) the au-
thority that registers announcements, (2) the organization that manages the users’ registry
and sends announcements according to their preference or location and (3) the user that
will receive announcements according to their location or their preferences. Although we
are describing the first two actors as separate entities, nothing prevents them from being
the same organization, for example, a city hall that registers warnings and manages its
users, or a university that registers warnings about its campuses and manages its students,
teachers, and employees.

For each new announcement?, the city hall administration creates a new resource
in ISC with the announcement information for future reference, and publishes it as “In-
terestedInNotices” to the broker so that all subscriber applications become aware of the
creation of a new announcement. All PNs that subscribe to “InterestedInNotices” are
notified that a new announcement is available. The PNs search for the announcement in
ISC using the areas of the announcement and the current timestamp as keys. The current
timestamp must be used in the search so that the PN obtains only valid announcements.
With the list of announcements, the PN sends the text to all the users present in the areas
related to the announcement through the CN-Gateway. The PNs also search the MySQL
database for users who have registered these areas as areas of interest and sends individ-
ual messages to them. Note that the PN does not need to know which users are in each
group because the CN-Gateway is responsible for sending the messages to each of the

3the announcement source and how it is generated are not in the scope of this work.

users individually. The queries from PNs to ISC are made using HTTP.

The PN also monitors the conversation between GD and Gateway to find out when
a user enters a new area. Whenever a user enters new areas, the PN queries ISC to find
announcements for those areas. If any, the announcements are retrieved by the PN and
sent to the user.

The end user must install the RegionAlert mobile application and the Mobile-Hub
middleware. Through this mobile application, the user registers their regions of interest,
informs the infrastructure of their geographical coordinates, and receives messages con-
taining the announcements of their areas of interest or their current location. In the next
version, the user will also be able to send/receive messages to/from other users in the
same area.

We next present three different scenarios to exemplify the use of the RegionAlert
System.

Scenario 1: In the first scenario, no alerts were created, but there are already users
registered in the system moving around the city.

Suppose one or more users enter region “R”. At this point, the Mobile-Hub run-
ning on the user’s smartphone sends the geographic coordinates of the user to the GD.
Based on the geographical coordinates, GD uses the city map divided into areas to find
out which groups the user is in. Once the groups are determined, GD passes this informa-
tion to the CN-Gateway and the PN. The PN is responsible for checking in ISC whether
there is any active announcement (expiration time has not yet been reached) related to
those areas (groups). According to this scenario, the response will be an empty list of
announcements since there are no registered alerts yet.

When necessary, the Civil Defense generates an announcement message con-
taining the announcement text, the start timestamp, the end timestamp, the list of areas
(groups) involved, and a sequential number (automatically generated by the PutAlert Web
Service).

The PutAlert stores this message at the ISC and publishes via the ISC broker
a message to all PNs that subscribe to “InterestedInNotices” topic. The outsourced-
organization’s PN receives this publication and seeks for the announcement in the ISC,
receiving an announcement with a list of areas. Using this list, the PNs seeks for users
at the outsourced database that have marked those areas as interested and sends the an-
nouncement to all groups and all users.

Scenario 2: This scenario describes a continuation of Scenario 1, where the mu-
nicipality creates a notification.

A user enters the area “R” that already has an alert message registered according
to Scenario 1. The GD realizes that the user is now in a new area and sends a notification
to the CN-Gateway and the PN. This notification contains a list of the areas where the
user is. The PN, based on this list, queries the ISC and receives a list of valid messages
for the regions where the user is. The PN sends the message to the user via the Gateway.
In this scenario, it is not necessary to send the message to the groups because the other
users in the groups have already received it, as described in Scenario 1. If any other user
enters the region “R”, the process will be repeated for this new user.

Scenario 3: This scenario considers again the user that we presented in Scenario
1 and Scenario 2, within an area that has an alert created and stored in ISC. The user has
already received the announcement, as discussed in Scenario 2.

Suppose that, after receiving the announcement, the user leaves the region but
returns immediately, before the lifetime of the message is exhausted. When the user enters
the zone a second time, the Mobile-Hub informs the user’s position and the sequential
number of each received message whose lifetime has not been exhausted. The GD does
not take into account that the user has already been in the region and notifies the Gateway
and the PN because the GD does not store information about the user to maintain its
decoupling from the third-party applications. As in Scenario 2, the PN queries ISC and
receives a list of valid announcements for the user regions, but it deletes from this list all
announcements the user has already received based on the sequential number. If, after
deleting the repeated messages, any messages are still left, they will be sent by the PN to
the user as described in Scenario 2.

3.2. Bus Monitor

The Bus Monitor system provides different applications related to public buses. In our
experiments with Bus Monitor, we use the bus GPS information provided by the munic-
ipality of the City of Rio de Janeiro*. The information is updated every 30 seconds and
contains positions, serial numbers, geographical coordinates, line numbers, and speed of
all public buses in the city in JSON format. Although the time intervals between updates
are considerable, the use of real bus positions allowed us to perform experiments without
having to resort to vehicle movement simulators.

The Bus Monitor system offers the following three applications:

Where is my bus?: This application allows the user to determine, in (almost) real time,
the location of the buses. The mobile application allows the user to filter buses by their
line number. This prototype was developed to test the MUSANet infrastructure and its
programming model, not adding data processing. In terms of programming, the data is
captured at the bottom tier, located at the edge of the infrastructure, and sent to the fog,
where the bus position data is obtained from the total data set and prepared to be sent to
the storage tier located in the cloud. This application used all MUSANet’s tiers in a simple
way, allowing us to evaluate the performance of the MUSANet system, as presented in
our previous paper [Meslin et al. 2020].

Bus arriving notification: This application notifies the user when a given bus is almost
arriving at the bus stop. To be notified, users must position themselves within the area
of the bus stop and use the mobile application over the Mobile-Hub. This prototype
uses the Mobile-Hub located on the Android device at the edge of MUSANet to get the
position of the bus and send it to the stationary infrastructure. The PN located in the
fog receives the coordinates of the bus and streams it to a CEP (Complex Event Proces-
sor [Luckham 2008]) rule set to trigger a message when the bus is inside the helper area.
This prototype was used to measure the delay caused by the wireless or 3G/4G network
and the Internet that a client would have if it connected to a CN-Gateway far from the
MUSANeEet slice where PN that will process the data is.

“Data source: http://dadosabertos.rio.rj.gov.br/apiTransporte/
apresentacao/rest/index.cfm/obterTodasPosicoes

Delayed bus: For the operation of the Delayed Bus sub-application, it was necessary to
previously catalog the amount of time that the buses use to reach the bus stops starting
from the previous stop. For each pair of bus stops, the average time was obtained and a
tolerance value was added. Whenever drivers arrive at the bus stops, they are notified if
they are late. This notification is also stored in ISC so that the city public transport affairs
office and bus company manager can analyze historical data and decide if any proactive
measures are needed to improve public transportation.

3.2.1. Bus Monitor system architecture

Figure 3 shows a basic diagram of the Bus Monitor system. Mobile nodes, composed of
users’ smartphones, and public-transportation means as buses, trains, taxis, and more, can
connect to the stationary infrastructure via Wi-Fi, 3/4/5G, or any other Access Layer TCP
media.

Group Processing InterSCity

Mana er Definer Node
e |] .
‘h‘ \Ié' \I}' b b
4 ContexNet b
Gateway ‘

Figure 3. Bus Monitor prototype block diagram.

The implementation of the Bus Monitor system involves four different actors with
well-defined roles, namely: (1) the buses that generate data through an Android mobile
application installed by the municipality, (2) the public-transportation affairs office that
manages the GD, creates the areas in the city and installs or supervises the installation
of the Android mobile applications on the buses (3) the bus company or a third-party
organization to collect the data and (4) the user who receives notifications about the buses.

Each bus reports its current position every 30 seconds using the Mobile-Hub in-
stalled on an Android embedded device — previous MUSANet simulations have shown
that the system can support bus announcements every 5 seconds, considering the current
fleet in circulation in the city of Rio de Janeiro. This same embedded device is ready
to receive announcements or commands coming from the stationary infrastructure. The
new announcements are passed on to the bus driver, while the mobile application discards
repeated announcements. When moving around the city, the Mobile-Hub receives infor-
mation from PoA-Manager to select the best CN-Gateway available at the moment. If the
bus moves away from the current gateway or loses connection to it, it is up to the Mobile-
Hub to look for another Gateway to keep the bus always connected with ContextNet on
the stationary infrastructure.

A PN in a slice analyses the data received by ContextNet through each Gateway
and, upon request, informs users of the current position of the bus from a specific line.
This PN also feeds the CEP engine to be able to inform users that the bus is arriving at
their bus stop. In addition to the area around the bus stop, a helper area was created on

the bus path before the bus stop. When the bus passes that helper area, the Mobile-Hub
that is running on the Android system aboard the bus notifies the stationary infrastructure
that sends a message to all users at the next bus stop.

In order to control bus schedules at bus stops, the PNs use the CEP engine to
trigger a module that stores the event that will record that a delayed bus arrived at a bus
stop and store the data in ISC. This event will feed another CEP stream to check if the bus
delay at this point is recurring or was a one-off event. If it is recurring, this information
will also be stored in ISC, and, eventually, it may also generate a message for the bus
company or to the public transportation affairs office.

Whenever the bus arrives late at a bus stop, the PN sends a message to the Mobile-
Hub that is running on the bus to notify the driver. This message is used to stream data to
a CEP rule into the Mobile-Hub itself that will notify the PN if that same bus arrives late
at several bus stops.

In our implementation, the GD and Gateway implementation for the Bus Moni-
tor application is the same as that used in the RegionAlert notification system described
above.

Management of the GD in ContextNet and the control of the virtual machines for
the implementation of the PNs can be in charge of the municipality or of an outsourced
organization contracted for this exclusive purpose. Once the virtual machine is created
for the PN, its maintenance and programming is the responsibility of the second actor,
that is, the bus company or the third-party organization.

3.2.2. Bus Monitor system operation

The bus with the Android embedded device running Mobile-Hub connects to the “near-
est” Gateway of the stationary infrastructure (proximity is related to communication time
rather than physical distance). As the bus travels around the city, the PoA-Manager an-
alyzes its position and eventually reconnects the bus to a new Gateway. From that point
on, the Mobile-Hub maintains ContextNet updated with its position (geographical coor-
dinate). Whenever the GD detects that the bus has entered or exited an area, it notifies the
CN-Gateway. The PN stores the last position informed of each bus to be able to provide
information to the user of the “Where is my bus?” application and monitors the conver-
sation between GD and Gateway using the Complex Event Processing engine to trigger
messages to users at the next stop whenever a new event reports that a bus is present in a
helper area prior to that bus stop.

Currently, the buses of the City of Rio de Janeiro are not yet using the M-Hub
to connect to ContextNet, so, in order to use the bus data, we implemented a program
that accesses the municipality website to obtain the bus list and their positions. This
program creates a thread for each bus to send the data emulating the existence of a device
running M-Hub embedded on each bus. Although we have used an emulator in part of
this prototype, the data generated is real, and we include delays in the networks from the
M-Hub emulator to the CN-Gateways to make the emulated part as close as possible to a
real system.

3.3. Heat Islands

Heat islands [Taha 1997] are regions of a city where the ambient temperature rises a lot
compared to the surrounding average temperatures. They are caused by overbuilding,
poor ventilation, sparse vegetation, air pollution, among others. Through temperature
sensors embedded in buses, the municipality can obtain temperature data from all over
the city while monitoring the bus fleet.

3.3.1. Heat Island system architecture

In this application, the Mobile-Hub obtains external temperatures through a Bluetooth
thermometer and uses them as input data to the Mobile-Hub CEP engine to search for
Heat Islands in the City. If necessary, sensors can also be placed where buses do not
pass, forming an ad-hoc Bluetooth network. The data captured by the sensor network are
transmitted, node by node, to the bridge node, which is located close to the bus route.
When a Bus with Mobile-Hub is within the range of its Bluetooth radio, the bridge node
transmits the temperature information obtained by the other nodes to the bus with Mobile-
Hub to process the information. This application has only one actor, the government, as
shown in Figure 4.

Group Processing InterSCity

E Mana er Definer Node
Gateway
3 ol o
N/ N 1'
|_|-._ 7S 7

ContexNet

Gateway

Figure 4. Heat Island prototype block diagram.

3.3.2. Heat Island system operation

Buses or other vehicles equipped with temperature sensors travel around the city. When a
considerable temperature variation is detected, the CEP triggers a message for stationary
infrastructure, the ContextNet. Within ContextNet, the PN receives information from the
buses that detected a possible heat island border to find out its location and temperature
range. If required, the PN can feed RegionAlert to send an alert message to all users
located in the area stating the existence of the Heat Island, its position and temperature so
that the population can avoid its effects [Tan et al. 2010] that may include mortality of the
elderly as according to a study conducted by Rosenthal at Columbia University in New
York [Rosenthal 2010].

Upon detection of a new Heat Island, the PN sends the data to ISC to allow for
historical and immediate analysis.

If there was no local processing in the Mobile-Hub located on the buses and there-
fore close to the sensors, all collected data should be sent to the stationary infrastructure,
implying great use of the radio, as a consequence, a high energy consumption.

Considering a Heat Island of approximately 3000m? in the center of the city of
Rio de Janeiro, city buses would have spent an average of 8% of their travel time inside
the Island of Heat, representing approximately 24 minutes. Using the local processing
based on the Mobile-Hub CEP, only temperature data when entering or leaving the Heat
Island would be reported to the stationary facility, which would represent between 3 and
4 transmissions per bus during the day. If there were no local processing, all data would
have to be transmitted to ContextNet, whether or not there was Heat Island, which would
considerably increase the bandwidth occupation and energy consumption.

Although the bus electrical subsystem continuously power the Android device
radio, and, therefore, power consumption is no longer a problem, we should consider
that this is just one particular case of a MUSANet-based application. Moreover even
though it is not necessary or essential to save power energy, the significant decrease in
data transmission achieved with local processing allows many other applications to share
the same network bandwidth. Examples of other applications are the detection of holes
and other imperfections in the asphalt using impact sensor in the buses, gas levels such as
O3, CO,, through its respective sensors, detection of burned or obstructed lamps in public
lighting through light sensors, and more.

4. Results and Discussions

Through the examples cited in the section 3, we can identify two different models of ap-
plication deployment by third-party organizations. The first type is most commonly found
in middleware for smart cities. Its main feature is the use of the PN to collect data stored
in the ISC to generate information for the end user or other applications of type M2M, as
shown in Figure 5a. The third-party application can be implemented outside MUSANet,
only using the infrastructure to obtain data. An example of this type of implementation is
the “Where is my bus?” prototype.

A second model, exemplified by the “Bus Arriving” application, places the third-
party application inside a slice of MUSANet, sharing data input with other PNs, Groups
Definers, and PoA-Manager to receive information directly from the sensors before be-
ing permanently stored. Figure 5b shows this model that uses the ContextNet feature of
receiving data and distributing it to PNs, GD, and third-party organization. Using this
approach, a PN can receive data as soon as it is delivered to ContextNet, without going

through the storage layer.
PN
=
ISC
\4

3th
PN ISC 3th
N E ﬁz _]
(a) Model A. (b) Model B.

Figure 5. MUSANet Application Deployment Models.

In both deployment models, the addition of more applications does not require
any modification in the existing applications, facilitating the expansion of services. The
choice of the model is not mutually exclusive. We can implement an application that has
a PN receiving data directly from the sensors while using the information stored in ISC.

The ability to perform edge data processing, as exemplified in the “Heat Island”
prototype, shows that data aggregation can significantly decrease the amount of informa-
tion transmitted across the network by saving energy and optimizing bandwidth usage,
two limited resources for [oT systems. Saving energy can allow battery-operated devices
to have much longer battery life. Optimizing bandwidth usage, transmitting less data,
allows more applications to be deployed without overloading the data network.

5. Related works

In this section, we will present and compare some related works pointing out some differ-
ences to ours.

dojot [dojot 2017] is an open-source platform for data collection of IoT-related
devices, allowing the storage of large volumes of data in a distributed way in the cloud.
The platform is scalable and has a usage monitoring service to increase or decrease cloud
processing and storage capacity, allowing for dynamic adaptation to system requirements.
Unlike MUSANet, dojot does not provide support directly for mobile devices. The acqui-
sition of data from wireless sensor networks is not part of the system specification and is
left to hardware or software from third parties, which may compromise situations where
the response to events needs to be close to real time. There is no native support in dojot
to handle location-related contexts, such as sending messages to groups of devices in a
given geographic area.

Another example is the FIWARE platform [FIWARE Foundation e.V. 2018], an
environment based on OpenStack and Docker that stores data hierarchically in a Mon-
goDB database, supporting sensors and actuators devices. The platform also provides
support to authenticate users, and user roles can be set with configurable permissions.
Unlike ISC, the platform natively supports complex event analysis through the CEP for
real-time event handling. Although FIWARE and dojot do not provide direct support to
the locality, the implementation of a region-based warning system can be carried out,
but it would be the responsibility of the programmers to implement in their application
routines to verify regions, which would significantly increase complexity and coupling
between systems. Sending announcements to users through the application should be
done one-by-one because FIWARE and dojot do not send messages to groups separated
by areas, meaning that there would be a need to implement routines to track users at all
times.

Barcelona City [Bakici et al. 2013], in Spain, is an example of success in the
implementation of a smart system. Different types of sensors and actuators are spread
throughout the city. Data is sent over the WAN to the platform via the Sentilo module, an
open-source application. The data collected by Sentilo is filtered, processed, and stored in
an intermediate layer that makes it available for applications that provide services to the
city. The Barcelona system performs information processing in the central and application
layers.

The SmartSantander project (Santander, Spain) [Sanchez et al. 2013], considered

the largest testbed in the world, consists of a three-layer platform for smart cities. The
upper layer is made up of servers that process and make data available to external appli-
cations. The lower layer, formed by IoT nodes installed throughout the city, is respon-
sible for capturing sensor information and sending it to the central layer, composed of
dual-stack gateways to convert protocols used in [oT, TCP / IP for transmission over the
Internet. Although gateways are arranged around the city, they are used to distribute data
traffic.

6. Final remarks

Comparing RegionAlert with Bus Monitor prototype, we can note that the high-level ar-
chitecture is very similar since it is also composed of three independent actors with the
same responsibilities in each one of the prototypes: municipality®, third-party organiza-
tion and final user. The municipality is responsible for sending data to the database in
the ISC, and the third-party organization makes the information available to the end user.
Unlike in RegionAlert, where the user is informed about alerts, in bus prototypes, the user
must use the mobile application to request the information, except for the sub-application
that informs that the bus is arriving, where the user is alerted through a message.

Using the MUSANet framework, the implementation of more services can be done
without modifying the existing structure. It can be done just creating another virtual
machine to host the PN with the new service system. Obviously, the creation of this
virtual machine must be authorized by the municipality, which can charge for the space
given.

Although the services were presented separately, but sharing the same infrastruc-
ture, we can use some of the services together to produce new applications, such as, for
example, population monitoring in pandemic cases, including communication of groups
according to responsibilities or locations.

Acknowledgement

This research is part of the INCT of the Future Internet for Smart Cities funded by CNPq
proc. 465446/2014-0, Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior
— Brasil (CAPES) — Finance Code 001, FAPESP proc. 14/50937-1, and FAPESP proc.
15/24485-9.

References

Bakici, T., Almirall, E., and Wareham, J. (2013). A smart city initiative: the case of
Barcelona. Journal of the Knowledge Economy, 4(2):135-148.

Batista, D. M., Goldman, A., Hirata, R., Kon, F., Costa, F. M., and Endler, M. (2016). In-
terSCity: Addressing Future Internet Research Challenges for Smart Cities. In Network
of the Future (NOF), 2016 7th International Conference on the, pages 1-6, Buzios,
Brazil. IEEE.

SWithout loss of generality, we can consider that the role of the buses are like role of the municipality in
what concerns the sending of data to feed the system since the municipality is the entity responsible for the
installation (or inspection) of the bus data sending system.

Boukerche, A., Cheng, X., and Linus, J. (2003). Energy-aware Data-centric Routing
in Microsensor Networks. In Proceedings of the 6th ACM International Workshop
on Modeling Analysis and Simulation of Wireless and Mobile Systems, MSWIM °03,
pages 42-49, New York, NY, USA. ACM.

dojot (2017). dojot Solugdes para IoT - Plataforma de Desenvolvimento para [oT.

Endler, M., Baptista, G., Silva, L., Vasconcelos, R., Malcher, M., Pantoja, V., Pinheiro,
V., and Viterbo, J. (2011). ContextNet: context reasoning and sharing middleware
for large-scale pervasive collaboration and social networking. In Proceedings of the
Workshop on Posters and Demos Track, page 2, Lisbon, Portugal. ACM.

Estrin, D. (2002). Wireless Sensor Network.

FIWARE Foundation e.V. (2018). FIWARE | Open Source Platform for the Smart Digital
Future.

Gomes, B. d. T. P, Muniz, L. C. M., da Silva e Silva, F. J., dos Santos, D. V., Lopes,
R. F.,, Coutinho, L. R., Carvalho, F. O., and Endler, M. (2017). A Middleware with
Comprehensive Quality of Context Support for the Internet of Things Applications.
Sensors, 17(12):2853.

Luckham, D. (2008). The power of events: An introduction to complex event processing
in distributed enterprise systems. Springer, Berlin.

Meslin, A., Rodriguez, N., and Endler, M. (2018). A Scalable Multilayer Middleware
for Distributed Monitoring and Complex Event Processing for Smart Cities. In 2018
IEEE International Smart Cities Conference (ISC2), pages 1-8, Kansas City, MO,
USA. IEEE.

Meslin, A., Rodriguez, N., and Endler, M. (2020). Scalable Mobile Sensing for Smart
Cities: The MUSANet Experience. IEEE Internet of Things Journal, pages 1-8.

Rosenthal, J. K. (2010). Evaluating the impact of the urban heat island on public health:
Spatial and social determinants of heat-related mortality in New York City. PhD thesis,
Columbia University.

Sanchez, L., Gutiérrez, V., Galache, J. A., Sotres, P., Santana, J. R., Casanueva, J., and
Mufioz, L. (2013). SmartSantander: Experimentation and service provision in the
smart city. In Wireless Personal Multimedia Communications (WPMC), 2013 16th
International Symposium on, pages 1-6. IEEE.

Taha, H. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthro-
pogenic heat. Energy and Buildings, 25(2):99-103.

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein,
A.J., Li, F, and Chen, H. (2010). The urban heat island and its impact on heat waves
and human health in Shanghai. International Journal of Biometeorology, 54(1):75-84.

United Nations (2918). Population Facts - The speed of urbanization around the world.
Technical Report 2018/1, United Nations.

