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ABSTRACT
In recent years, 3D point cloud content has gained attention due
to its application possibilities, such as multimedia systems, virtual,
augmented, and mixed reality, through the mapping and visual-
ization of environments and/or 3D objects, real-time immersive
communications, and autonomous driving systems. However, raw
point clouds demand a large amount of data for their representation,
and compression is mandatory to allow efficient transmission and
storage. The MPEG group proposed the Video-based Point Cloud
Compression (V-PCC) standard, which is a dynamic point cloud
encoder based on the use of video encoders through projections
into 2D space. However, V-PCC demands a high computational
cost, demanding fast implementations for real-time processing and,
especially, for mobile device applications. In this paper, a machine-
learning-based fast implementation of V-PCC is proposed, where
the main approach is the use of trained decision trees to speed up
the block partitioning process during the point cloud compression.
The results show that the proposed fast V-PCC solution is able to
achieve an encoding time reduction of 42.73% for the geometry
video sub-stream and 55.3% for the attribute video sub-stream, with
a minimal impact on bitrate and objective quality.
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1 INTRODUCTION
Point clouds can be used in many applications, such as 3D environ-
ment mapping, representation of historical objects or monuments,
and virtual, augmented, and mixed realities, providing detailed 3D
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representation and multiple points of view of objects and scenes. Re-
garding the application context, point clouds can be categorized into
three types: (Category 1) static, which represents the capture of a
scene or object at a single time instant; (Category 2) dynamic, when
a sequence of point clouds is captured over time; and (Category 3)
dynamically captured through multiple partially overlapping scans,
typically during dynamic mapping of a large-scale environment.

Nevertheless, as non-compressed point clouds comprise a large
amount of data, storage and transmission become challenging tasks
depending on the point cloud resolution and the device on which
it is processed. Thus, compression becomes mandatory to allow for
the efficient transmission and storage of this type of 3D content.
The Motion Picture Experts Group (MPEG) defined two Point Cloud
Compression (PCC) standard specifications: the Video-based PCC
(V-PCC) [16], related to dynamic point clouds, and the Geometry-
based PCC (G-PCC), designed to compress static and dynamically
acquired point clouds [8]. While the V-PCC coding approach is
based on 2D projections of the point clouds to be further com-
pressed with a regular 2D video encoder, G-PCC encodes the con-
tent directly in the 3D space [8].

V-PCC is an interesting alternative to point clouds compression,
since the already existing video encoders can be used. Although
V-PCC provides an efficient solution for compressing the data gener-
ated by point clouds, this encoder inherits the complexity of video
encoding. This occurs because V-PCC, after the point cloud 2D
projection step, uses an HEVC [19] video encoder. In this process,
the HEVC video encoder needs to handle three video sub-streams
generated in the 2D projection step by V-PCC [16]. One video sub-
stream is generated to indicate the occupancy map, which shows
where points actually exist due to the sparse and irregular nature
of a point cloud. Additionally, a second sub-stream is necessary to
indicate the geometric position of each point, i.e., the position on
the Z-axis or depth. A third sub-stream, called Attribute sub-stream,
indicates the color or appearance assigned to each point [16].
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There are many works in literature proposing the use of machine
learning to reduce video compression complexity, as [21], [15],
[24]. One of the most efficient approach in to predict the blocks
partitioning during the encoding process [3], [18], [23], [4]. This
type of prediction prevents the encoder to evaluate smaller block
sizes, thereby reducing complexity and achieving time savings.

This work proposes a machine-learning-based fast V-PCC im-
plementation that employs an already trained model originally
proposed for 2D video compression [3], to reduce the complexity
of point cloud compression in the V-PCC standard. To this end,
the use and adaptation of a pre-trained model to accelerate video
compression is proposed as an alternative to speeding up the point
cloud compression process in the Test Model Category 2 (TMC2)
[14], the reference software of the V-PCC standard.

The machine learning model used achieved 84% accuracy on the
testing dataset [3]. This enabled a 42.73% time reduction in the video
encoding step for the geometry sub-stream and a 55.3% reduction for
the attributes sub-stream. The loss in coding efficiency, measured
with the BD-Rate metric [1], is of 4.2% for geometry (using D2
metric) and 3.2% for color attributes, respectively. The results show
that while there is an impact on encoding efficiency, this can be
outweighed by the significant gains in complexity reduction.

This paper is organized as follows: Section 2 presents related
work, Section 3 introduces the V-PCC standard and its operation,
Section 4 outlines the proposed method, Section 5 presents the
results of the experiments conducted, and Section 6 provides the
conclusions.

2 VIDEO-BASED POINT CLOUD
COMPRESSION (V-PCC)

The Video-based Point Cloud Compression (V-PCC) is a standard
for point cloud compression proposed by MPEG to encode dynamic
point clouds [17]. In other words, this encoder aims to compress
point cloud content analogous to 2D videos, meaning that it has
temporally adjacent frames that provide a sense of motion to the
content.

As the name suggests, V-PCC is a video-based encoder, which
means it uses a video encoder in its encoding stages, by default the
High-Efficiency Video Coding (HEVC) [19][5]. However, to enable
encoding via HEVC, a 2D projection process of the point clouds is
performed, which is illustrated in Figure 1. As can be seen in Figure
1, the 2D projection process is analogous to having virtual cameras
registering parts of the point cloud (Figure 1 (a)), and combining
those camera images into a mosaic, i.e. an image that contains the
collection of projected 2D patches (Figure 1 (b)) [8].

The encoder flow proposed by the V-PCC standard is illustrated
in Figure 2. It is possible to see that the 2D projection stages ini-
tially occur through the patch generation, which is responsible for
slicing the cloud into several parts. These patches then undergo
the padding and packing process to assemble the 2D image. In this
process, three video sub-streams are generated: one for geometry
information, which maps the changes of the depth of each patch,
information which otherwise would be lost in the 2D projection
process (generated in Geometry image generation); a second for the
occupancy map information, used to inform where points exist in
the 2D projection of the point cloud, which is necessary due to the

Figure 1: 3D to 2D projection of point cloud in V-PCC. (a)
Point cloud projection into planes, (b) collection of patches

sparse nature of point clouds; and a third for the color information
of each point in the point cloud (Attribute image generation). The
latter also goes through a process of smoothing the edges present
in the patches (Smoothing). After the 2D projection process is com-
pleted, these three video sub-streams (Figure 3) are sent to the
HEVC video encoder, which needs to be independently activated
to handle each of these sub-streams.

The V-PCC standard offers two main configurations: All Intra
(AI) and Random Access (RA) [16]. In the AI configuration, each
frame is compressed independently, exploring redundancies only
within the current frame. This simplifies processing but may result
in lower compression efficiency. In contrast, the RA configuration
explores redundancies between frames and can reuse data from
neighboring frames, allowing for more efficient compression with
higher complexity.

2.1 HEVC
High-Efficiency Video Coding (HEVC) [20] is a video coding stan-
dard developed by the MPEG group and finalized in 2013. HEVC
brought about a 50% increase in encoding efficiency compared to
its predecessor, H.264/MPEG-AVC [9]. A portion of these gains
is due to the use of a new Coding Tree Units (CTU) partitioning
scheme based on recursive quad-trees [10], which can range in size
from 8x8 to 64x64 samples. A CTU can be recursively partitioned
into multiple Coding Units (CUs) until they reach a size of 8x8 (or
4x4 for chrominance samples). Figure 4 shows an example of the
partitioning of a 64x64 CTU along with the Coding Tree structure.
In Figure 4, 1’s indicate that a subdivision (or split) of CUs occurred,
and 0’s indicate that there was no subdivision at that level.

2.2 V-PCC complexity analysis
An analysis was conducted to identify the complex behavior of
V-PCC stages. For this, the Test Model Category 2 (TMC2) refer-
ence software for V-PCC jointly with the GNU profiling (G-Prof)
software version 2.9.1 was used [6]. In these experiments, the Ran-
dom Access temporal configuration was used to encode all 10-bit
test sequences of the V-PCC Common Test Conditions (CTCs) [13],
five point clouds sequences in total. All five bitrate configurations
available on TMC2 (r1, r2, r3, r4, and r5) were used, r1 being the
configuration with the lowest bitrate, and r5 being the one with the
highest bitrate and quality, respectively.

Figure 5 presents the results (in percentage) of the average time
for each coding step, considering the five point cloud sequences.
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Figure 2: V-PCC encoder diagram [16].
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Figure 3: Example of an Occupation image (a), Geometry
image (b) and Attribute image (c) extracted from V-PCC.
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Figure 4: Example of a 64x64 CTU and Coding Tree structure
being split into smaller CUs (adapted from [10]).

These results were separated into bitrate settings. In this analysis,
it was identified that the video encoding is the most complex stage
among the processes of the V-PCC standard. The HEVC demands
90% of the average encoding time of the V-PCC, as it can be seen

in Figure 5. This complexity is observed through the sum of the
"Video Encoder Steps" and "Video Encoder ME" percentage values.

Table 1 presents the average results in percentage of time used
by HEVC to encode each type of video sub-stream (Occupation,
Geometry, and Attributes). It is possible to see that the encoding of
Geometry and Attribute videos accounts for approximately 99.18%
of the total time spent by HEVC, while the Occupation video en-
coding accounts for only 0.82%.

Table 1: Percentage of time on the HEVC encoding of each
sub-stream in V-PCC.

Rate setting Occupation Geometry Attribute
r1 0.59% 54.89% 44.52%
r2 0.57% 55.10% 44.33%
r3 0.53% 54.05% 45.42%
r4 0.49% 53.36% 46.15%
r5 1.95% 50.56% 47.49%
Average 0.82% 53.59% 45.58%

In this regard, improvements to reduce the video encoding com-
plexity are primarily required to make real-time point cloud encod-
ing feasible, especially on devices with limited processing power
and/or energy autonomy, such as smartphones, laptops, embedded
systems, robotic devices, virtual and mixed-reality glasses, among
others.

3 RELATEDWORKS
There are several related works in the literature focusing on com-
plexity reduction in HEVC for accelerating video encoding with
machine learning, such as [3] and [11], which target at complexity
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Figure 5: Encoding time percentage of high-complexity tools
of V-PCC.

reduction at the CTU level for 2D videos. Also, there are some
works targeting at V-PCC complexity reduction, such as [22], [7],
and [12]. However, all these studies targeting V-PCC are limited to
the All Intra temporal configuration.

In [3], machine learning was applied to reduce complexity by
early terminating the block size decision process of HEVC Cod-
ing Tree Units. The Random Access temporal configuration was
employed in the experiments. The model proposed in [3] assigns
the best block sizes based on the input frame characteristics, avoid-
ing testing all possible block sizes (64x64, 32x32, and 16x16). The
work achieved an average computational complexity reduction of
37% compared to the original encoder, with a marginal increase in
BD-Rate of only 0.28%.

In [11], the author employs convolutional neural networks to
reduce the complexity of HEVC, predicting the decisions of the
Coding Tree Unit (CTU) in the All Intra temporal configuration.
The model proposed in [11] was trained and tested using large-
scale database with diversiform patterns of CTU partition for each
CTU depth. This approach reduces encoding time by 62.25% with
BD-Rate increases of 2.12%.

Among the studies focused on machine learning to reduce the
V-PCC encoding time, [22] introduces a machine learning approach
for early termination targeting complexity reduction of geometry
and attribute map coding at CU level. Instead of using the HEVC
video encoder, the authors opted for the Versatile Video Coding
standard [2], due to its ability to maintain subjective image qual-
ity, although with computational complexity up to nineteen times
higher than HEVC in the All Intra configuration. The work achieved
approximately 55% reduction in encoding time in V-PCC when us-
ing the modified VVC as the video encoder, compared to using VVC
without the proposed method.

In [7], the author applies a cross-projection algorithm with rate-
distortion-oriented decision-making at the geometry level of CU in
V-PCC, focusing solely on the All Intra configuration. This approach
reduced the average total encoding time by 57.8%, with BD-Rate

losses for point-to-point (D1) and point-to-plane (D2) geometries
of 0.08% and 0.33%, respectively, and for luma attribute a BD-Rate
of 0.16%.

In [12], an unsupervised ML solution using hierarchical clus-
tering is presented as a fast CU size decision method. Its training
was based on the geometry stream, similar to other works aiming
to reduce complexity in V-PCC. The presented work achieved an
average reduction in encoding time of 56.7% to 69.3%, with only a
slight increase in BD-Rate (D2), ranging from 0.1% to 0.5%.

To the best of the authors’ knowledge, there are no works evalu-
ating the impact of using machine learning models in the Random
Access temporal configuration of V-PCC. The fast V-PCC imple-
mentation proposed in this paper is focused on Random Access
due this configuration provides the best compression efficiency, but
also the highest encoding complexity.

4 PROPOSED METHOD
As the compression of 2D projections of point clouds in V-PCC is
performed with a 2D video encoder, we explore the impact of using
existing complexity reduction solutions, developed for reducing
the encoding time of 2D videos, in the context of point clouds.
Thus, we employ the machine learning models proposed in [3],
which utilizes decision trees to find the best Coding Tree for a
CTU, thereby shortening the block partitioning process. Once the
best depth of a Coding Unit is found, it is no longer necessary
to continue testing at lower levels. This reduces the number of
possibilities tested during the Rate-Distortion Optimization (RDO)
process and consequently decreases the time required for encoding.

The HEVC standard allows up to four Coding Trees depths: 0
(64x64 CU), 1 (32x32 CU), 2 (16x16 CU), and 3 (8x8 CU). Since it
is not possible to subdivide a Coding Unit at the last level, the
machine learning models in [3] work over the first three depths.
These models were trained using data extracted from test sequences
of 2D videos, encoded with HEVC in the Random Access (RA)
temporal configuration. The results obtained in [3] show an average
complexity reduction of 37% with an increase in BD-Rate of 0.28%.

These same machine learning models were now adopted for use
in the context of point cloud compression with V-PCC. To enable
this, modifications were made to the version of the HEVC test
model (HM), the HEVC reference software [19], used in the V-PCC
reference software [16]. Since the version of HEVC used is newer
than the one originally referenced in [3], precautions were taken to
ensure equivalence between the versions. This step was necessary
due to changes in the HEVC code. These models were employed in
the encoding of color attributes and geometric sub-streams (Figure
2). Since more than 99% of the total V-PCC video encoding time
is related to these two video streaming, we chose not to use the
models in the encoding of the occupancy maps, since it does not
have significant impact in the total encoding time of V-PCC, as
shown in Table 1.

5 EXPERIMENTAL RESULTS
To evaluate the modifications made to the V-PCC reference soft-
ware, experiments were conducted using the five 10-bit dynamic
point clouds indicated in the V-PCC CTC [13]: longdress, loot, queen,
redandblack, and soldier. Figure 6 presents the first frame of each
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Table 2: Experimental results obtained from the proposed method.

Test Sequence Geometry Attributes TTR (%)ETR (%) ΔBitrate (%) ΔPSNR (dB) ETR (%) ΔBitrate (%) ΔPSNR (dB)
longdress 34.74 3.31 -0.128 43.02 -0.02 -0.089 33.90
loot 40.06 3.28 -0.106 65.37 -0.30 -0.050 43.25
queen 55.40 2.10 -0.160 59.26 -1.45 -0.325 46.60
redandblack 34.45 4.03 -0.119 46.31 0.15 -0.081 34.10
soldier 49.03 1.58 -0.150 62.56 -0.57 -0.087 44.33
Average 42.73 2.86 -0.133 55.30 -0.44 -0.126 40.44

test point cloud sequence used in the experiments. Each test se-
quence was encoded with the modified and original V-PCC refer-
ence sofware, using the five bitrate configurations (r1, r2, r3, r4, and
r5), as specified in the CTC. The first 64 frames of each sequence
were encoded using the Random Access temporal configuration of
V-PCC.

For each experiment, the Peak Signal-to-Noise Ratio (PSNR)
of point-to-point (D1) and point-to-plane (D2) metrics [13] were
calculated over the geometry information of the reconstructed point
clouds. To evaluate the color information, the PSNR was calculated
on the luminance channel of the attributes. These metrics were
calculated using the Distortion Metric tool, as indicated in the CTC
[13]. The experiments were conducted using version 22.1 of TMC2
[14] on a computer with an AMD Opteron 8276s processor and
120GB of RAM.

Figures 7-11 present the Rate-Distortion (RD) curves all 5 test
sequences used. In these figures, each point represents a V-PCC
encoding using one bitrate setting (r1 to r5) as well as the bitrate
results (kbps) and objective quality (PSNR). By analyzing the five
sequences, it is possible to observe that the greatest impacts on
bitrate and objective quality were obtained in the queen sequence
(Figure 9), as can be seen by the larger gap between the RD curves.
It is also noticeable that the best RD results were obtained in the
soldier sequence, where both geometry-related curves (D1 and D2,
Figure 11 (a) and (b), respectively) and attribute curves (Figure 11
(c)) achieved results close to those obtained with the original V-
PCC. Figure 12 shows the average RD curves for the geometry and
attribute metrics. It is possible to see that the results for attributes
present a lower loss in encoding efficiency compared to the results
of V-PCC without the complexity reduction solution implemented.

longdress loot queen redandblack soldier

Figure 6: First frame of the test sequences used.

The Encoding Time Reduction (ETR) results for each sub-stream
encoded and the variations in bitrate and PSNR for geometry and
attribute sub-streams encoding are presented in Table 2 for each
test sequence. For the geometry video sub-streams, the proposed
method achieved an ETR ranging from 34.45% to 55.4%, with an
average of 42.73%. For the attribute video sub-stream, an even higher
ETR was obtained, ranging from 42.02% to 65.37%, with an average
of 55.3%. In both cases, the average reduction was above the value
obtained in [3], which was 37%. When considering the impact on
the total encoding time of the V-PCC, that is, the sum of the total
time spent by V-PCC, including the data reading, projection to the
2D space, and the time spent on the sub-streams HEVC encoding,
the average Total Time Reduction (TTR) was 40.44%.

When evaluating the average bitrate impact on the encoded
videos sub-streams, we observed an increase of 2.86% for geometry
and a bitrate decrease of 0.44% for attributes. This indicates that the
decisionsmade by themachine learningmodels performed better on
the attribute sub-streams. This was expected, as the characteristics
of the attribute videos generated in V-PCC (Figure 3) are closer
to the content used (2D videos) when training the models. The
objective quality (PSNR) results also support this hypothesis, with
slightly better outcomes for video attribute streams.

Table 3 presents the BD-Rate results for reconstructed point
clouds using the point-to-point (D1) and point-to-plane (D2) ge-
ometry metrics, as well as the BD-Rate results obtained from the
Luminance channel of the color attributes. The average BD-Rate
results for the D1 and D2 metrics were 4.2% and 4.75%, respectively,
indicating a slightly negative impact on the encoding efficiency. The
average impact on the attribute encoding efficiency was slightly
better.

Table 3: BD-Rate results.

Test Sequence D1
BD-Rate (%)

D2
BD-Rate (%)

Luma
BD-Rate (%)

longdress 4.631 5.615 2.348
loot 4.536 4.960 1.259
queen 3.907 4.189 8.580
redandblack 5.526 6.174 2.255
soldier 2.400 2.816 1.606
Average 4.200 4.751 3.209

However, when analyzing the results obtained for each test se-
quence, it is noticeable that the Luma BD-Rate results for the queen
sequence show a discrepant value, with an 8.58%, compared to
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Figure 7: RD curves of geometry D1 (a), D2 (b) and Luma (attribute) (c) obtained from sequence longdress.
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Figure 8: RD curves of geometry D1 (a), D2 (b) and Luma (attribute) (c) obtained from sequence loot.
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Figure 9: RD curves of geometry D1 (a), D2 (b) and Luma (attribute) (c) obtained from sequence queen.

1.26%-2.35% for the other point clouds. When analyzing the tex-
ture characteristics of the sequences used (Figure 6), it is evident
that the other sequences (longdress, loot, redandblack, and soldier)
feature content captured from real life, while the queen sequence
contains synthetic content. This may justify the discrepant values,

since the machine learning models were trained with data from
test sequences containing real-life content [3].

When comparing the BD-Rate results obtained in [3], which
showed an increase of 0.28%, we notice that the change of context
presents significant impact. This indicates that although the models
trained for 2D videos show interesting results in terms of time
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Figure 10: RD curves of geometry D1 (a), D2 (b) and Luma (attribute) (c) obtained from sequence redandblack.
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Figure 11: RD curves of geometry D1 (a), D2 (b) and Luma (attribute) (c) obtained from sequence soldier.
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Figure 12: RD curve of average results of geometry D1 (a), D2 (b) and Luma (attribute) (c) obtained from experiments.

savings, they do not exhibit the same accuracy when used outside
their original context. Furthermore, the results suggest that due
to the unique characteristics of the geometry and attribute sub-
streams, specialized models should achieve better results in both
encoding efficiency and ETR.

Figure 13 provides a visual comparison between the point clouds
reconstructed using the V-PCC reference software and our proposed
fast implementation. Figure 13 (a) and (b) show the first frame
of the queen sequence encoded with the r3 bitrate configuration.
Figure 13 (c) and (d) show the first frame of the soldier sequence
encoded with the r5 bitrate configuration. Note that in both cases
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(a) (b) (c) (d)

Figure 13: Reconstructed point clouds: queen using rate setting r3 ((a) V-PCC, (b) Our Fast V-PCC), and soldier using rate setting
r5 ((c) V-PCC, (d) Our Fast V-PCC)).

(the test sequences with the highest and lowest impact on encoding
efficiency, respectively), there is no noticeable drop in visual quality.

6 CONCLUSION
This work presented a solution for reducing the encoding time of
the video encoding stage of the V-PCC reference software, utilizing
an existing machine learning model from the literature, trained for
the context of 2D videos. This model was incorporated into the
functionality of the V-PCC reference software. The experiments
were conducted using the Random Access temporal configuration
of V-PCC, delivering a reduction in encoding time of 42.73% for
geometry streams and 55.3% for attribute sub-streams. The method
achieved significant encoding time reduction with a minimal impact
on bitrate and objective quality. The results also demonstrated that
models trained for common 2D videos may not perform as well
in the context of geometry sub-stream encoding as they do in
attribute sub-stream encoding, indicating that specialized models
could yield even better results. As future work, we plan to explore
the use of specialized machine learning models for point cloud
encoding, utilizing data extracted from V-PCC, with the expectation
of achieving better results in encoding time reduction and BD-Rate.
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