A Domain-Specific Language for Multimedia Service Function
Chains based on Virtualization of Sensors

Franklin Jordan Ventura Quico
fventurag@midiacom.uff.br
Fluminense Federal University
Niter6i, RJ, Brazil

Débora Muchaluat-Saade
debora@midiacom.uff.br
Fluminense Federal University
Niteroi, RJ, Brazil

ABSTRACT

Virtualization is a widely used technology that can abstract the
complexity of heterogeneous environments, such as the Internet
of Things (IoT) and multimedia systems. Multimedia sensors are
an important data source in the Internet of Things (IoT), which
brings the Internet of Media Things (IoMT) paradigm. Based on vir-
tualization and IoMT, the concept of a multimedia Virtual Network
Function (multimedia VNF) has been adopted to denote the virtual-
ized representation of devices and also software components that
process multimedia streams. In many scenarios, multiple processes
must be applied to multimedia streams in a predefined sequence,
thus creating the concept of multimedia Service Function Chain
(multimedia SFC). Few efforts have been made in the literature to
create a description language to support the definition of multime-
dia SFCs. In order to fill this gap, we propose a Domain Specific
Language (DSL) called L-PRISM. This DSL can be used as a concep-
tual base for developers to implement and virtualize multimedia
applications using multimedia VNFs. We also present a Proof of
Concept (PoC) that uses L-PRISM to run multimedia SFCs. Our
DSL and PoC were evaluated by software developers, and the re-
sults show that adopting L-PRISM facilitates the definition and
deployment of multimedia SFCs based on multimedia VNFs.

KEYWORDS
IoMT, IoT, VNF, SFC, DSL, L-PRISM

1 INTRODUCTION

Virtualization is a concept that has paved the way for numerous
research studies in Cloud Computing, 5G, and IoT [14, 24]. This
technology not only reduces the costs of implementing and man-
aging infrastructures, but also serves as a fundamental pillar in
paradigms such as Network Function Virtualization (NFV) [16, 19].
The adoption of NFV and its Virtual Network Function (VNF) com-
ponents has proved to be effective in reducing the consumption
of computational and network resources. Furthermore, virtualiza-
tion increases the speed and efficiency of resource provisioning

In: Proceedings of the Brazilian Symposium on Multimedia and the Web (WebMe-
dia’2024). Juiz de Fora, Brazil. Porto Alegre: Brazilian Computer Society, 2024.

© 2024 SBC - Brazilian Computing Society.
ISSN 2966-2753

11

Anselmo L. E. Battisti
anselmo@midiacom.uff.br
Fluminense Federal University
Niter6i, R], Brazil

Flavia C. Delicato
fdelicato@ic.uff.br
Fluminense Federal University
Niteroi, R], Brazil

in cloud and edge environments, facilitating the management and
orchestration of these resources [24].

Many investigations combine NFV technology with multimedia
stream processing. In [4], the authors explore the concept of virtual
devices that abstract the heterogeneity of multimedia sensors and
introduce virtual multimedia sensors (VMS), which we will refer to
as multimedia VNFs in our work. These VMSs enable multimedia
stream processing using lightweight virtualization. Furthermore,
the authors demonstrated the feasibility of using chained VMSs to
create complex multimedia stream processing pipelines. However,
this characteristic was not fully explored in that work. Meanwhile,
in [11], the authors investigated the joint load balancing and auto-
scaling of multimedia VNFs in edge or cloud environments. In
this context, virtualization concepts like NFV have been actively
integrated into different studies to process multimedia streams.

The Service Function Chain (SFC) is a sequence of sorted VNFs
associated with a Service Level Agreement (SLA) [5]. By chaining
multimedia functions, it is possible to create complex multimedia
stream processing pipelines. When the VNFs in an SFC are tailored
for multimedia processing, they are referred to as multimedia SFCs.

Despite the potential of multimedia SFCs in various fields [9],
we face the challenge of implementing and managing them easily,
securely, and efficiently. The components used to create multimedia
SFCs are typically developed by different entities using multiple
technologies [14]. Thus, to create a multimedia SFC, users must have
a moderate level of knowledge of these technologies. Moreover, the
interoperability of these components sometimes is often limited.

To address these challenges, it is necessary to provide a layer
that encapsulates the technical details of multimedia SFCs. There
are different alternatives for this, among which Domain-Specific
Languages (DSLs) stand out [18]. Unlike other approaches, such as
metamodels or conventional programming languages, DSLs offer
greater flexibility and simplicity.

DSLs are language specifications designed to describe the char-
acteristics, syntax, and behavior of systems in specific fields [15].
These languages enable intuitive integration and management by
providing an abstraction layer encapsulating technical details. This
allows users to focus on business logic and specific functionali-
ties. In addition, DSLs facilitate the integration of new or external
components more efficiently and less technically.

Although there have been significant advances in the literature
to facilitate the definition and deployment of NFV services, such as



WebMedia’2024, Juiz de Fora, Brazil

the TOSCA-NFV metamodel [22] or ETSI GS NFV-SOL [10], there
is still a considerable gap specifically regarding multimedia SFCs.
The need to address multimedia SFCs separately arises from their
unique nature and challenges. Some of these challenges are (i) man-
aging large-volume and high-speed data flows, (ii) synchronizing
multiple formats and media types, and (iii) meeting requirements
for real-time processing, which are not as critical in traditional
NFVs [17]. Furthermore, multimedia SFCs often require greater
flexibility in terms of scalability and adaptation of dynamic changes
in resource demand. Therefore, although existing models, such as
TOSCA-NFV, provide means to describe SFCs in general, the unique
characteristics of multimedia SFCs demand a specialized approach
that directly addresses their specific requirements and inherent
challenges.

In this work, our aim is to fill this gap by proposing a DSL
called Language for Programming IoT Sensors for Multimedia (L-
PRISM), which serves as a conceptual foundation for describing
multimedia SFCs, particularly in the emerging field of the IoMT.
The decision to develop L-PRISM, instead of extending existing
solutions like TOSCA-NFV, is driven by the unique demands of
multimedia SFCs, such as the inherent complexity in their definition
and configuration, the need for flexibility in their components and
adaptability to specific environments.

Our DSL includes a data model that provides detailed structures
for specifying the critical properties of multimedia SFCs. This model
enables the specification of the type, formats, and resolutions of
data streams that multimedia VNFs can process and send, but it
also considers scenarios where a multimedia VNF can handle its
streams in various formats and qualities. This aspect is crucial, as
the computational and network requirements associated with a
multimedia VNF are variable and depend on the characteristics of
the multimedia stream to be processed.

This information is vital for developers of multimedia SFCs, as it
provides the necessary details to understand and utilize multimedia
VNFs. In turn, this will enable developers to specify their multimedia
SFCs efficiently. Additionally, at the application level, our data
model can facilitate the effective orchestration and management of
multimedia SFCs, optimizing their lifecycle.

Furthermore, having a dedicated DSL presents several advan-
tages, such as customization, facilitated implementation, and main-
tenance of its various components. The main contributions of this
work are:

e L-PRISM makes it possible to describe a multimedia SFC
based on a sequence of multimedia VNFs.

e L-PRISM defines the necessary structures for detailed log-
ging of multimedia VNFs.

e L-PRISM makes using multimedia VNFs developed by third
parties easier, so developers of multimedia VNF-based solu-
tions do not need to have advanced knowledge about the
technologies or tools used for developing the components
of a multimedia SFC.

The remainder of this paper is organized as follows. Section 2
describes the background and related work. Sections 3 and 4 present
L-PRISM and its metamodel. Section 5 describes our PoC. In Section
6, we present an evaluation of our work. Section 7 brings our main
conclusions and future work.

12

Ventura Quico et al.

2 BACKGROUND AND RELATED WORK

Traditional sensors, such as thermostats and presence detectors,
typically produce discrete data in a readable format. However, mul-
timedia sensors produce continuous, complex and large-volume
data, which require high processing rates, massive storage, wide
bandwidth, low latency, and high energy consumption [17]. These
characteristics make their operation different from that of tradi-
tional sensors. One strategy to handle this complexity is to decouple
physical sensors from multimedia stream consumers [4].

Different languages, metamodels, and DSLs have been developed,
which have helped develop systems and architectures, such as,
YANG [20], TOSCA-NFV [22] and ETSI GS NFV-SOL [10].

YANG [20] is a data modeling language used to describe network
configurations and telecommunication services. YANG can be used
for NETCONF-based operations, including configuration, data state,
remote procedure calls (RPCs), and notifications. YANG models can
be translated into XML syntax, allowing applications that use XML
parsers to operate and manipulate YANG models [6]. However,
YANG does not have features required to describe multimedia SFCs.

A specific data model that works with virtualization technolo-
gies is TOSCA-NFV [22], which allows describing, deploying, and
managing applications and services based on NFV. TOSCA-NFV de-
scribes in detail the components of its solutions and the interactions
and dependencies between them. TOSCA is a modeling language
that uses the template concept to describe the components of a
workload using a topology template, and their relationships using
a relationship template [22]. It is crucial to note that TOSCA-NFV
focuses primarily on traditional virtualization systems and does
not align well with lightweight virtualization platforms, such as
Docker and Kubernetes.

Mininet-NFV [8] presents an advanced framework for NFV or-
chestration, facilitating the implementation and operation of VNF-
based network services. This framework is built upon Mininet, a
tool widely recognized for its capability in agile experimentation
with networks, SDN and NFV, and extensively used for prototyping,
testing, and implementing NFV solutions. Additionally, Mininet-
NFV supports parameterized TOSCA-NFV templates, using virtual
link descriptors to define detailed and flexible network configura-
tions.

ETSI GS NFV-SOL 001 [10] adapts TOSCA-NFV to meet the
specification requirements of ETSI GS NFV IFA 011 [1] and 014 [2]
for Virtualized Network Function Descriptors (VNFDs), Network
Service Descriptors (NSDs), and Physical Network Function De-
scriptors (PNFDs). Like TOSCA-NFV, it specifies requirements for
the management and orchestration of VNFs.

Although very related to our proposal, neither TOSCA-NFV nor
ETSI NFV-SOL specifically addresses the requirements of multime-
dia applications and systems, particularly concerning multimedia
SFCs and their components. Therefore, while our work is based on
the principles of TOSCA-NFYV, it stands out by addressing the nec-
essary aspects for the definition, orchestration, and management of
multimedia SFCs implemented on lightweight virtualization plat-
forms.

Table 1 compares related languages, templates, and data models
that support the definition of SFCs. The last row of the table presents
L-PRISM. The meaning of each column in the table are as follows:



A Domain-Specific Language for Multimedia Service Function Chains based on Virtualization of Sensors

e IoMT: Focus on Internet of Media Things applications.

¢ Edge Computing: Tailored for edge computing environ-
ments.

e Light Virtualization: Support for lightweight virtualization
platforms.

Table 1: Comparison between related work.

Related Work

IoMT
Light
\Virtualization|

Edge
Computing

YANG [20] -
TOSCA-NFV [22] -
Mininet-NFV [8] -
ETSI NFV-SOL [10] -
L-PRISM v

SNENENENE
NENENE

Our previous work [3, 4] proposed an architecture, which al-
lows the execution and management of multimedia VNFs based
on lightweight virtualization in an edge-cloud environment. How-
ever, at that time, we did not explore multimedia SFCs or provided
a domain-specific language to describe multimedia SFCs, which
would make the creation and maintenance of multimedia SFCs eas-
ier. In this work, we fill in this gap by simplifying the definition of
multimedia SFCs through the development of a DSL.

3 L-PRISM

This section presents L-PRISM, a DSL that facilitates the descrip-
tion of multimedia SFCs based on multimedia VNFs. L-PRISM is
mainly based on the architecture proposed in [3] and the TOSCA-
NFV metamodel [22]. L-PRISM was developed following the stages
proposed by Negm et al. [18], detailed in the following sections.

3.1 Domain Analysis

An analysis of multimedia applications in virtualized environments
was carried out. It allowed us to understand and abstract the main
characteristics that influence the operation of these types of appli-
cation. The characteristics represent configurable aspects such as
the allocation of computing and network resources, communication
requirements, etc.

In addition, an analysis of the interaction between multimedia
applications was performed. These interactions can be modeled as
directed graphs, representing complex multimedia applications. We
describe these complex applications as multimedia SFCs and their
components as multimedia VNFs.

3.2 L-PRISM Design

L-PRISM was created following the concepts presented in [4] as a
reference. Thus, the design of L-PRISM considers the implementa-
tion of multimedia SFCs in distributed environments composed of
edge and cloud nodes. In addition, L-PRISM was coined to operate
on lightweight virtualization platforms, such as Docker and Kuber-
netes. Figure 1 shows an example of a multimedia SFC. The main
components of a multimedia SFC are:

13

WebMedia’2024, Juiz de Fora, Brazil

vD VL 1VMS \il
oooo
VL Multimedia VNF
L, mutimedia vNF VL 1VMS V>
1VMS oDoo
T EndPoint
vD VL

Virtual Link - VL —>»

i Virtwal Device - VD Multimedia VNFiVMS [ |

Figure 1: Example of a multimedia SFC.

o Virtual Device (VD) is the virtual representation of a physical
multimedia device.

o Multimedia VNF / VMS is a function that process the multi-
media streams. Unlike VDs, instances of multimedia VNFs
are created exclusively for each multimedia SFC.

o Virtual Links (VL) provide the communication between (i)
VDs and multimedia VNFs, (ii) different multimedia VNFs
and (iii) multimedia VNFs and endpoints (user applications).

L-PRISM is a flexible language that can be used in compiled
and interpreted scenarios. In both cases, the user describes the
multimedia SFC using our proposed language. In a compilation-
based scenario, the compiler will create a low-level code that will be
processed to execute the multimedia SFCs. In an interpreted-based
scenario, which is the case of our PoC, an interpreter runs over the
code and creates/instantiates the multimedia SFCs.

The L-PRISM language is based on YAML to provide readability,
flexibility, cross-platform support, integration with existing tools,
and a fast learning curve [23]. These features make L-PRISM intu-
itive and easy to use, and in turn, YAML is tailored to our specific
needs and helps to make our DSL easily accepted by developers.

L-PRISM follows a model-driven approach. Figure 2 presents
the L-PRISM metamodel, defining its components, attributes, and
the relationships between them. For example, the swimage (Image
of the multimedia VNF) structure in the metamodel of our DSL
allows for detailed description of the type, formats, and resolutions
of multimedia streams that a multimedia VNF can process and emit.
This information at the application level can be stored in a database,
which can then be accessed by developers of multimedia SFCs. This
will enable them to understand the characteristics of multimedia
VNFs generally and efficiently specify each component of their
multimedia SFCs.

For an extensive overview of L-PRISM, visit our website!.

4 THE L-PRISM METAMODEL

This section summarizes the L-PRISM metamodel. Table 2 presents
the attributes of a chainModel, which describes a multimedia SFC.
It should be noted that attributes ending with an (*) are mandatory.

Table 3 describes the attributes of the device component, which is
avirtual representation of a physical device (camera or microphone).
One advantage of virtualized devices is that a single multimedia
stream captured from a camera/microphone can be reused multiple
times and sent to different destinations.

!https://fventuraq.github.io/lprism.html



WebMedia’2024, Juiz de Fora, Brazil

configurableProperties

additionalConfigurableProperties

Ventura Quico et al.

virtualCpu

11

addressData numVirtualCpu m<— vms e
addressType minNumVirtualCpu = name vmsName

13AddressData dest?ription vmsDescription
ipAddressAssignment virtualMemory version network
floatinglpActivated virtualMemSize imageSrc virtualBinding
ipAddressType minVirtualMemSize name Star‘tu;lija;amtelers
numberOflpAddress; d - operatingsystem

virtualStorage . escription inputPorts: port[]

onnectivity Type virtualStorageSize isMaster outputPorts: port[] “
LayerProtocol minVirtualStorageSize chainName
FlowPattern > o e device chainDescription

B __“ virtualGraphicsCardSize sourceName zame_ - - ::gz.e\s,:n.ld:[\lnce" P

numPort minVirtualGraphicsCardSize sourceType escription Lo i
typeSiream outputType host |—° virtualLinks: virtualLink[]
formatStream destination formatType virtualLink
qualityStream ||_° destinationName networkBandwidth | <

Figure 2: Class diagram of the L-PRISM metamodel.

Table 2: Attributes of a chainModel in L-PRISM

Table 4: Attributes of multimedia VNF (vms) in L-PRISM

Name Type Description Name Type Description
chain- String | Name of the multimedia SFC. vmsName” | String The name of a multimedia VNF
Name” must be unique in a multimedia
chain- String | Multimedia SFC description. SFC. This data type works as an
Description ID in a virtualLink.
devices” map | List of virtual devices (device) that com- vms- String Multimedia VNF description.
pose the multimedia SFC. Description
vmss* map | List of multimedia VNFs (vms) that com- vmsType* | 1Prism.- The container images used for cre-
pose the multimedia SFC. artifacts.- ating the multimedia VNF.
virtual- map | List of virtualLinks between device and vms.-
Links* multimedia VNF (vms). swlmage
startup- [Prism.- Data type defined initially by
. Lo Parameters | datatype.- TOSCA-NFV; it describes the ini-
Table 3: Attributes of device in L-PRISM . . .
vms.- tial configuration properties of the
configurable- | multimedia VNF.
Name Type Description Properties
device- String | Unique name of a virtual device that works host™ Prism.- network node that will host the
Name* as an ID in a virtualLink. nodes.- multimedia VNF. The list of avail-
deviceld” | String | Identifies a virtualized device. This index vms.host able nodes must be shared with the
helps any element of the multimedia SFC developer of the multimedia SFC.
to subscribe to a device. When a device re- virtual- [Prism.- Computational properties assigned
ceives a subscription, it replicates its stream Compute capabilities.- | to the multimedia VNF.
and sends it to the new subscriber. It should ——
be noted that virtualized devices are not cre- virtual-
ated in the multimedia SFC. They are initial- Compute

ized separately and can be part of different
multimedia SFCs.

Table 4 presents the attributes of a vms (multimedia VNF) com-
ponent. A multimedia VNF within a multimedia SFC is used to
process one or multiple multimedia streams and generate one or
more output results. The result of a multimedia VNF can be sent to
one or more destinations, including an end-user application.

14

Tables 5 and 6 present the source and destination element at-
tributes, respectively. The interconnections between two elements
(virtual device or VNF) of a multimedia SFC are described by vir-
tualLink. This element provides information on two other com-
ponents, the source point (source) from which the stream is sent
and the destination point (destination) where the stream will be

received.



A Domain-Specific Language for Multimedia Service Function Chains based on Virtualization of Sensors

Table 5: Attributes of virtualLink-source in L-PRISM.

Name Type Description

source- String source of a multimedia stream. This

Name* name must be identical to that con-
figured in a deviceName or a vm-
sName.

source- String type of the source node of the virtual

Type* link, which can be vms or device.

output- String Describes the type of multimedia

Type* stream to be sent. Multimedia appli-
cations usually process one type of
stream but may produce a different
output type.

format- String The multimedia stream type such as

Type MP4, AVI, MPEG.

network- | IPrism.data- | Bandwidth assigned to the connec-

Bandwidth | type.vms.- | tion. Within a host, it is not neces-

network- sary to specify this attribute, as con-
Bandwidth | nections are efficiently managed in-

ternally. However, for connections
between different hosts on the net-
work, it is vital to properly establish
and adjust the bandwidth according
to the characteristics of the multime-
dia stream.

Table 6: Attributes of virtualLink-destination in L-PRISM.

Name Type Description
destina- String Which component of the multimedia
tionName* SFC will receive the stream. This data
must be identical to the one config-
ured in a ymsName of one of the vms
used in the same multimedia SFC.
Address Prism.- Complex data type initially defined
datatype.- | by TOSCA-NFV and adapted in L-
vms.- PRISM, which describes a network
addressData| address.
Port* [Prism.- Describes the port where the multi-
datatype.- | media stream will be received.
vms.-
listPorts
inputType*| String Describes the type of multimedia
stream that the destination of the con-
nection accepts.

Source Code 1 gives a simple example of a multimedia SFC de-
scribed using L-PRISM. Figure 3 shows the visual representation
of that SFC. It is composed by one device, one vms and two virtu-
alLinks. It has one video source (VD 2) that is handled by a VNF
(Multimedia VNF 1) that sends the video stream to the final ap-
plication (192.168.0.101 Port 1002). The next section presents our
PoC.

15

WebMedia’2024, Juiz de Fora, Brazil

Source Code 1: A multimedia SFC described using L-PRISM.

chainModel:
chainName :
chainDescription :

#List of devices,

multimedia SFC test
Video Flux
in this

devices: example 1 device

deviceName: VD 2
deviceld: 638e70b10alfbd0026fccaf4

vmss: #List of multimedia VNFs, in this example 1 VNF

vmsName: Multimedia VNF 1
vmsDescription: Multimedia VNF 1 description
vmsType: 638e70b10al1fbd0026fccae8
host: 192.168.0.117 # IP
virtualCompute :
virtualMemory :
size: 1024
virtualCPU :
numCpu: 1
virtuallinks:

- #virtualLink 1 ("VD 2" -> "Multimedia VNF 1")

source :
sourceName: VD 2
sourceType: device
outputType: video

destination:
destinationName: Multimedia VNF 1
address: #define for orchestrator
port: 5000 # port of multimedia VNF
inputType:
- #virtualLink 2
source :

video
(final connection)

Multimedia VNF 1
vms

sourceName :
sourceType:
outputType:
destination:

video

destinationName: 192.168.0.101

address: 192.168.0.101

port: 10002

inputType: video

VD2 LG
5000 | muitimedia VNF 1 10002

(VDEESJOL | wms_uop-upp)
o000
192.168.0.101

Figure 3: Multimedia Chain example.

5 ALFA 2.0: PROOF OF CONCEPT (POC)

This section describes the integration of L-PRISM into a platform
named ALFA [3]2. ALFA uses containers to run VMSs and virtual
devices thus allowing language independence. Our PoC named
ALFA 2.0 is released under the MIT License. The source code is
available3.

5.1 Database

ALFA uses a non-relational database (mongoDB) to store informa-
tion about VMSs, Virtual Devices, Edge Nodes, VMS types, and
Device types. To extend its functionality, we added the L-PRISM
components, such as chain model, to the database. The chain model

2Source code available at https://github.com/midiacom/alfa
3Source code of alfa 2.0 https://github.com/fventuraq/alfa



WebMedia’2024, Juiz de Fora, Brazil

stores information about each created multimedia SFC, such as
which VMSs are used within a multimedia SFC, which devices are
used, and the connections between them.

In addition to these changes, some attributes were modified and
added to the already defined components, such as VMS, VD, Edge
Node, VMS types, and Device type. These new attributes helps
ALFA 2.0 to support the L-PRISM specification. With these changes,
it is possible to create, and manage multimedia SFCs defined using
L-PRISM inside ALFA 2.0.

5.2 API

The ALFA implementation already has an API that is used to man-
age the entities responsible for executing the VMSs. This API did
not support multimedia SFC, thus a new endpoint was added to the
ALFA 2.0 API. This new endpoint receives and processes a YAML
file that contains the multimedia SFC described using L-PRISM.

To manage multimedia SFCs, multiple tasks must be performed.
The new endpoint executes commands using the Docker API and
the ALFA API to create VMSs. After that, the virtual devices are
linked to the VMSs, and interconnections between VMSs are cre-
ated.

5.3 Web Client

ALFA API allows different software to interact with the entity of
the platform. The ALFA implementation already has a Web Client
to manage the VMSs. Thus, we extended the original web-based
client by adding a new component that allows the upload of a file
with the multimedia SFC description using the L-PRISM language.

Figure 4 shows the web client interface used to send the file with
the multimedia SFC description. The Web client presents the VMSs,
Virtual Devices, and nodes running in the environment. The figure
also shows the result of the multimedia stream processed by the
created multimedia SFC.

FA 2.0 - loMT Manager

List Edge nodes

List Virtual Devices

Figure 4: Web interface for executing L-PRISM files in ALFA
2.0.

6 EVALUATION

This section describes the L-PRISM evaluation. The experiment
was carried out with computer science students. We asked them
to create multimedia SFCs with L-PRISM and also using a manual
deployment.

16

Ventura Quico et al.

6.1 Goal Question Metric

The experiment aims to evaluate L-PRISM during the development
of multimedia SFCs. The Goal Question Metric (GQM) methodology
was adopted in the process [12]. Table 7 presents our goals.

Table 7: Evaluation goals.

Goal
G1

Description

Analyze the application engineering
process with and without L-PRISM to
evaluate the efficiency and productivity
of developing multimedia SFC.
Evaluate the comprehensibility of L-
PRISM to analyze if variables, attributes,
and structures are understandable for
the participants.

Perspective
Efficiency and
Productivity

G2 Usability

For G1, six questions related to efficiency and productivity in
the process of developing multimedia SFCs were raised. Table 8
presents the G1 questions and the metrics related to them.

Table 8: Questions and metrics for goal G1.

#Q Description Metrics

Q1 | Is the application engineering process us- | M1 - De-
ing L-PRISM effective in terms of time for | velopment
developing multimedia SFC, compared to | effort
the traditional approach (ALFA)?

Q2 | Does the developer claim that using L- | M2 - Un-
PRISM makes it easier to understand | derstanding
the functional and non-functional require- | of require-
ments of the multimedia SFC? ments

Q3 | Does the developer claim that using L- | M3 - Per-
PRISM helps create multimedia SFC? ceived ease

of use

Q4 | Does the developer claim that L-PRISM is | M4 - Per-
useful to create multimedia SFC? ceived

utility

Q5 | Does the developer claim that using L- | M5 - Per-
PRISM makes it easier to reuse the multi- | ceived reuse
media SFC created with L-PRISM to create
new multimedia SFC?

Q6 | Isthe process of modifying multimedia SFC | M6 - Reuse
faster with L-PRISM compared with the | effort
traditional method (ALFA)?

The questions for G1 were adapted from the Technology Accep-
tance Model (TAM) [21]. The goal was to quantitatively evaluate
the multimedia SFC development process using L-PRISM and the
traditional method. Metrics M2, M3, M4 and M5 were measured
using the Likert scale (1 - strongly disagree to 5 - strongly agree)
[13], and for metrics M1 and M6, the time in minutes required to
perform each task was requested.

For goal G2, seven questions (Q1 — Q7) related to Cognitive Di-
mensions of Notations (CDN) [7] were used. This approach helped
us evaluate L-PRISM from a usability point of view. Table 9 presents



A Domain-Specific Language for Multimedia Service Function Chains based on Virtualization of Sensors

the proposed questions for G2 and the respective metrics. Those
questions should be answered using the Likert scale, for Q3 and Q4
(1 - strongly disagree to 5 - strongly agree) and for Q1, Q2, Q5, Q6

and Q7 (1 - very difficult to 5 - very easy) [13].

Table 9: Questions and metrics for goal G2.

#Q Description Metrics

Q1 | How easy is it to visualize or find the dif- | M1 - Visibility
ferent elements and attributes of L-PRISM
when creating or changing a multimedia
SEC?

Q2 | How easy is modifying a multimedia SFC | M2 - Viscosity
with L-PRISM?

Q3 | Is the L-PRISM language too verbose to | M3 - Diffuse-
specify a multimedia SFC? ness

Q4 | How well do the L-PRISM elements and | M4 - Closeness
attributes represent a multimedia SFC? | of Mapping

Q5 | How easy is it to understand the struc- | M5 - Role Ex-
tures and data types of L-PRISM? pressiveness

Q6 | There are structures and data types in L- | M6 - Hidden
PRISM that can be closely related, and | dependencies
changes in one can affect the other. Are
these dependencies easy to be seen?

Q7 | Does L-PRISM generally seem easy or dif- | M7 - Hard
ficult to understand (for example, when | mental opera-
changing different elements of a multime- | tions
dia SFC)?

6.2 Procedure

For the evaluation of L-PRISM, four tasks (T1 — T4) were proposed,
which had to be carried out using our L-PRISM proposal and a
traditional method using our previous implementation with manual
configuration through the web client interface. For the tasks to be
completed, additional material was prepared and is available at the
L-PRISM website*. The site contains information about L-PRISM
and different examples of how to implement multimedia SFCs with
L-PRISM and the traditional method used for these tests.

The types of components available for this experiment were
two virtual devices. The first device produces a video of a white
sphere bouncing on a black box, which we called VD_video_ball,
and the second device produces a video of colored bars, which we
called VD_color_bar. Three types of multimedia VNFs were also
made available, namely (i) a multimedia VNF that transforms a
color video to grayscale called VMS_gray, (ii) a multimedia VNF
that only transfers UDP-UDP data and does not apply any changes
to the original stream, called VMS_udp, and (iii) a multimedia VNF
that merges video-type media streams, grabbing two multimedia
streams and transforming them into one, called VMS_merge. The
tasks are detailed as follows.

6.2.1 T1. This task is to develop a simple multimedia SFC, where
VMS_gray will need to subscribe to the VD_color_bar to process
the multimedia stream and publish the result to a point within the
network (IP and PORT).

*https://fventuraq.github.io/lprism html

17

WebMedia’2024, Juiz de Fora, Brazil

6.2.2 T2. This task compares a raw multimedia stream with the
same processed multimedia stream. To perform this task, it will
be necessary to use VMS_merge that will receive the multimedia
stream processed by VMS_gray and subscribe to VD_color_bar to
receive the original stream, VMS _gray will need to subscribe to
VD_color_bar in order to process this multimedia stream and send
it to VMS_merge. Finally, VMS_merge will publish the result to a
network point (IP and PORT).

6.2.3 T3. This task consists of adding the VD_video_ball multi-
media stream to T2. It is necessary to create a new VMS_merge
that will receive the result of T2 through one of its ports, and the
other port will subscribe to VD_video_ball. Finally, it will publish
its result in a given network point (IP and PORT). The visual result
of T3 is presented in the bottom-right part of Figure 4, while Figure
5 illustrates the corresponding multimedia SFC.

6.2.4 T4. This task consists of replicating T3, changing the final
destination port to where the final stream is sent. The idea is to be
able to visualize two identical multimedia SFCs, created in T3 and
T4, running at the same time.

VD1 15000
(VD_caolor_ —————""-->i
bar)

Multimedia VNF 1
(VMS_merge)

11 5000

15001 ol
5000 | Multimedia VNF 1 imedia VNF 1 | 20004
e (VMS_merge)
-N-N-%-]
VD 2 T1soo1 192.168.0.101
(VD_video_
bal)

Figure 5: Model of task 3.

6.3 Participants

In order to carry on user experiments, the consent of each partic-
ipant was requested through a Free and Informed Consent Form
(FICF) and all collected data was anonymized. All responses were
collected through a Google Forms questionnaire. No personal or
sensible data was collected from participants, except their gender
and age. Computer science students were invited to participate.
Fifteen participants aged 20-39 years accepted our invitation. They
were 14 men and 1 woman. Their academic degree was: seven
were undergraduate, three were graduate, and five post-graduate
students. We asked their level of experience on XML, JSON and
YAML (from 1 (no experience) to 5 (a lot of experience)). The me-
dian answers were 4 for XML, 5 for JSON, and 3 for YAML. We
built a testbed with edge nodes in our lab to run the experiments.
Eight participants did it physically in the lab and seven participants
did it remotely. All of them were observed all the time during the
experiment, even the remote ones.

6.4 Analysis of Results

The results of our evaluation are presented in Figure 6. Our evalua-
tion focuses on determining whether L-PRISM is efficient, produc-
tive, and easy to use.

Questions Q2 to Q5 of G1 are related to the productivity of
L-PRISM. Figure 6(a) shows that the results of these questions



WebMedia’2024, Juiz de Fora, Brazil

are positive and the responses expected to validate L-PRISM were
positive. With this, we can conclude that the G1 goal was achieved.

Questions Q1 and Q6 are related to efficiency. To answer Q1,
Figure 6(b) shows the average time in minutes it took for partic-
ipants to complete each task with both methods (L-PRISM and
Traditional), with a confidence interval of 90%. It can be seen that
Tasks 1, 2, and 3 have similar times, although the learning curve to
learn a new language is much greater than the use of an intuitive
interface, L-PRISM is equivalent to the traditional method for new
developers of multimedia SFCs.

In the case of Task 4, L-PRISM has proven to be superior to the
traditional method. This is because developers came to understand
L-PRISM better with the previous tasks, and most developers per-
ceived that they could reuse the code from Task 3 for Task 4. This
task also answers Q6 of G1, which focuses on evaluating if L-PRISM
allows the reuse of an already created multimedia SFC. As it can be
seen in Figure 6(b), using L-PRISM, participants completed Task 4
in an average time 77.8% shorter than with the traditional method,
due to L-PRISM code reuse.

The answers to the G2 questions related to the cognitive dimen-
sions are presented in Figure 6(c). It should be noted that, except
for Q3 about language diffuseness (verbosity), where a negative
response was expected, all the others had positive feedback from
the subjects. As it can be seen, the responses for Q3 are somewhat
ambiguous. A subsequent consultation was made with the partic-
ipants asking about this result and the conclusion was that the
question was not very clear for them, hence the disparity in the
responses.

As mentioned above, the objectives of our evaluation were to
demonstrate that L-PRISM is efficient, productive, and easy to use.
Moreover, based on the results obtained, we can conclude that goals
G1 and G2 were achieved.

7 CONCLUSION

This work presented L-PRISM, a DSL to specify multimedia SFCs
based on multimedia VNFs. We also extended the ALFA platform
with the ability to execute SFCs described with L-PRISM. This exten-
sion is available in our GitHub® repository, where the installation
guide and all necessary resources for installing, executing, and
testing our work are provided.

We evaluated L-PRISM, and the results confirmed that our pro-
posal language is efficient, productive, and easy to use. One obser-
vation we made was that the learning curve was shorter for the
traditional model, as it focused on learning to use a specific applica-
tion. In contrast, the learning curve for L-PRISM largely depended
on the user’s prior experience with programming languages; those
with more experience adapted to our language more quickly and,
therefore, completed tasks faster.

Finally, the practical applicability of L-PRISM will mainly de-
pend on multimedia VNFs, as these are the core components of
multimedia SFCs and are responsible for processing multimedia
streams. L-PRISM can be used to deploy applications such as vir-
tual/augmented reality, live streaming, surveillance systems, and
more.

5Source code of alfa 2.0 https://github.com/fventuraq/alfa

18

Ventura Quico et al.

as
as
s

Q2 40% 60%

M Neutral M Strongly Disagree M Disagree M Agree M Strongly Agree

(a) Participant Responses for Questions Q2-Q5 of G1.

10,00
9,00

8,00 | | E—

| - 664 |
[ 3¢ 57
| 6,00 [
5,36 5,21 514
4,86
1,14

Task1

7,00

WL-PRISM

TIME (MIN)
»
°
8

W Traditional

Task 2 Task 3 Task 4

(b) Time needed per task in L-PRISM and Traditional methods.

a7
as

as
a4
a3 20% 33% 13% 27% 7%

Q2
a1 7% 73% 20%

Q1,a2,05,Q6and @7 M@ Neutral W Difficult W Very Difficult W Easy W Very Easy |
a3and Q4 @ Neutral W Strongly Disagree W Disagree W Agree W Strongly Agree|

(c) Participant Responses for G2 Questions.

Figure 6: Evaluation results.

As future work, we intend to develop a graphical tool to cre-
ate/edit SFCs designed with L-PRISM, offering an intuitive user
interface to visualize and modify their topology. We will also pro-
pose the integration of resource allocation and scaling algorithms
into ALFA 2.0.

ACKNOWLEDGMENT

This work was supported by CAPES, CAPES-Print, CNPq, FAPER]
and INCT-ICoNIoT.

REFERENCES

[1] ETSI GS NFV-IFA 011. 2023. Network Functions Virtualisation (NFV) Release
4; Management and Orchestration; VNF Descriptor and Packaging Specifica-
tion. https://docbox.etsi.org/ISG/NFV/open/Publications_pdf/Specs-Reports/
NFV-IFA%20011v4.5.1%20- %20GS%20- %20VNF%20Packaging %20Spec.pdf



A Domain-Specific Language for Multimedia Service Function Chains based on Virtualization of Sensors

[2] ETSI GS NFV-IFA 014. 2021. Network Functions Virtualisation (NFV) Release 4;

[11

[12

[13

]

Management and Orchestration; Network Service Templates Specification. https:
//docbox.etsi.org/ISG/NFV/open/Publications_pdf/Specs-Reports/NFV-IFA%
20014v4.2.1%20- %20GS%20- %20Network %20Service%20Templates%20Spec.pdf
Anselmo Luiz Eden Battisti, Débora Christina Muchaluat-Saade, and Flavia C.
Delicato. 2020. V-PRISM: An Edge-Based IoT Architecture to Virtualize Multi-
media Sensors. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). 1-6.
https://doi.org/10.1109/WF-10T48130.2020.9221199

Anselmo Luiz Eden Battisti, Debora Christina Muchaluat-Saade, and Flavia C
Délicato. 2021. Enabling Internet of Media Things with edge-based virtual
multimedia sensors. [EEE Access 9 (2021), 59255-59269.

Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad. 2016. A survey
on service function chaining. journal of Network and Computer Applications 75
(Nov. 2016), 138-155. https://doi.org/10.1016/j.jnca.2016.09.001

Martin Bjérklund. 2010. YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF). RFC 6020. https://doi.org/10.17487/RFC6020
Alan F Blackwell and Thomas RG Green. 2000. A Cognitive Dimensions ques-
tionnaire optimised for users. In PPIG, Vol. 13. Citeseer.

José Castillo-Lema, Augusto Venancio Neto, Flavio de Oliveira, and Sergio
Takeo Kofuji. 2019. Mininet-NFV: Evolving Mininet with OASIS TOSCA NVF
profiles Towards Reproducible NFV Prototyping. In 2019 IEEE Conference on
Network Softwarization (NetSoft). 506-512. https://doi.org/10.1109/NETSOFT.
2019.8806686

Mario Di Mauro, Giovanni Galatro, Maurizio Longo, Fabio Postiglione, and Marco
Tambasco. 2021. Comparative Performability Assessment of SFCs: The Case of
Containerized IP Multimedia Subsystem. IEEE Transactions on Network and Service
Management 18, 1 (2021), 258-272. https://doi.org/10.1109/TNSM.2020.3044232
GS NFV-SOL 001 ETSL. 2022. Network Functions Virtualisation (NFV) Release
4; Protocols and Data Models; NFV descriptors based on TOSCA specifica-
tion.  https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/04.03.01_
60/gs_NFV-SOL001v040301p.pdf

AH. Ghorab, A. Kusedghi, M. A. Nourian, and A. Akbari. 2020. Joint VNF Load
Balancing and Service Auto-Scaling in NFV with Multimedia Case Study. In 2020
25th International Computer Conference, Computer Society of Iran (CSICC). 1-7.
https://doi.org/10.1109/CSICC49403.2020.9050122

Heiko Koziolek. 2008. Goal, question, metric. In Dependability metrics. Springer,
39-42.

Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

19

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

WebMedia’2024, Juiz de Fora, Brazil

Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B. Letaief.
2017. A Survey on Mobile Edge Computing: The Communication Perspective.
IEEE Comm. Surveys and Tutorials 19, 4 (2017), 2322-2358. https://doi.org/10.
1109/COMST.2017.2745201 arXiv:1701.01090

Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to
develop domain-specific languages. ACM computing surveys (CSUR) 37, 4 (2005),
316-344.

Rashid Mijumbi, Joan Serrat, Juan Luis Gorricho, Niels Bouten, Filip De Turck,
and Raouf Boutaba. 2016. Network function virtualization: State-of-the-art and
research challenges. IEEE Communications Surveys and Tutorials 18, 1 (2016),
236-262. https://doi.org/10.1109/COMST.2015.2477041 arXiv:1509.07675

Ali Nauman, Yazdan Ahmad Qadri, Muhammad Amjad, Yousaf Bin Zikria,
Muhammad Khalil Afzal, and Sung Won Kim. 2020. Multimedia Internet of
Things: A comprehensive survey. leee Access 8 (2020), 8202-8250.

Eman Negm, Soha Makady, and Akram Salah. 2019. Survey on domain specific
languages implementation aspects. International Journal of Advanced Computer
Science and Applications 10, 11 (2019).

Guto Leoni Santos, Diego de Freitas Bezerra, Elisson da Silva Rocha, Leylane
Ferreira, André Luis Cavalcanti Moreira, Glauco Estacio Gongalves, Maria Valéria
Marquezini, Akos Recse, Amardeep Mehta, Judith Kelner, Djamel Sadok, and
Patricia Takako Endo. 2022. Service Function Chain Placement in Distributed
Scenarios: A Systematic Review. Journal of Network and Systems Management
30, 1 (2022), 1-39. https://doi.org/10.1007/s10922-021-09626-4

Jurgen Schonwilder, Martin Bjorklund, and Phil Shafer. 2010. Network configu-
ration management using NETCONF and YANG. IEEE communications magazine
48,9 (2010), 166-173.

Priyanka Surendran et al. 2012. Technology acceptance model: A survey of
literature. International Journal of Business and Social Research 2, 4 (2012), 175—
178.

OASIS TOSCA. 2017. TOSCA Simple Profile for Network Functions Virtualization
(NFV) Version 1.0, Committee Specification Draft 04. https://docs.oasis-open.
org/tosca/tosca-nfv/v1.0/csd04/tosca- nfv-v1.0-csd04.html

YAML. [n.d.]. YAML Ain’t Markup Language (YAML™) version 1.2. https:
//lyaml.org/spec/1.2/spec.html. Accessed: Jun 29, 2024.

Bo Yi, Xingwei Wang, Keqin Li, Sajal k. Das, and Min Huang. 2018. A comprehen-
sive survey of Network Function Virtualization. Computer Networks 133 (2018),
212-262. https://doi.org/10.1016/j.comnet.2018.01.021



