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ABSTRACT
Substantial efforts have been dedicated to developing methods for
detecting deepfake content, especially with the creation of large
and diverse datasets with both higher image quality and demo-
graphic features. In this scenario, CNN-based approaches showed
good initial success, later improved by their combination with Vi-
sion Transformers. More recently, Foundation Models (FMs) have
emerged, improving performance across many visual tasks, includ-
ing deepfake detection, and combining self-supervised features
generated by FMs with CNN-based classifiers has resulted in sig-
nificant performance gains. However, taking advantage of multiple
maps of self-supervised features is not as straightforward as just
adding more channels to the classifier. Therefore, this work ex-
plores ensemble techniques to effectively utilize these diverse self-
supervised feature maps for realistic facial deepfake detection. Our
experiments indicate that combining the output results of different
classifiers, each one utilizing a single map of self-supervised fea-
tures, leads to significant performance improvements, and several
committee approaches consistently outperform individual classi-
fiers, demonstrating the potential of these methods in enhancing
deepfake detection accuracy.

KEYWORDS
deep fake detection, self-supervised, vision transformers, deep
learning, foundation models

1 INTRODUCTION
In recent years, there has been an increased focus on the effects
of deepfake multimedia content on public discourse and personal
lives. This has manifested in forms such as explicit fake images
of celebrities [22] or politically sensitive material, facilitating the
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spread of misinformation and identity theft and possibly leading to
threats of violence [14]. This scenario has renewed societal discus-
sions on the nature of online content and led to legislative debates
in countries such as the United States on reducing the creation and
distribution of this kind of media [3].

Concurrent with the advancement of deepfake generators, signif-
icant progress has also beenmade in efforts to improve the detection
and containment of this kind of content. This starts with the cre-
ation of large-scale datasets for deepfake detection in video and
image formats [10, 21], enabling the development of methods to
better differentiate between real and fake content. In this context,
CNN-based models showed initial success, and their combination
with Vision Transformers (ViT) managed to achieve state-of-art
performance in recent years [13].

Also, the recent emergence of Foundation Models (FMs) opened
the door for new approaches to deepfake detection. In this light,
studies have demonstrated that using self-supervised features gen-
erated by pre-trained FMs in combination with CNN-based models
can result in significant performance improvements [12] . In this
approach, the authors incorporated feature maps generated by FMs
as extra channels in CNN input, showing that, when used individu-
ally, each map would improve the performance of its base model.
However, it has also been shown by Gomes et al. [12] that simul-
taneously applying multiple attention maps to the same model by
simply adding more channels to the input does not necessarily
improve performance, leaving open the following question: Is there
a way to better combine multiple attention maps to achieve superior
deepfake detection performance?

To pursue this question, we conducted experiments with DI-
NOv2 FM [18] and the CNN-based XceptionNet [6], chosen for
their established use and strong performance in this task. Initially,
we evaluated each self-supervised feature map generated by DI-
NOv2 individually, resulting in three distinct models. Next, we tried
multiple committee approaches to combine these models’ predic-
tions. For our experiments, we used both the Deepfake Detection
Challenge (DFDC) [10] and Face Forensics [21] datasets. In both
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datasets, our proposed committees performed better than using a
single attention map, while the performance gain varied depending
on the specific committee approach employed.

The remainder of this paper is organized as follows. Section sec-
tion 2 covers related works on deepfake generation and detection,
as well as research on committee approaches for deep learning
models. Section 3 describes the employed architectures and details
the different committee approaches proposed for this task. Sec-
tion 4 discusses how we conducted our experimental methodology,
including specifics on data, setup, and results analysis. Finally, Sec-
tion 5 presents our final thoughts and outlines possible directions
for further research in this field.

2 RELATEDWORK
In this section, we go over other important research that relates
to the topics covered in this work. Subsection 2.1 discusses recent
advances in deepfake detection, focusing on methodologies aimed
at countering the generation of synthetic media. Subsection 2.2
explores diverse works related to the combination of ensemble ap-
proaches and CNN models for image processing, enhancing model
robustness, accuracy, and generalization across diverse datasets
and tasks.

2.1 Methods for Facial Deepfake Detection
Recent years have seen a large increase in efforts dedicated to
detecting realistic deepfakes and differentiating them from genuine
facial media, with video and images being the dominant targets of
these works [23]. This progress has been enabled by the production
of a multitude of recent datasets for the task, such as the Deepfake
Detection Challenge (DFDC) [10], Celeb-DF [16], FaceForensics,
and FaceForensics++ [21] datasets. These datasets contain large
volumes of visual data with a variety of deepfake techniques and
an increasing, though still insufficient, concern for demographic
fairness [27], allowing their use for techniques that deal with both
image and video.

Many recent works have been based on CNN classifiers, typically
employing either EfficientNet [25] or XceptionNet [6], often com-
bining other types of architectures. Tjon et al. [26] used EfficientNet
B4 as an encoder in combination with Y-Net [17], achieving very
good performance on the DFDC dataset for both image and video.

Due to its prominence, EfficientNet has been considered one of
the best classifiers for this task, with entire studies dedicated to
further analyzing its overall performance, such as the one conducted
by Pokroy and Egorov [19]. In their work, the authors experimented
with different versions of the architecture, which vary according
to the dimensions of the input data and the number of trainable
parameters. They trained each variant, from EfficientNet B0 to B7,
for twenty epochs on the DFDC dataset, concluding that larger
networks do not necessarily achieve superior performance.

Meanwhile, XceptionNet has gained notoriety in deepfake detec-
tion due to its state-of-the-art performance on the FaceForensics
dataset [21] and its high performance on the DFDC dataset when
combined with self-supervised features generated by FMs [12] .
In this scenario, it achieved performance superior to that of the
EfficientNet.

With the recent emergence of transformers on computer vision
tasks, many researchers have also attempted to apply this technique
to deepfake detection. Heo et al. [13] combined an EfficientNet B7
pre-trained on the DFDC dataset with a vision transformer by
merging the embeddings extracted by these models and passing
them on to the transformer encoder. This approach achieved state-
of-the-art performance on the DFDC dataset for video format.

Similarly, both Coccomini et al. [8] andWang et al. [28] proposed
architectures that combine vision transformers and CNN-based
classifiers. The former established an ensemble of two branches
of Efficient ViT, one to deal with smaller features and the other to
handle larger ones. Meanwhile, the latter proposed a multiscale
architecture to identify regions synthesized by generative models.
Bothworks achieved high performance onmultiple datasets, further
establishing vision transformers as a dominant approach for the
task.

At the same time, FMs have started gaining ground recently,
leading to the possibility that they could potentially overtake vi-
sion transformers in deepfake detection. In this light, Zhao et al.
[31] proposed a self-supervised approach employing Contrastive
Learning to detect deep fake videos through features obtained
from lip movements, with two encoders for audio and video. This
work reached close to state-of-the-art performance on the Face-
Forensics++ dataset, showcasing the potential of self-supervised ap-
proaches. Meanwhile, considering image analysis, self-supervised
features have demonstrated significant improvements in the per-
formance of CNN-based classifiers [12] .

Reiss et al. [20] have shown that combining textual information
and other contextual sources with audio-visual data input can re-
sult in performance improvements, especially for certain types of
attacks where data about the target is publicly available.

Lastly, Lanzino et al. [15] demonstrated that using Binary Neural
Networks [9] can achieve performance close to the state-of-the-art
on the recent COCOFake dataset [2], while keeping efficient in
terms of computational cost.

2.2 Committee Approaches for Image
Classification

Ali et al. [1] proposed a simple ensemble approach combining
VGG19-UNet and DeeplabV3+ architectures for melanoma detec-
tion. Their experiments on the ISIC 2018 dataset, consisting of 2,594
dermoscopy images, demonstrated promising results with an over-
all accuracy of 93.6%, an average Jaccard Index of 0.815, and a dice
coefficient of 0.887 on the test dataset. They highlighted the efficacy
of ensemble techniques over individual architectures, especially
in challenging cases like low contrast, ink, and dark corner arti-
facts, emphasizing its robustness and potential for broader imaging
applications.

In their research on plant leaf recognition and disease detec-
tion, Chompookham and Surinta [7] addressed the complexities
of computer vision challenges by proposing an ensemble CNN
approach combining MobileNetV1, MobileNetV2, NASNetMobile,
DenseNet121, and Xception models to enhance recognition accu-
racy. Ensemble techniques such as weighted averages were ap-
plied to combine predictions from multiple CNN models, showing
superior performance over individual models across all datasets.
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Consequently, their approach achieved accuracies of 99.93% and
99.47% on the tomato and corn leaf disease datasets, respectively,
demonstrating that ensemble methods enhance the performance of
CNN architectures.

Bonettini et al. [4] addressed the need for robust detection of
manipulated faces in video sequences by exploring ensemble ap-
proaches using CNNs. Their study employed EfficientNetB4 as the
base model, enhancing it with attention layers and siamese training
techniques to improve detection accuracy on video datasets. The
evaluation of the FaceForensics++ and DFDC datasets, yielding
AUC values of 0.9444 and 0.8800, respectively, indicated superior
performance when combining different CNN models compared to
baseline methods. This highlights the efficacy of attention-based
modifications in enhancing detection accuracy while providing
insights into useful discriminative features for effective detection.
Additionally, it addresses practical constraints by ensuring compu-
tational efficiency while achieving processing speeds suitable for
real-world applications in limited hardware scenarios.

Also in the realm of deepfake detection, Giatsoglou et al. [11]
investigated several ensemble architectures designed to enhance
robustness and generalization across different types of facial ma-
nipulations, including deepfakes generated by technologies like
FaceSwap and NeuralTextures. Using the FaceForensics++ dataset
for training and evaluation, the research employs EfficientNet-B0
as the base classifier due to its balance of performance and resource
efficiency, while using simple ensembles like binary detection, multi-
class attribution, one-manipulation-vs-real, and one-manipulation-
vs-rest. The results indicated that while ensembles can outperform
individual models under certain conditions, their generalization
across newer and more diverse datasets remains a challenge. This
highlighted the need for futurework to improve the ability of ensem-
bles to detect increasingly sophisticated and varied manipulations
in digital media.

Finally, Chaudhary et al. [5] proposed the integration of CNNs
and Random Forest (RF) for the efficient classification of tomato
diseases. By employing CNNs for feature extraction and the RF en-
semble for accurate classification across four categories, the model
achieved an overall accuracy of 97.03%. The performance of the
hybrid CNN-RF approach surpassed traditional CNN-based models,
which typically achieve accuracies between 88% to 92%, emphasiz-
ing the synergistic benefits of combining deep feature extraction
capabilities with the interpretability and generalization power of
RF.

While prior studies have explored different deepfake detection
methods and ensemble approaches involving CNN models, this
work integrates multiple sets of self-supervised features from FMs
to enhance detection accuracy. Unlike traditional methods that
often rely on single-model architectures or simple ensemble tech-
niques, our approach considers the diverse feature representations
of advanced FMs, resulting in a more robust and generalized detec-
tion system.

3 METHOD
Figure 1 illustrates our proposed integration of committee ap-
proaches for combining different self-supervised features, as well
as the overall data flow of the classification process. It starts with

extracting a frame from the original video and applying a face
detector that results in an RGB patch x ∈ R(H × W × 3) of a face.
Next, the self-supervised facial model generates three feature maps
x𝑎𝑚0, x𝑎𝑚1, x𝑎𝑚2 ∈ R(H × W × 1) from the given patch. Subsequently,
the original RGB patch x is individually concatenated with x𝑎𝑚0,
x𝑎𝑚1 and x𝑎𝑚2, resulting in three tensors x𝑡0, x𝑡1, x𝑡2 ∈ R(H × W × 4),
each of which is fed into a different classifier model trained to use
that specific set of self-supervised features. The probabilistic output
results of each classifier are finally sent to a committee, which uses
them to determine whether an image should be classified as real or
fake.

In the remainder of this section, we briefly discuss our chosen
architectures, introducing the self-supervised facial feature extrac-
tor and the CNN-based classifier in Subsection 3.1. Furthermore, in
Subsection 3.2, we elaborate on the different committee approaches
we tested, describing their distinct methodologies for combining
the results from the classifiers.

3.1 Models
3.1.1 Self-Supervised Facial Feature Extractor. We used a model
from the DINO family to extract the self-attention activation maps
from images, specifically opting for the newer DINOv2 [18]. This
updated model significantly outperforms its predecessor through
three main improvements: significantly larger and more diverse
training dataset known as LVD-142M, with 142 million images, en-
hanced training algorithms and implementation techniques using
PyTorch21 and xFormers2 for better stability and efficiency, and ad-
vanced knowledge distillation process for compressing large models
into smaller ones without substantial accuracy loss. These enhance-
ments contribute to DINOv2’s superior understanding, segmenta-
tion capabilities, and performance across several tasks, maintaining
high efficiency even with reduced model sizes.

The authors provided on their GitHub Repository3 the weights
of the pre-trained models both in the ViT-Base architecture, with
86M parameters and in ViT-Small (ViT-S), with 21M parameters.
For our study, we selected the pre-trained ViT-S/14 model based on
its good performance and efficiency in both time and computational
resources to extract the self-attention maps from our dataset.

Similarly to previous works [12], we employed transfer learn-
ing from a pre-trained model to generate three different attention
heads for self-supervised facial features from each facial image in
the dataset. By applying a multi-crop strategy, we generated differ-
ent views of the input image, which are subsequently processed by
the networks that comprise the DINOmodel, generating probability
distributions by normalizing the networks’ output with a softmax
function. These probabilities are then mapped onto the image, pro-
ducing the attention maps. Figure 2 illustrates the self-attention
activation maps extracted by DINOv2, showcasing examples of both
correctly and incorrectly classified instances by our best committee
classifier.

3.1.2 CNN-based Classifier. In deepfake detection, considering self-
supervised features has been shown to improve the performance

1https://pytorch.org/get-started/pytorch-2.0/
2https://github.com/facebookresearch/xformers
3https://github.com/facebookresearch/dinov2
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Figure 1: Proposed method for deepfake classification.

of multiple CNN-based classifiers [12] , resulting in various archi-
tectures as viable candidates for such tasks, including Inception-
Resnet [24], EfficientNet B4 [25] and XceptionNet [6]. We chose
to focus, for this work, on the latter due to its robust performance
when combined with self-supervised features [12] and its preva-
lence among other works in deepfake detection [4, 21], allowing
for more direct comparisons with existing research findings.

3.2 Ensemble Techniques
To combine the results of the three classifiers, we tested five dif-
ferent committee approaches denoted as c0, c1, c2, c3 and c4. Each
approach prioritizes different aspects in terms of performance from
our classifier models.

c0 employs a simple majority vote, disregarding the probabilis-
tic result outputs of each model and considering only their final
classifications. The goal of this committee is to deal with situations
where individual models may make mistakes, which can happen
even with our highest-performing classifier. Furthermore, it also
serves as a baseline for our approach.

c1 is a weighted vote approach where we aggregate the proba-
bilistic scores assigned by each classifier to each class, selecting the
class with the highest total score. This approach differentiates itself
from c0 in cases where a minority classifier is considerably more
confident when compared to the majority classifiers. It works under
the principle that a confident model is more likely to be correct.
This assumption is validated by our finding, where aggregating

individual results from our three classifiers, classifications with
confidence over 0.85 were approximately 30% more accurate.

Following the same logic, c2 is a confidence-based committee
where if a single classifier has confidence above a given thresh-
old, its classification is considered final. If no classifier meets this
threshold or multiple classifiers do, the committee defaults to the
weighted voting approach similar to c1. For this committee, we
found our best results using a threshold of 0.85. This approach
was expected to perform closely to c1, differentiating itself only in
scenarios where a single high-confident classifier is not enough to
surpass the combined confidence of the other classifiers.

c3 is another variation based on the confidence premise. It works
similarly to c1, but it enhances the weight of votes from classifiers
that exhibit confidence above a specified threshold to improve their
numerical advantage. We again achieved our best results with a
threshold of 0.85, multiplying the votes from confident classifiers
by a factor of 1.5. This approach amplifies the influence of high-
confident classifiers while still considering the collective outputs
of all classifiers through a weighted voting scheme.

Lastly, c4 is an MLP-based stacked committee that aims to learn
more advanced patterns from the individual classifications. The
model receives the probabilities of an image being fake, according
to each classifier individually, and outputs its own probability es-
timate for the image being fake. In our experiments, the optimal
architecture consisted of three dense layers with respective sizes
of 16, 8, and 1, with the first two layers using the ReLU activation
and the last one using a sigmoid to output the final probability.
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Figure 2: Examples of the attention heads extracted using DINOv2. A “positive” classification means that our best committee
classified the image as fake, while “negative” means that it was labeled as real.

This approach employs the MLP’s ability to learn intricate relation-
ships among its inputs (our individual classifier outputs), potentially
improving overall classification accuracy.

4 EXPERIMENTS
In this section, we present our experiments designed to measure the
impact of different committee approaches described in Section 3, in
terms of performance, aiming to learn if significant improvements
can be achieved by committees over using a single attention map.
The first subsection covers the datasets used in our experiments, for
both training and testing. The second subsection describes the setup
used to conduct the experimental evaluation. Lastly, the third sub-
section elaborates on the results, comparing them to our baselines
and previous works in the field of Deepfake Detection.

4.1 Datasets
Wemainly conducted experiments on the Deepfake Detection Chal-
lenge (DFDC) dataset [10], using a large subset as our training data
and a smaller one for testing purposes. As pointed out by other
works [12] , this dataset provides a diverse set of lighting conditions,
resolutions, image qualities, and demographic attributes, with the

latter being particularly important for developing fairer models for
this kind of task [29].

For the sake of a more direct comparison to previous works, we
followed a similar process of preparing an image dataset from each
video in the DFDC dataset as described in Gomes et al. [12] . We
extracted approximately 10 frames on average from each video and
used theMultitask Cascaded Convolutional Network (MTCNN) face
detector [30], with identical parameters, to identify and crop faces
from each frame. This process was applied across more than 124,000
videos in the dataset, resulting in 1,086,737 images for training and
144,316 for validation.

In addition to using the DFDC dataset, we also employed the
Low-Quality (LQ) version of the Face Forensics [21] dataset to fur-
ther validate our approach. This choice came from the past use
of the XceptionNet [6] on this dataset, leading to direct compar-
isons among its standard version, the ones using self-supervised
attention [12], and our proposed committee approaches combining
these attention maps. To this end, we followed the same methods
of frame extraction and cropping provided by the dataset authors.
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4.2 Setup
In our experiments, following the approach of Gomes et al. [12], we
trained four models of our chosen architecture: a baseline model
trained only on 3-channel RGB facial image inputs, and three addi-
tional models, each using one of the three attention maps presented
in Section 3.1.1 as a fourth channel. The goal was to determine a
performance baseline and evaluate how each attention map indi-
vidually impacted performance, serving as a basis for comparison
with our different committee approaches. The training was con-
ducted exclusively on images extracted from the DFDC dataset [10],
following the process described in Subsection 4.1, while the Face
Forensics dataset [21] was reserved for testing purposes.

For training and evaluation, we kept the default input sizes of
our chosen architecture. We also used an Adam optimizer with a
learning rate of 1e-4 and the categorical cross-entropy loss function.
Our computational setup included a system with 48 GB RAM, 850
GB of storage capacity, and an NVIDIA RTX 2080 with 11 GB
VRAM.

4.3 Results
We evaluated our proposed committees using both the validation
subset of the DFDC dataset and the Face Forensics dataset, as de-
scribed in Subsection 4.1. For validation, we used AUC and F1-Score
as our primarymetrics due to their ability to provide deeper insights
into model performance, especially important in deepfake detec-
tion [29]. Conversely, for the FaceForensics segment, we judged
that simple accuracy was sufficient as it would lead to a more direct
and clear comparison with the results reported by Rossler et al.
[21]. Comparing our results to those obtained without the use of
self-attention, as well as those using each attention map individ-
ually, each of our proposed approaches showed improvements in
performance to varying degrees.

Table 1 shows the results from the DFDC dataset, highlighting
the performance impact of the different committee approaches. c0
represented our simplest committee, with performance matching
its simplicity when compared to more complex approaches. De-
spite its straightforward methodology approach, it still achieved
slightly superior performance over the best individual classifier,
with an AUC of 92.16%, a 0.25% improvement over the baseline,
and a marginal 0.06% increase over Map 1. However, this modest
gain suggests a need to explore other approaches to achieve more
substantial performance improvements.

The c1 approach showed significant improvements over c0, achiev-
ing an AUC of 92.47%, which is 0.56% higher than the baseline
and 0.31% higher than c0. Additionally, it presented an F1-Score
of 85.04%, representing a gain of 0.68% over the baseline, 0.36%
over Map 1, and 0.33% over c0. This superior performance over c0
indicates the presence of instances where two models with low
confidence might misclassify an image through a simple major-
ity approach, highlighting the better results of confidence-based
strategies.

In the same rationale, the c2 and c3 approaches exhibited very
similar performance, with AUCs of 92.52% and 92.56%, and F1-
Scores of 85.07% and 85.12%, respectively. Both results confirm our
assumptions about prioritizing classifications with high confidence,

Table 1: Performance impact of different approaches on the
validation subset of the DFDC dataset, showing how commit-
tees improve performance over the use of individual atten-
tion maps.

Approach AUC (%) Diff. (%) F1-Score (%) Diff. (%)
Baseline 91.91 - - - 84.36 - - -
Map 0 92.03 +0.12 84.39 +0.03
Map 1 92.10 +0.19 84.68 +0.32
Map 2 91.99 +0.08 84.37 +0.01
c0 92.16 +0.25 84.71 +0.35
c1 92.47 +0.56 85.04 +0.68
c2 92.52 +0.61 85.07 +0.71
c3 92.56 +0.65 85.12 +0.76
c4 93.22 +1.31 85.63 +1.27

as both committees showed improvements over our previous ap-
proaches. Furthermore, the superiority of c3 over c2 indicates that
relying on high confidence alone is not enough to decide a final
classification, especially in cases when other models are equally
confident but collectively more accurate.

Finally, the c4 committee stood out as the best-performing ap-
proach by a significant margin. It achieved an AUC of 93.22%, sur-
passing the baseline by 1.31%, Map 1 by 1.12%, and c3 by 0.66%.
Additionally, it achieved an F1 Score of 85.63%, with incremen-
tal gains of 1.27%, 0.95%, and 0.51% over the baseline, Map 1 and
c3, respectively. These considerable gains highlight the presence
of intricate patterns in the relationships among the three models,
meaning that simple voting mechanisms might overlook scenarios
that require more complex decisions for accurate classification.

Conversely, Table 2 shows the results from our experiments on
the LQ version of the Face Forensics dataset, comparing them to
the baseline performance of the XceptionNet reported in a previous
study [21]. While the best individual classifier (Map 1) showed
a significant improvement of 1.62% over the considered baseline,
achieving an accuracy of 82.62%, it was again surpassed by all
committee approaches. The hierarchy of performance among the
committees remained the same, with c0 being significantly behind
at an accuracy of 82.71%, c1, c2, and c3 showing similar results of
83.24%, 83.31%, and 83.42%, respectively. Once more, c4 presented
the most significant gain margin, achieving an accuracy of 84.73%,
which is 3.73% higher than the baseline model. This last value
corresponded to an AUC of 82.54% and an F1-Score of 80.27%.

5 CONCLUSION
The growing prevalence of deepfake creation steers research into
advancing detection techniques, a critical challenge in digital media.
Through exploring strategies integrating sophisticated models and
ensemble learning, improvements in detection accuracy can be
achieved, enhancing our ability to differentiate between genuine
and manipulated content. These efforts reflect a continuous step
to mitigate the risks associated with deceptive media in online
environments.
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Table 2: Performance impact of the different approaches on
the LQ version of the Face Forensics dataset.

Approach Accuracy (%) Diff. (%)

Baseline 81.00 - - -
Map 0 82.21 +1.21
Map 1 82.62 +1.62
Map 2 81.87 +0.87
c0 82.71 +1.71
c1 83.24 +2.24
c2 83.31 +2.31
c3 83.42 +2.42
c4 84.73 +3.73

In this work, we showed how combining multiple maps of self-
supervised features generated by an FM, through the use of dif-
ferent committee approaches, has a positive performance impact
on realistic facial deepfake detection by experimenting with three
classifiers, trained on different feature maps and combined through
various committee techniques, on two prominent datasets for the
task. These findings significantly contribute by improving results
found with approaches that relied on a single feature map [12],
demonstrating that integrating multiple maps can enhance per-
formance in deepfake detection. This especially solves situations
where the optimal feature map to be used is uncertain.

The results show that each committee approach outperformed us-
ing a single attention map, indicating significant disparities among
different approaches. Techniques based on classifier confidence
showed improved predictions compared to simple majority voting
approaches. Finally, an MLP-based approach, trained to identify
more complex patterns in prediction relationships, achieved the
highest performance.

The success of these approaches opens a door for larger com-
mittees that can combine more classifiers and utilize other self-
supervised feature maps. This indicates the potential to extract
richer information from each frame, enhancing detection perfor-
mance. Furthermore, our findings suggest that similar techniques
could be adapted for video formats, which would not require frame
extraction. This is enabled by advancements in FMs such as DI-
NOv2 [18], which have already shown significant performance
gains for video content in recent years.
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