
RW-Through: A Data Replication Protocol Suitable for Geo
Distributed and Read-Intensive Workloads

Wagner R. M. Barretto, Ana Cristina B. Kochem Vendramin,
Mauro Sérigo Pereira Fonseca

Informatics Department (DAINF) - Graduate Program in Applied Computing (PPGCA)
Federal University of Technology - Paraná (UTFPR)

wagner.rezende@gmail.com, {criskochem, maurofonseca}@utfpr.edu.br

Abstract. In large-scale modern applications, users consume much more data
than they create. To guarantee that data storage systems appropriately han-
dle read-intensive workloads, application designers have been adopting data
replication and caching techniques. These techniques face many challenges re-
garding data consistency, specially in faulty network conditions such as wide-
area networks. In this work we use recent distributed consistency frameworks
to identify the consistency models of the main solutions for read-intensive work-
loads used today in the industry. Additionally, we present RW-Through, a new
data replication protocol suited for large-scale read-intensive workloads. Our
new protocol provides stronger consistency guarantees than current solutions
and is designed to tolerate unreliable network conditions, making it suitable for
geo-distributed deployments.

1. Introduction

Modern large scale applications manage high volumes of data. In these applications,
users consume more data than they produce [Nishtala et al. 2013]. This behavior results
in workloads dominated by reads and searches to the various storage systems that hold
the application’s data. Additionally, usage patterns of social networks indicates that the
majority of the reads are concentrated on a small subset of the data [Bruner 2013].

Cloud providers and the industry have been adopting solutions such as database
replication and caching in order to tackle read-intensive workloads scenarios. Database
replication solutions for read intensive workloads generally consist of Lazy Primary Copy
Replication (LPCR). LPCR is a common database replication technique [Gray et al. 1996,
Pacitti et al. , Cecchet et al. 2008] where one node of a system is responsible for the
write operations whereas a different set of nodes are responsible for the read operations.
Caching solutions often consist of Demman-filled read-aside caching or, Cache-aside.
Cache-aside is a common technique in web applications [Nishtala et al. 2013] where a
read-optimized (often in-memory) data store is used to “cache” a subset of a system’s
data with a high chance of being accessed.

These solutions were born in single datacenter environments and face challenges
when applied to geo-distributed cloud deployments. Specifically, both solutions are
known to face distributed consistency problems. Such problems become more frequent
when unreliable communication links are used.

Distributed consistency is an area that faces several advancements due to the
emergence of large-scale distributed systems. Works in the area revolve around lim-
itations inherent from distributed systems such as the CAP Theorem [Brewer 2000,
Gilbert and Lynch 2002]. These limitations motivated the study of less restrictive consis-
tency models such as eventual or causal consistency. These consistency models have re-
laxed requirements when compared to Linearizability [Herlihy and Wing 1990], the most
restrictive of the models. Motivated by a large number of works introducing different
consistency models, a work [Burckhardt 2014] introduced a mathematical framework ca-
pable of precisely defining the whole spectrum of consistency in distributed systems. This
framework enabled the precise and formal identification of which consistency model a
certain system is capable to provide.

In this paper we present two main contributions: we derive the general algo-
rithms for LPCR and Cache-aside and formally analyze its consistency properties; and
we present RW-Through, a new data replication protocol capable of addressing the same
problems as the mentioned solutions while being more consistent, efficient in network us-
age and more suitable for geo-replicated deployments. The rest of the paper is organized
as follows. Section 2 summarizes distributed consistency models and frameworks. Sec-
tion 3 presents an analysis of the consistency model offered by LPCR and Cache-aside.
Section 4 presents the RW-Through algorithms and their consistency analysis. Section 5
discusses how RW-Through compares to both LPCR and cache-aside. Section 6 presents
future works. Finally, Section 7 presents concluding remarks.

2. Rationale and Background
This section briefly summarizes the main concepts behind consistency in distributed sys-
tems required in order to comprehend our analyses. The main focus is on the works done
by [Burckhardt 2014] and [Viotti and Vukolić 2016]. It is important to note that the con-
cept we are interested here is Distributed Systems Consistency, which is different from
the concept of consistency commonly explored on the database literature. The concept of
consistency in databases (i.e. the “C” in ACID) refers to the non violation of constraints
the system’s data may have. In distributed systems, consistency refers to how clients see a
system’s state when the system replicates such state among a group of different processes.

2.1. Distributed Consistency Specifications

We consider a distributed storage system as a finite set of processes connected through
an asynchronous network. The system’s purpose is to manage a collection of Objects.
Clients are a separate set of processes that manipulate the objects by means of Operations
submitted to the system’s processes. A set of operations invoked during a given execution
of the system is called a History (often referred as H). To represent notions of order
or equivalence among the operations of a history, binary relations over the history are
used. The notation a

rel−→ b denotes that (a, b) ∈ rel. The following relations are used in
consistency models specifications [Burckhardt 2014].

• rb (returns-before): is an order relation based on real-time precedence. Denotes
that an operation returned before other started. Formally: rb def

= {(a, b) | a, b ∈
H∧a.rtime < b.stime}where stime and rtime are operations start and retur times
respectively.

Ordering Guarantees

EVENTUALVISIBILITY ∀a ∈ H,∀[f] ∈ H/ ≈ss: |{b′ ∈ [f]|(a rb−→ b) ∧ (a 6 vis−→ b)}| <∞
READMYWRITES so ⊆ vis

MONOTONICREADS ∀a ∈ H,∀b, c ∈ H|rd : a
vis−→ b ∧ b

so−→ c⇒ a
vis−→ c

CAUSALVISIBILITY hb ⊆ vis
CAUSALARBITRATION hb ⊆ ar

SINGLEORDER ∃H ′ ⊆ {op ∈ H | op.oval = ∇} : vis = ar \ (H ′ ×H)

REALTIME rb ⊆ ar

Consistency Models
BASICEVENTUALCONSISTENCY EVENTUALVISIBILITY ∧ NOCIRCULARCAUSALITY

CAUSALCONSISTENCY CAUSALVISIBILITY ∧ CAUSALARBITRATION

SEQUENTIALCONSISTENCY READMYWRITES ∧ SINGLEORDER

LINEARIZABILITY SINGLEORDER ∧ REALTIME

Table 1. Ordering guarantees and consistency models [Burckhardt 2014]

• ss (same-session): is an equivalence relation based on the invoking process. Two
operations invoked by the same process are said to be in the same session. For-
mally: ss def

= {(a, b) | a, b ∈ H ∧ a.proc = b.proc} where proc is the client
proccess that invoked the operation.
• so (session-order): is an order relation between operations of the same session.

It can be expressed as the intersection of the two aforementioned relations. For-
mally: so def

= rb ∩ ss

Histories and their relations enable the representation of the observable behav-
ior of a system. However they don’t justify this behavior. Two other relations are
used to explain why a history is the way it is. These relations can explain situations
caused by non deterministic components of a system such as asynchronous networks and
implementation-specific details. A history with these added relations is called an Abstract
Execution. The relations are [Burckhardt 2014]:

• vis (visibility): an operation a is visible to an operation b (a vis−→ b) if the effects
of a are visible to the process that invokes b. For example, b reads a value written
by a.
• ar (arbitration): denotes conflict resolution. Given two non-related operations a

and b, a ar−→ b means that the system considers that a occurred before b.

An Ordering Guarantee is a logic predicate over an abstract execution. An ab-
stract execution is said to be justified by a given ordering guarantee if the predicate is true
for the execution. A Consistency Model is a collection of ordering guarantees. A system
is said to provide a given consistency model if all of its histories can be justified by the
ordering guarantees that compose the model.

With the notions of relations and ordering guarantees, the consistency models can
be specified. Table 1 presents the formal definitions of the main ordering guarantees and
consistency models. Next we describe the main characteristics for each model.

Informally, BASICEVENTUALCONSISTENCY can be defined as a guarantee that
if additional operations stop being invoked on a given object, the state of the object on all

replicas will eventually be the same [Bailis and Ghodsi 2013]. This definition describes
the convergence property of an eventually consistent system. Formally, convergence is ex-
pressed by the guarantee EVENTUALVISIBILITY. The guarantee states that a completed
operation must eventually become visible to all other sessions. The guarantee EVENTU-
ALVISIBILITY in conjunction with the guarantee NOCIRCULARCAUSALITY form BA-
SICEVENTUALCONSISTENCY.

BASICEVENTUALCONSISTENCY offers very few guarantees and therefore allows
a number of anomalies to be observed. The anomalies more easily observed by users are
those that affect the sessions. To enforce that users can read objects that they wrote
the guarantee READMYWRITES is defined. The guarantee can be formally defined by
requiring that the session order be a subset of visibility. Another form of session anomaly
is observed when users that read an object can not read it again in a future moment. The
guarantee MONOTONICREADS prevents this.

Session guarantees do not rule out causality related anomalies. Causality in
distributed systems is a notion that was explored by many past works [Lamport 1978,
Schwarz and Mattern 1994, Ahamad et al. 1995]. Two operations are said to be causally
related if the operations were issued in the same session or if one operation is visible by
another. Using relations, causality can be expressed as the happens-before relation, which
is the transitive union between session order and visibility. Formally: hb def

= so ∪ vis
[Burckhardt 2014]

The happens-before relation serve as a basis for two ordering guarantees that pre-
vent cause-related anomalies: CAUSALVISIBILITY and CAUSALARBITRATION. The first
one is when the system orders operations in a way that violates the happens-before rela-
tion. This can lead to situations where users see “answers” before “questions”. The
second anomaly is when causally related operations are not visible to one another. This
can lead to situations where users see chains of events with “holes” in them. The combi-
nation between the two causality guarantees form the consistency model CAUSALCON-
SISTENCY.

CAUSALCONSISTENCY fails to enforce that a single global order of operations
exist within a system. The Dekker Test is a test designed to verify if a system enforces a
single global order of operations. In the test, two processes write an object and right after
read the value that the other process wrote. The pseudocode for the test is described in
Table 2. If a system permits that both “A wins” and “B wins” get printed, the system does
not pass the test and, consequently, does not guarantee a single order of operations.

To express the notion of a single global order of operations, the ordering guaran-
tee SINGLEORDER is defined. A system that passes the Dekker test provide this guar-
antee. The guarantee SINGLEORDER combined with the guarantee READMYWRITES
form SEQUENTIALCONSISTENCY. A system that provides this model, implicitly pro-
vides CAUSALCONSISTENCY [Burckhardt 2014].

SEQUENTIALCONSISTENCY still do not capture single copy semantics as it per-
mits stale reads to occur. To capture single copy semantics, arbitration has to comply with
real time. The ordering guarantee REALTIME defines that. Guarantees SINGLEORDER
and REALTIME combined form the most restrictive consistency model, LINEARIZABIL-
ITY [Burckhardt 2014].

Primary Copy

Secondary Copy

Secondary Copy

Middleware

Reads

Reads

Reads/
Writes

Clients Replication

Figure 1. Lazy Primary Copy Repli-
cation

Program A Program B

x← “active”;
if y = ∅ then

print “A wins”;
end

y ← “active”;
if x = ∅ then

print “B wins”;
end

Table 2. Dekker test pseudocode
[Burckhardt 2014]

With the implications among the consistency models, an objective “strength” or-
der can be derived. It is said that a model A is “stronger” than B if every valid his-
tory of A is also valid over B. With this definition, the following hierarchy among
the consistency models holds: LINEARIZABILITY > SEQUENTIALCONSISTENCY >
CAUSALCONSISTENCY > BASICEVENTUALCONSISTENCY [Burckhardt 2014]

3. Existing Solutions Consistency Analysis

In this section we use the distributed consistency definitions described previously to ana-
lyze the consistency models of LPCR and cache-aside.

3.1. Lazy Primary Copy Replication

Grey et. al. [Gray et al. 1996] categorizes database replication into four categories based
on the combination of two properties: Propagation and Ownership. Propagation can be
either Lazy (i.e. replication happens after the operation is returned to the client) or Eager
(i.e. replication occurs before the operation is returned to the client). Ownership can be
either Primary Copy (i.e. writes are centralized in one process) or Update-Anywhere (i.e.
writes can happen in every process).

In this work we are interested in Lazy Primary Copy Replication since this is
the replication strategy that suits better read-intensive workloads. A general architec-
ture [Cecchet et al. 2008] of a system using LPCR is illustrated by Figure 1. The storage
layer is composed by one Primary Copy (sometimes called master) and multiple Sec-
ondary Copies (sometimes called slaves). Clients submit operations to a Middleware
layer responsible for sending write operations to the primary copy and read operations to
the secondary copies. The primary copy is responsible for sending the write operations to
the secondary copies. This process happens asynchronously, i.e. after the operations are
returned to clients. Secondary copies hold a complete copy of the objects that the system
manages, hence the strategy is said to be full-replication.

In LPCR, strong models can be immediately discarded. The reason is demon-
strated by the execution of the Dekker test illustrated by Figure 2. I can be observed that
a delay in the replication of the two writes from the primary copy to the secondary copy
caused both reads to return ∅, which means a failure to provide the guarantee SINGLE-
ORDER. If the execution is modified so that each program reads the value that it just
wrote, the results would still be ∅. This shows that session order is not a subset of visi-
bility (so 6⊂ vis), which violates READMYWRITES. We can also infer that if so 6⊂ vis,

Program A

Program B

Secondary

Primary

wr(x)

wr(y)

wr(x) wr(y)

rd(y)

rd(x) Ø

Øok

ok

Figure 2. Possible Dekker test exe-
cution in an LPCR system

Client

Secondary A

Secondary B

Primary

wr(x)

wr(x) wr(x)

rd(x)rd(x) ok Øok

Figure 3. Execution with replication
delay in an LPCR system

than (so ∪ vis) 6⊂ vis, which violates CAUSALVISIBILITY. Since writes are centralized,
the guarantee CAUSALARBITRATION is provided.

Figure 3 illustrates an execution that demonstrates that the guarantee MONOTONI-
CREADS is not provided. The figure shows a client communicating with an LPCR system
with two secondary copies A and B. After a write, two reads are routed to different
secondary copies. A delay in the replication causes the second read to return an earlier
version of the object. This situation violates the guarantee MONOTONICREADS.

The convergence property is achieved by LPCR since the primary copy needs to be
always available for the system operation. Therefore replication to secondary copies never
stops. Given the ordering guarantees provided by the solution, its consistency model can
be defined as BASICEVENTUALCONSISTENCY plus the guarantee CAUSALARBITRA-
TION.

3.2. Cache-aside

A common practice to increase performance of storage systems that handle read-intensive
workloads is to use an in-memory data store alongside it. The in-memory data store acts
as a cache to the system’s objects and is managed by an application that uses the data.
This is a popular technique in web applications where the web server is the main client of
the storage system.

The solution is composed by two data stores, a “main” store that is used for general
purpose and guarantees durability of the data (e.g. a relational database); and a “cache”
store that is highly optimized for reads and often uses volatile memory to store the data
(e.g. memcached). An application layer handles both stores and is responsible to fill the
cache in an on-demand fashion. To handle possible out of space problems, an eviction
mechanism is employed to free space as new objects are inserted into the store. When
processing reads, the application first checks if the object exists in cache, if yes it is
returned to the client, otherwise the application reads the object from the main storage,
writes it in the cache, and returns it to the client. On writes the application writes the
object in the main storage and cache sequentially.

As long as only one instance of application and cache exists and no other process
writes to the main storage, no consistency anomalies occur. This happens because the
application essentially serves as a single client to the storage system. This configuration
is very limited and not suitable for geo-replicated scenarios. For the consistency analysis,
we assume that the main storage can have multiple writers, e.g. multiple instances of
applications and caches.

Application A

Cache

Main

Application B

rd(x)

wr(x,1)

wr(x,1) ok1

ok wr(x,2) ok

rd(x) Ø rd(y) wr(y,1) ok1rd(y) Ø

wr(y,1) ok

rd(y) 1
so

so

so

so

rd(x) 1

Figure 4. Cache-aside execution with two processes writing to the main storage

High Data Traffic

Clients

Low Data Traffic

Main
Storage

Intermediate
Storage

Potentially
different
regions

Clients

Intermediate
Storage

Figure 5. RW-Through general architecture

In configurations with multiple writers, strong models are not provided as illus-
trated by Figure 4. A second writer “Application B” issues three writes for two objects
to the main storage. According to the happens-before relation, we have wr(x, 1)

hb−→
wr(x, 2)

hb−→ wr(y, 1). The process “Application A” keeps reading the key x with a stale
value until an eviction occurs. This execution demonstrates that the guarantees SINGLE-
ORDER and CAUSALVISIBILITY are not provided.

As the application accesses only a single cache and updates the cache after each
write, both session guarantees are provided by the solution. As in LPCR, the centralized
writes on cache-aside guarantee that CAUSALARBITRATION is provided. Convergence
happens because the eviction mechanism prevents the cache from keeping the same ob-
jects forever. Given the ordering guarantees presented, we can conclude that the cache-
aside solutions offers BASICEVENTUALCONSISTENCY plus the guarantees READMY-
WRITES, MONOTONICREADS, and CAUSALARBITRATION.

4. RW-Through Specification

In this section we present a new algorithm for data replication suitable for read-intensive
workloads and large scale applications. Similarly to LPCR and Cache-aside, our algo-
rithm uses a centralized process for writes and a set of processes for reads. The main
difference between our algorithm and LPCR and Cache-aside is the way clients interact
with the system. In our algorithm, clients never communicate directly with the process
responsible for writes. Instead all operations go to the set of processes responsible for
reads. These processes act as an intermediate layer, processing some of the operations
and making others pass through them as illustrated by Figure 5. For this reason we call
the algorithm Read Write Through or simply RW-Through.

We present two variations of RW-Through: full replication and cache. The full
replication version has similar properties to LPCR, where every process keeps a full copy
of the data managed by the system. The cache version is similar to Cache-aside where
the intermediate layer store a subset of the objects and employs an eviction mechanism.
We refer to the two types of processes as Main Storage and Intermediate.

4.1. Full Replication Mode

The full replication mode of RW-Through are described by Algorithms 1 and 2. Inter-
process communication is modeled as Remote Procedure Calls (RPC) exposed by the
Main Storage process.

Data:
LS: local storage;
log: write log;
time: process current logical time;

RPC MAINGET(t):
return log[t 7→];

end

RPC MAINPUT(key, val, t):
LS[key]← val;
time++;
log[time]← (key, val, time);
return log[t 7→];

end

Algorithm 1: Pseudocode of the Main Stor-
age Process in Full Replication Mode

Data:
LS: local storage;
time: process current logical time;

Operation GET(key):
return LS[key];

end

Operation PUT(key, val):
log ← ORIGINPUT(key, val, time);
APPLY(log);
return;

end

Procedure APPLY(log):
while log is not empty do

(k, v, t)← dequeue log;
if t > time then

LS[k]← v;
time← t;

end
end

end

Algorithm 2: Pseudocode of the Intermedi-
ate Process in Full Replication Mode

The Main Storage process keeps three data structures in its internal state: LS, log,
and time. LS is a map of keys and values and act as the main storage for the system
objects. log is a record of all write operations performed on the system. Each operation
is represented by an array of tuples (k, v, t), where k and v represent the key and value
of object written and t the logical time associated with the operation. time is the current
logical time of the last write operation.

The Main Storage process exposes two RPCs: MAINGET and MAINPUT.
MAINGET receives a logical time t as input and returns a subset of log containing the
operations with logical time > t (indicated with the notation log[t 7→]. MAINPUT re-
ceives as input key and val, which represent the object being written and t, which is the
logical time of process that invoked the RPC. Upon receiving a MAINPUT request, the
Main Storage process updates its local storage with the object received, increments its
local variable time, appends the operation to its log, and returns a subset of log with the
operations time > t.

The Intermediate process, similarly to MAIN STORAGE, keeps LS and time in its
local state. The process exposes two operations to clients: GET and PUT. GET receives
as input a key and returns the value associated with this key in its LS. PUT receives as
input a key and value pair and send it to the Main Storage process with its current logical
time. With the write log resulted from the RPC call, the process invokes the auxiliary
procedure APPLY. The procedure takes a write log as input and iterates over it similarly
to a First-In-First-Out (FIFO) queue. For each dequeued object, the procedure checks
if the object’s logical time is higher than the process’s current logical time; if it is, the
key and value pair is applied in the local storage and process current time becomes the
object’s logical time. The process also executes a second auxiliary procedure GETLOG
periodically. This procedure simply invokes the GETLOG RPC and applies the resulting
log.

The algotithm has two main drawbacks: (1) high usage of space as the log grows
on Main Storage. This can be solved by keeping track of current times for the Intermedi-
ate processes and implementing a cleanup routine that evitcs from the log every operation
with logical time lower than the lowest of Intermediate’s logical time. (2) the high oc-
currence of stale reads when writes are not issued frequently on a particular Intermediate.
This can be mitigated by periodically invoking MAINGET from Intermediates.

4.2. Cache Mode
RW-Through can also operates in cache mode supporting a partial replication scheme sim-
ilar to Cache-aside where the Intermediate processes act as a demmand-filled cache. The
general architecture is still the same, i.e. clients communicate only with the intermediate
layer and contact the same Intermediate process instance for the duration of a session.

The algorithms for the Main Storage and Intermediate processes are described by
Algorithms 3 and 4, respectively. The main idea of this mode is to keep on Main Storage
state one write log for each Intermediate process instance. These write logs contain only
operations on the objects stored by each Intermediate.

The cache mode of RW-Through is capable of using storage space and network
more efficiently. Storage space efficiency is achieved by storing on the intermediate layer
only the subset of data that has the highest chance of being required. Network usage
efficiency is achieved by sending write logs with only the elements relevant to a particular
Intermediate instance.

The Main Storage process needs to employ a mechanism to identify which ob-
jects are stored on each Intermediate instance. This can be achieved in a variety of
ways such as hash tables or binary trees. In our implementation we choose Cuckoo Fil-
ters [Fan et al. 2014]. A cuckoo filter is a recent probabilistic data structure that enables
set membership verification using space many times smaller than the set itself. The draw-
back is that the data structure allows a small number of false-positive results. The cuckoo
filter is very similar to Bloom Filters [Bloom 1970]. The main difference between them
is that cuckoo filter supports set member deletion while bloom filter does not.

We use the notation I to denote the set of Intermediate process instances. The
Main Storage process keeps the following data structures in its internal state: A local
storage LS; a set of Cuckoo Filters F = {fi | i ∈ I} that maintains a compact registry of
which key is currently stored in each Intermediate instance; a set of write logs L = {li |

i ∈ I} that represents the modifications to be executed in each Intermediate instance; a
vector clock T = {ti ∈ N | i ∈ I} that keeps the highest logical time reported by each
Intermediate instance.

Data:
LS: local storage;
L: log with all write operations performed;
T : set of logical times, one for each intermediate;

RPC MAINGET(key, t, i):
val← LS[key];
if val 6= ∅ then

add key to Fi;
Ti++;
enqueue (key, val, Ti) in Li;

return Li;
end

RPC MAINPUT(key, val, t, i):
add k to Fi;
LS[key]← val;
foreach j ∈ I do

if key exists in Fj then
Ti++;
enqueue (key, val, Tj) in Lj ;

end
end
CLEANLOG(Li, t);
return Li;

end

RPC EVICT(i, key):
remove key from Fi;

end

Procedure CLEANLOG(log, t):
while top of log has position ≤ t do

dequeue from log;
end

end

Algorithm 3: Pseudocode of the Main Stor-
age Process in Cache Mode

Data:
LS: local storage;
i: process identifier;
time: process logical time;

Operation GET(key):
if LS[key] = ∅ then

log ← MAINGET(key, time, i);
APPLY(log);

end
return LS[key];

end

Operation PUT(key, val):
log ← MAINPUT(key, val, time, i);
APPLY(log);
return;

end

Procedure APPLY(log):
while exist elements in log do

(k, v, t)← dequeue from b;
if t > time then

e← LS[k]← v;
time← t;
if e 6= ∅ then

EVICT(k, i);
end

end
end

end

Algorithm 4: Pseudocode of the Intermedi-
ate Process in Cache Mode

On cache mode, the Main Storage process follows a similar behavior to the full
replication mode. The main difference lies in the Main Storage process returning the
correspondent write log for each Intermediate instance. To keep track of which object is
stored in each Intermediate, the Main Storage adds every key sent as input to MAINGET
or MAINPUT RPCs to the cuckoo filter relative to the Intermediate instance that invoked
the RPC. Whenever an object is evicted from an Intermediate local storage, an EVICT
RPC is invoked. This RPC simply removes the object’s key from the respective cuckoo
filter. Before sending the write logs, they are submitted to a cleanup procedure CLEAN-
LOG that removes every entry with logical time lower than the Intermediate’s current.

The Intermediate process in cache mode has two main differences from the full

Intermediate A

Main Storage

Intermediate B

wr(x) ok rd(y) ok

wr(y) ok rd(x) ok

wr(x) ok rd(y) Ø

wr(y) ok rd(x) ok

Figure 6. Dekker test executions on RW-Through

replication mode. The first is its GET operation. When a key is not found on local storage,
the process submits a MAINGET RPC to fetch the requested object. The second is in the
local storage that evicts items when its capacity is full.

4.3. Consistency Analysis
Since the full replication mode is a simplified version of cache mode, we only present an
analysis for the cache mode. All properties observed in this mode are also valid on full
replication mode. Initially, we proceed by defining the arbitration and visibility relations.
Since writes are centralized in the Origin process, arbitration can be defined as the session
order of that process: ar = eo|orig. An Intermediate process instance has visibility to
every operation that happened up until the process last communication with the Main
Storage process. Formally, visibility can be defined as a

vis−→ b
def
= a

ar−→ lc(b) where
lc(op) : last op (last communication) is a function that receives as input an operation op
and returns the last operation that communicates with the Main Storage that precedes op.

To verify the ordering guarantees provided by RW-Through, we begin by analyz-
ing the Dekker test execution. Figure 6 shows two executions of the test in a RW-Through
system with two Intermediate processes, one for each test program. These two execu-
tions can be generalized to all possible executions of the test in an RW-Through system.
For this, one only have to symmetrically invert the two programs. It can be seen that the
solution passes the test, which means that RW-Through provides SINGLEORDER.

In a given session, writes will always be visible to subsequent operations in the
same session. To demonstrate this, let a write operation a and an operation b that reads the
object written by a such that a so−→ b. After a completes, the Intermediate local storage will
immediately contain the written object. The outcome of b can be either a cache-hit or a
cache-miss. If the outcome is a cache-hit, the object is successfully retrieved, thus a vis−→ b.
If the outcome is a cache-miss, a communication with the Main Storage is required, thus
a

ar−→ b. Given the visibility definition for RW-Through, a ar−→ b implies that a vis−→ b. With
these definitions we can conclude that the guarantee READMYWRITES is provided. This
guarantee together with SINGLEORDER is enough to conclude that RW-Through provides
SEQUENTIALCONSISTENCY.

5. RW-Through Compared to LPCR and Cache-aside
In this section we discuss how RW-Through compares to LPCR and cache-aside. Initially
we analyze the ordering guarantees and consistency models provided by the three solu-
tions. After, we discuss network usage and the applicability of the solutions in large-scale
geo-replicated scenarios.

LPCR Cache-aside RW-Through
EVENTUALVISIBILITY X X X

READMYWRITES X X
MONOTONICREADS X X

CAUSALVISIBILITY X
CAUSALARBITRATION X X X

SINGLEORDER X
REALTIME

Table 3. Ordering guarantees provided by each solution

Table 3 summarizes the ordering guarantees provided by the three solutions.
Based on Table 1, we can determine the consistency model for each solution. According to
distributed consistency specifications, RW-Through offers SEQUENTIALCONSISTENCY
which is stronger than the BASICEVENTUALCONSISTENCY offered by both LPCR and
Cache-aside.

In practice, not offering session guarantees (i.e. READMYWRITES and MONO-
TONICREADS) can result in unintuitive situations to users. For example, a user writes a
comment in a social network, refreshes the page, and can not see his comment. This is a
possible situation on a system that does not provide READMYWRITES. Systems that do
not provide causal guarantees may result in scenarios where answers are ordered before
questions. These anomalies are possible in both LPCR and cache-aside. On the other
hand, RW-Through provides all session and causal guarantees.

Due to its replication characteristics, RW-Through full replication mode can be an
alternative to LPCR. In single datacenter scenarios where network partitions and delays
are rare, LPCR consistency anomalies are also rare. RW-Through on the other hand, offers
SEQUENTIALCONSISTENCY regardless of the network conditions, making it a viable op-
tion for geo-replicated deployments. LPCR can also be used as a fault tolerance solution
for node crashes (e.g. a secondary can assume the primary role when the primary fails).
RW-Through does not have this property. Therefore, we conclude that RW-Through is a
solution for read-intensive workloads and unreliable network problems while LPCR is a
solution for read-intensive workloads and unreliable nodes problems.

RW-Through cache mode can offer advantages when compared to cache-aside.
Besides offering a stronger consistency model, RW-Through cache mode is more efficient
in network usage and is less susceptible to stale-reads than cache-aside. Network effi-
ciency is higher due to cache-misses being more efficient in RW-Through. While cache
aside requires 6 messages to be exchanged in a cache-miss, RW-Through completes the
operation with 4 messages exchanged. The reduction in stale reads occurs due to the
write log mechanism employed by RW-Through. In cache aside an item is only refreshed
in the cache when it expires. In RW-Through, every modified item in the main storage is
refreshed on the Intermediate whenever a communication is made between Intermediate
and Main Storage process. This reduces the window that an item already modified on the
main storage remains active in the cache.

Postgres
Primary

Postgres
Secondary

Clients

Postgres
Secondary

 Clients Middleware Middleware

Writes

Reads Replication

Figure 7. PostgreSQL middleware based solution based on RW-Through

6. Future Work
RW-Through can serve as a base for different types of projects involving data replication.
In this paper we presented the algorithms and demonstrated its consistency and network
usage properties. To validate its applicability in real world scenarios, we are currently
developing projects that use RW-Through’s algorithms in different settings.

One such project is a middleware-based distributed PostgreSQL solution that im-
plements RW-Through’s full replication mode. Figure 7 illustrates the general architecture
implemented by the project. The main idea is to place a middleware between clients, a
PostgreSQL instance configured as a primary copy, and a PostgreSQL instance configured
as a secondary copy. One middleware exists for each secondary copy. All PostgreSQL
instances are configured to use PostgreSQL’s streaming replication. In this replication
mode the primary sends write logs to secondaries in a way very similar to RW-Through.
When a read operation is received, the middleware simply routes the query to the sec-
ondary. When writes are received, the middleware routes the query to the primary and
waits for the write log containing the write operation. As soon as the log is applied to the
secondary the operation is returned to the client. This scheme certainly adds an additional
overhead to write operations when compared to other solutions. However, this solution is
intended to be used when read throughput needs to be maximized and has the benefit of
providing a higher consistency than LPCR.

7. Conclusion
In this work we conducted a formal consistency analysis on the main data storage solu-
tions used by the industry for read-intensive workloads. We demonstrated that these solu-
tions offer weak consistency models susceptible to many different consistency anomalies.
The occurrence of such anomalies increases as the systems are exposed to faulty network
conditions such as wide-area networks.

We presented RW-Through, a design for a data replication protocol capable of
solving many of the problems faced by current solutions. RW-Through is capable of ad-
dressing the same issues as current solutions while offering a stronger consistency model.
By using formal consistency verification frameworks, we demonstrated that our new pro-
tocol can maintain its consistency regardless of the network conditions. This makes RW-
Through a suitable solution for large-scale geo-distributed deployments such as global

cloud applications.

In future works, we intend to use RW-Through as a basis for a PostgreSQL plugin.
We aim to demonstrate that existing replication plugins can present consistency anomalies
and compare the performance with our plugin on geo-distributed cloud deployments.

References
Ahamad, M., Neiger, G., Burns, J. E., Kohli, P., and Hutto, P. W. (1995). Causal memory:

definitions, implementation, and programming. Distributed Computing, 9(1):37–49.

Bailis, P. and Ghodsi, A. (2013). Eventual consistency today: Limitations, extensions,
and beyond. Queue, 11(3):20:20–20:32.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426.

Brewer, E. A. (2000). Towards robust distributed systems. In Proceedings of the Nine-
teenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’00.

Bruner, J. (2013). Tweets loud and quiet.

Burckhardt, S. (2014). Principles of Eventual Consistency, volume 1. now publishers.

Cecchet, E., Candea, G., and Ailamaki, A. (2008). Middleware-based database replica-
tion: The gaps between theory and practice. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08.

Fan, B., Andersen, D. G., Kaminsky, M., and Mitzenmacher, M. D. (2014). Cuckoo
filter: Practically better than bloom. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies, CoNEXT ’14.

Gilbert, S. and Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59.

Gray, J., Helland, P., O’Neil, P., and Shasha, D. (1996). The dangers of replication and
a solution. In Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’96, pages 173–182, New York, NY, USA. ACM.

Herlihy, M. P. and Wing, J. M. (1990). Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst., 12(3):463–492.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565.

Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C., McElroy, R.,
Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., and Venkataramani, V. (2013).
Scaling memcache at facebook. In Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13).

Pacitti, E. p., Minet, P., and Simon, E. Fast Algorithms for Maintaining Replica Consis-
tency in Lazy Master Replicated Databases. Technical report.

Schwarz, R. and Mattern, F. (1994). Detecting causal relationships in distributed compu-
tations: In search of the holy grail. Distributed Computing, 7(3):149–174.

Viotti, P. and Vukolić, M. (2016). Consistency in non-transactional distributed storage
systems. ACM Comput. Surv., 49(1):19:1–19:34.

