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ABSTRACT
The Brazilian Sign Language (Libras) is a crucial communication
medium for the deaf community in Brazil, yet it poses significant
challenges for recognition and translation tasks. This paper presents
a novel approach using Fast Dynamic Time Warping (FastDTW)1
for recognizing Libras signs in video streams. This approach aims
to bridge the communication gap between deaf and hearing individ-
uals, enhancing accessibility and reducing social marginalization.
The methodology leverages MediaPipe to extract key hand and
body landmarks, which are then used to compute angular features
for accurate sign recognition. Experiments were conducted on the
MINDS-Libras dataset, and the results demonstrated a high recog-
nition accuracy, outperforming traditional methods. Furthermore,
when the proposed model is applied to the INCLUDE-50 dataset
containing signs from a different sign language, it performs com-
petitively without relying on deep learning techniques.

KEYWORDS
Computer Vision, Sign Language Recognition, Gesture Recogni-
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1 INTRODUCTION
The Brazilian Sign Language (Libras2) recognition is a complex
research field that has attracted considerable interest in computer
vision and multimedia communities [2, 21]. One of the challenges in
Libras recognition task is the content description of signers based
1Code available on https://github.com/IMScience-PPGINF-PucMinas/libras-sign-
recognition
2In Brazilian Portuguese – Língua Brasileira de Sinais

In: Proceedings of the Brazilian Symposium on Multimedia and the Web (WebMe-
dia’2024). Juiz de Fora, Brazil. Porto Alegre: Brazilian Computer Society, 2024.
© 2024 SBC – Brazilian Computing Society.
ISSN 2966-2753

on ground truth (GT) annotations created by multiple individu-
als. The variability introduced by multiple annotators often results
in a GT containing diverse perspectives of the events depicted in
the signer’s video, thereby highlighting different body movements
according to the annotators’ fluency in Libras [9, 22]. According
to the Brazilian Institute of Geography and Statistics – IBGE [19],
about 10 million people have hearing problems, with approximately
3 million being completely deaf and living in Brazil. While com-
munication applications and tools have been widely developed in
recent decades, deaf people face numerous problems using these
technologies. Outside the technological field, communication bar-
riers also manifest, and this is the greatest difficulty in providing
services to hearing-impaired individuals [21, 25].

The communication barrier faced by deaf individuals hinders
equitable access to essential services. A system utilizing pattern
recognition techniques could bring significant benefits to communi-
cation between deaf and hearing people, facilitating interaction in
various contexts and contributing to the reduction of the marginal-
ization of this community.

Two different strategies can be applied in sign language recog-
nition: device-based and computer vision-based methods [2, 21].
Device-based approaches utilize specialized hardware such as data
gloves, depth-sensing cameras, and other wearable sensors to cap-
ture sign language gestures [22]. These devices can provide precise
data but often at the cost of user comfort and affordability. On
the other hand, computer vision-based methods leverage regular
cameras or webcams to capture gestures, offering a more natural
and cost-effective solution [8]. These methods often employ neural
networks and diverse machine-learning techniques to recognize
signs.

A key distinction across computer vision works is the use of
spatio-temporal features. Some of them rely exclusively on images.
For this task, Convolutional Neural Networks (CNNs) have shown
high accuracy in recognizing static signs, achieving up to 99.90%
accuracy on grayscale images [13, 30]. However, in video, temporal
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data processing is critical for sign recognition. The order of the
gestures is crucial, and the static processing of an image does not
solve the real communication problem.

The main idea of this study is to enhance the accuracy of rec-
ognizing Libras signs from video streams and translating them
into Portuguese words using FastDTW techniques. This task in-
volves several subtasks, including signs interpretation for hands,
fingers, torso, and the positioning of phalanges within images. Con-
sequently, this work seeks to identify specific Libras gestures within
video sequences and accurately map them to their corresponding
Portuguese words, thereby bridging the two languages. Addition-
ally, a central component of this research is to evaluate the effec-
tiveness of FastDTW in this translation process. The goal is not
only to assess the technique’s feasibility but also to optimize its
practical application for facilitating communication between Libras
users and Portuguese speakers.

This paper is structured as follows. The theoretical background is
presented in Section 2, while Section 3 discusses the related works.
Section 4 details the proposed method, while Section 5 presents and
analyzes the results. Finally, Section 6 draws some conclusions.

2 BACKGROUND
2.1 Dynamic Time Warping
Dynamic Time Warping (DTW) is a technique for measuring the
similarity between time series, introduced by Sakoe and Chiba [23]
initially for speech applications. Time series analysis is a critical
task in various domains. Accurate measurement of the similarity
between time series is essential for classification, clustering, and
anomaly detection. Two common techniques for measuring simi-
larity between time series are Euclidean Distance (ED) and DTW.
While ED is simple and efficient, it has significant limitations that
DTW addresses more effectively.

Figure 1 demonstrates the difference between ED and DTW.
Comparing the two signals, it is possible to observe the distortion
caused by ED, whereas DTW tends to capture the temporal rela-
tionships between the two compared series. ED is a straightforward
method for calculating the similarity between time series. Given
time series 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] and 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑛] of equal
length 𝑛, the ED is defined as:

𝐸𝐷 (𝑋,𝑌 ) =
√√

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖 )2 . (1)

While ED is computationally efficient, it is sensitive to shifts and
distortions in the time axis. Thus, if one time series is a slightly
shifted version of another, ED may indicate a large dissimilarity,
even if the series appears visually similar.

DTW was designed to overcome the limitations of ED by al-
lowing for elastic shifting along the time axis. This makes DTW
more robust to variations in time series that are misaligned or
have different lengths [12]. Given time series 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
and 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑚], the DTW algorithm constructs an 𝑛 ×𝑚
cost matrix 𝐷 where each element 𝐷 (𝑖, 𝑗) represents the squared
distance between points 𝑥𝑖 and 𝑦 𝑗 :

𝐷 (𝑖, 𝑗) = (𝑥𝑖 − 𝑦 𝑗 )2 . (2)

Figure 1: Comparison between DTW and ED [7], in which 𝑑
represents a distance between two signs, as degree difference,
and 𝑡 the time variation

.

A warping path𝑊 is defined as a sequence of matrix elements
representing a mapping between 𝑋 and 𝑌 :

𝑊 = [𝑤1,𝑤2, . . . ,𝑤𝐾 ], where 𝑤𝑘 = (𝑖, 𝑗) . (3)

Thewarping pathmust satisfy the following conditions: (i) bound-
ary condition: the path starts at the bottom-left corner and ends at
the top-right corner of the matrix; (ii) continuity: the path steps
must be contiguous; and (iii) monotonicity: the path indices must
be non-decreasing. The idea is to find the path that minimizes the
cumulative distance:

𝐷𝑇𝑊 (𝑋,𝑌 ) = min
𝑊

√√√ 𝐾∑︁
𝑘=1

𝐷 (𝑤𝑘 ) . (4)

The optimal path is determined using dynamic programming.
The recursive formula to fill the cost matrix is:

𝐷 (𝑖, 𝑗) = (𝑥𝑖 −𝑦 𝑗 )2+min{𝐷 (𝑖−1, 𝑗), 𝐷 (𝑖, 𝑗−1), 𝐷 (𝑖−1, 𝑗−1)}. (5)
The FastDTW algorithm, introduced by [24], is an optimized

version of the original DTW. Unlike DTW, which requires filling
the entire cost matrix and has a computational complexity of𝑂 (𝑁 2),
FastDTW achieves 𝑂 (𝑁 ) complexity by strategically reducing the
number of calculations needed to fill the costmatrix. This significant
reduction in computational overhead makes FastDTW much faster.

The FastDTWalgorithm comprises three key operations: (i) coars-
ening, which shrinks the time series into a smaller representation
by averaging adjacent pairs of points, effectively halving the size
of the series; (ii) projection, which uses the warp path from a lower
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resolution as an initial guess for the higher resolution; and (iii) re-
finement, which fine-tunes the projected warp path through local
adjustments controlled by a radius parameter.

2.2 MediaPipe
MediaPipe is a comprehensive framework developed by Google that
enables developers to create multi-modal, cross-platform applied
machine learning (ML) pipelines. Designed to handle various data
types – including video, audio, and time series – MediaPipe is a
versatile tool for numerous applications. It is renowned for its robust
collection of human body detection and tracking models, trained
on some of the most extensive and diverse datasets available [15].

MediaPipe presents a hand-tracking solution to recognize and ex-
tract landmarks from RGB images. The first model detects the palm
within an image and provides an accurately cropped palm image,
which is then passed to the landmark model. This step reduces the
need for extensive data augmentation, such as rotations, flipping,
and scaling, and focuses the model’s power on precise landmark lo-
calization. The Hand Landmark model processes the detected palm
regions to precisely localize 21 three-dimensional hand-knuckle
coordinates (x, y, z), as shown in Figure 2. This model maps coor-
dinates even to partially visible hands and does not incorporate
information regarding facial modifications [32].

The pose solution aims to detect and track the human body’s
skeletal structure. The model identifies 33 key landmarks on the
body, including the face, shoulders, elbows, wrists, hips, knees, and
ankles. This comprehensive set of landmarks allows for detailed
and accurate body pose estimation, which is crucial for applications
such as fitness tracking, augmented reality, and animation [4].

Figure 3 presents the tracking of MediaPipe Holistic with Hands
and Pose used to detect landmarks on a frame, combining the ca-
pabilities of hand tracking, pose estimation, and face mesh into a
single unified pipeline. This simultaneous tracking of the body pose,
hand movements, and facial expressions provides a comprehensive
understanding of human motion and interaction.

Figure 2: Hand landmarks identified by MediaPipe. Each
number represents a finger joint [11].

Figure 3: MediaPipe Holistic with Hands and Pose enabled
to detect landmarks on a video frame.

3 RELATEDWORKS
Some techniques have been developed for sign language recognition
using different strategies and datasets. In early works, data gloves
with embedded sensors captured intricate finger and hand move-
ments and orientations. These gloves provide precisemeasurements,
unaffected by external agents such as light or magnetic fields. How-
ever, data gloves are often uncomfortable and expensive, limiting
their suitability for extended use, despite their accuracy [14, 17, 21].

Depth-sensing cameras like the Microsoft Kinect and Leap Mo-
tion Controller capture both RGB and depth information, allowing
for more detailed gesture analysis. Adeyanju et al. [2] demonstrated
the effectiveness of these devices in sign language recognition, not-
ing their ability to capture fine-grained details of hand movements
and spatial orientation. Despite that, these devices also add to the
overall cost and complexity of the system.

Dynamic videos incorporating movements for signs have been
widely used in computer vision-based methods. De Castro et al. [9]
used RGB cameras along with the MINDS-Libras dataset and 3D
CNNs to extract spatial and temporal features through 3D convolu-
tion operations, achieving an average accuracy of 91%. In addition to
using RGB cameras, more advanced techniques incorporate depth
sensors and infrared cameras to enhance recognition accuracy. Es-
cobedo et al. [10] suggested a method that combines RGB-D data
with texture maps to capture hand location and movement. This
approach integrates multimodal data into a three-stream CNN ar-
chitecture, allowing for robust feature extraction and achieving
superior performance compared to traditional RGB-based methods.
Their system demonstrated improvements in recognizing dynamic
signs, highlighting the advantages of incorporating depth informa-
tion.

Methods utilizing MediaPipe have gained attention for their real-
time capabilities and ease of deployment [16, 27]. Tayade and Patil
[29] conducted a study on real-time letter recognition using Medi-
aPipe with Support Vector Machine (SVM). They utilized datasets
from American, Indian, Italian, and Turkish sign languages for
training and evaluation, achieving an average accuracy of 99%.

One of the common challenges in creating Sign Language Recog-
nition (SLR)models is the lack of extensive and high-quality datasets
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for certain sign languages [22]. Training models that extensively
use deep learning techniques can be computationally expensive
due to high data dependency. In this way, DTW is an effective strat-
egy for this task, as it measures the similarity between temporal
sequences based on their distance [3, 28]. Cheng et al. [6] utilized
DTW for distance mapping in Chinese sign language recognition.
They combined SVM and DTW, achieving an accuracy of 99.03%
in a dataset of 11 signs, demonstrating the effectiveness of this
approach for recognizing complex signs.

The literature on SLR reveals that various approaches and tech-
niques have been employed in different contexts and scenarios.
Among the related works, the use of MediaPipe stands out, demon-
strating promising results in real-time gesture detection with high
accuracy. These studies provide important insights and useful per-
spectives that contribute to the development and improvement of
this work. Considering the lessons learned from related works, the
proposed project aims to use MediaPipe to extract relevant ges-
ture features and employ a DTW-based model to recognize a set of
signs, thereby improving communication between deaf and hearing
individuals.

4 METHODS
Sign language is not merely a collection of simple gestures; rather, it
is a complex linguistic system defined by multiple parameters that
allow for the encoding of a broad range of meanings. According
to Brito [5], the primary parameters in sign language include hand
configuration, articulation point, and movement.

Hand configuration refers to the distinct shapes that hands can
assume to generate signs. The specific shapes and configurations of
the hands can vary widely between different sign languages. The
articulation point or location involves the space in front of the body
(neutral space) or specific body regions, such as the head, waist, and
shoulders, where signs are articulated. The location of the sign is
crucial as it provides context and meaning. Movement is a complex
parameter involving various forms and directions, including pulsing
motion, movements of the finger joints, and directional movements
in space. The displacement of the hands, fingers, and arms over
time plays a significant role in conveying the sign’s meaning.

Depending on the context, some parameters might not be neces-
sary for interpretation. For instance, hand orientation refers to the
direction of the palm during the sign, which can face up, down, to-
wards the body, forward, left, or right. Orientation helps distinguish
between signs that may have similar hand configurations and move-
ments. Facial expressions and other non-manual expressions are
essential for providing additional context and emphasis. They can
convey emotions and differentiate between types of sentences such
as affirmative, interrogative, exclamatory, and negative statements.

Figure 4 shows a flowchart of the proposed Libras recognition
framework based on landmarks extraction and computing distances
between multiple time series. In the first step, the video input frame
is cropped using a simple region of interest (ROI) to remove poten-
tial noise caused by the borders of the videos during the recognition
task. This reduction effectively trims 10% of the vertical distance
on each video frame.

Next, we extract the landmarks using MediaPipe Holistic. At
this stage, we execute with𝑚𝑖𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 0.5 and

𝑚𝑖𝑛_𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 0.5, utilizing the Hands and Pose mod-
els. The hand model provides 21 three-dimensional landmarks for
each hand present in a frame, while the pose model provides 33
landmarks indicating the positions of the body.

To process the results from the landmarks, we flatten all the
landmarks provided by MediaPipe Holistic, resulting in a single
array of coordinates. We clean up the data by filling possible null
values with 0. This step is important to avoid any noise during
detection, as blurred images (during rapid movements) can lead to
issues in the detection [27].

With the landmarks ready, we execute the feature extraction pro-
cess on the landmarks data. Figure 5 illustrates the hand landmarks
identified by MediaPipe. These points are used to calculate the an-
gles between finger joints, allowing the model to recognize different
signs based on the configuration of fingers and hands. Each sign
can be considered a composition of different poses, where each pose
is characterized by a particular set of angles. This concept has been
applied in several works in human action recognition [1, 18]. Each
feature vector is composed of hands angles with several points, and
pose angles. To calculate the value of an angle𝜔 from the landmark
3D values we can use the dot product :

𝜔 = arccos
(
𝐵𝐶 ·𝐶𝐷
|𝐵𝐶 | |𝐶𝐷 |

)
(6)

in which 𝐵𝐶 and 𝐶𝐷 are segments composing a joint.
Once the feature vectors are defined, we use an unsupervised

learning approach to provide the necessary information to the
model before the tests. Leave-One-Person-Out Cross-Validation
(LOPOCV) is a validation technique that is well-suited for scenarios
that involve gesture recognition tasks [31]. We divide the dataset so
that one individual’s data is completely left out of the training set
and used exclusively for testing. This process is repeated for each
individual in the dataset, ensuring that each person’s data is used
as a test set exactly once. The model is trained on the remaining
individuals’ data during each iteration.

The model uses FastDTW to compute the distance between time
series and perform sign recognition. This approach compares the
sign to be recognized with all known signs and measures the dis-
tance among them. The FastDTW algorithm is executed with the
radius parameter set to 1, which defines the size of the neighbor-
hood when expanding the path. After computing all distances, the
closest known sign name is used in the output of the task.

5 RESULTS
We evaluated the proposed method on MINDS-Libras [22] and
INCLUDE-50 [26] datasets. The MINDS-Libras dataset was used to
optimize the model, including adjustments to the region of interest
in the videos and configuring the model to better recognize the
signs used. Once the model was established, it was applied to both
datasets to test in different scenarios and compare to the state-of-
the-art results.

The MINDS-Libras dataset [22] consists of 1,200 data sequences
distributed into 20 classes. Each class represents a distinct sign
from Libras, including both static and dynamic signs. The signs
were captured using two types of sensors: a Canon EOS Rebel t5i
DSLR camera and a Microsoft Kinect v2 sensor. As a result, each
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Figure 4: Outline of the proposed method for Libras recognition.

recording contains a 1920 × 1080 RGB video (captured by the DSLR
camera) and 640 × 480 RGB-D data (captured by the Kinect sensor),
both recorded at 30 frames per second (fps). However, we used only
the full HD RGB data in this work.

Figure 5: The feature extracted from the hand: joint angles
and fingertip positions. The blue points indicate the finger-
tip positions on which the 3D displacements are computed.
The red points indicate the joints on which the angles are
computed.

We used overall accuracy and F1-score as performance metrics
to evaluate our model. Accuracy is the proportion of true positive
(𝑇𝑃 ) and true negative (𝑇𝑁 ) results among the total number of
cases examined. It is calculated using the formula:

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(7)

in which 𝐹𝑃 and 𝐹𝑁 represent false positives and false negatives,
respectively. The F1-score is the harmonic mean of precision and
recall, balancing the two metrics. It is calculated as:

F1-Score = 2 × Precision × Recall
Precision + Recall (8)

Precision is the ratio of correctly predicted positive observations
to the total predicted positives, while Recall is the ratio of correctly
predicted positive observations to all observations of the actual
class.

Table 1 shows the models’ performance metrics. The results in
Table 1 were obtained using the Leave-One-Person-Out Cross-Val-
i-da-tion (LOOCV) technique, a method proposed by De Castro
et al. [9]. The signers from the dataset were divided into 12 groups,
with 11 for validation and 1 for testing. This approach is applied
to achieve an accuracy of 0.86 ± 0.08, using only RGB data as
input to the network and without employing deep learning or data
augmentation to improve the results. Additionally, the results from
De Castro et al. [9] and Passos et al. [20], both of which use data
augmentation, are presented for comparison. Despite not using
data augmentation, our approach continues to yield competitive
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Table 1: Comparison of methods for recognizing signs using
MINDS-Libras dataset.

Method Aug Dataset Accuracy F1-Score

De Castro et al. [9] Yes MINDS-Libras 0.91 ± 0.07 0.90
Passos et al. [20] Yes MINDS-Libras 0.85 ± 0.02 -
Ours No MINDS-Libras 0.86 ± 0.08 0.87

Figure 6: Confusion matrix across all runs on the MINDS-
Libras dataset.

results, primarily because it does not require a large amount of
newly produced information for training.

The confusion matrix in Figure 6 illustrates the performance of
our model across all runs on the MINDS-Libras dataset. The matrix
shows that some signs have a higher rate of confusion. For example,
“Yellow” was misclassified as “Candy” in 0.16 of the cases, and
“Bathroom,” which has the lowest accuracy at 0.47, was misclassified
as “To Happen” in 0.25 of the cases. These areas highlight where
additional contextual features, such as facial expressions and the
position of hands relative to the face, could improve recognition
accuracy.

Table 2 shows the best case for precision, recall, and F1-score
achieved by Signer 12 using the LOOCVmethod. The model demon-
strates an overall accuracy of 0.96 achieving perfect scores in preci-
sion, recall, and F1-score for 16 classes, indicating that it recognized
these signs without any false positives or false negatives.

However, certain signs, such as “Bank”, “Frog”, “Bathroom”, and
“Bad”, show lower precision and recall values. These lower preci-
sion and recall values can be attributed to the similarity in hand
configurations or movements with other signs. For example, “Bank”
is confused with “Bad” due to the high similarity between the signs
and the fact that the model considers the angles formed by the trunk
and hands but not the position of the hand relative to the face, which
hinders the precise identification of certain signs. Another example
is “Frog” being confused with “Bathroom”, which could have been

Table 2: Best case for precision, recall, and F1-score for each
class (Signer 12) using the MINDS-Libras dataset with the
LOOCV method.

Precision Recall F1-Score Support

To happen 1.00 1.00 1.00 5
Bank 0.71 1.00 0.83 5
Mirror 1.00 1.00 1.00 5
To know 1.00 1.00 1.00 5
Five 1.00 1.00 1.00 5
Apple 1.00 1.00 1.00 5
Corner 1.00 1.00 1.00 5
Bathroom 1.00 0.60 0.75 5
Student 1.00 1.00 1.00 5
Frog 0.71 1.00 0.83 5
To enjoy 1.00 1.00 1.00 5
To know 1.00 1.00 1.00 5
Fear 1.00 1.00 1.00 5
America 1.00 1.00 1.00 5
Will 1.00 1.00 1.00 5
Yellow 1.00 1.00 1.00 5
Vaccine 1.00 1.00 1.00 5
Son 1.00 1.00 1.00 5
Noise 1.00 1.00 1.00 5
Bad 1.00 0.60 0.75 5

Accuracy 0.96 100

avoided if the model had considered facial expressions during sign
identification.

To compare our model with the proposed model for validating
the MINDS dataset, it was necessary to use the same separation
technique proposed in MINDS, with a random split of 75% of the
dataset used for training and 25% used for validation. An important
point to highlight about this technique is that it can cause overfitting
in themodel, which can hinder the development of themodel and its
ability to generalize. This issue is mentioned in De Castro et al. [9],
which discusses overfitting and proposes the previously mentioned
LOOCV technique. Table 3 shows the results using the random split;
our model achieved an accuracy of 0.98 ± 0.01, which is superior
to that obtained by the model proposed in Rezende et al. [22]. It is
important to note that our model does not use data augmentation
techniques, which are often used to artificially increase the size and
variability of the training data to improve model performance.

The INCLUDE-50 dataset, compiled by Sridhar et al. [26], com-
prises 263 distinct classes of signs in Indian Sign Language (ISL).
These classes are organized into 15 categories including clothes,
colors, adjectives, and pronouns. Each signer performs each sign

Table 3: Comparison of methods for recognizing Libras signs
using a 75% training and 25% testing split utilizing MINDS
dataset.

Method Aug Dataset Accuracy F1-Score

Rezende et al. [22] Yes MINDS-Libras 0.93 ± 0.02 0.93
Ours No MINDS-Libras 0.98 ± 0.01 0.98
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Table 4: Comparison of methods for recognizing signs using
INCLUDE-50 dataset.

Method Aug Dataset Accuracy

De Castro et al. [9] Yes INCLUDE-50 0.95
Sridhar et al. [26] Yes INCLUDE-50 0.94
Sridhar et al. [26] No INCLUDE-50 0.74
Ours No INCLUDE-50 0.90

2 to 6 times, resulting in 4,287 videos. For quick evaluation, the
INCLUDE-50 subset, also created by Sridhar et al. [26], includes 50
sign categories with 958 videos. In our study, we utilize this subset
to validate our methodology. Sridhar et al. [26] previously defined
the videos that make up the training and test sets. We employed
the same division proposed by them.

The results for the INCLUDE-50 dataset are shown in Table 4.
The proposed model achieved an accuracy of 0.90, demonstrating
the effectiveness of our approach in different sign languages and
validating its applicability in various scenarios. The comparison
with other methods, such as the work by De Castro et al. [9] and
Sridhar et al. [26], shows that our approach performs competitively,
particularly in terms of accuracy, without relying on deep learning
techniques, especially when compared to the method proposed
by Sridhar et al. [26] without data augmentation, achieving an
improvement of approximately 21.5%.

These findings highlight the robustness and generalizability of
our proposed method across different datasets and sign languages.
The use of data augmentation has a significant impact on the per-
formance of models. For instance, Sridhar et al. [26] achieved an ac-
curacy of 0.94 with augmentation, but only 0.74 without it. Despite
not using data augmentation, our model achieved a competitive
accuracy of 0.90, showcasing the effectiveness of our approach.
Further studies can build upon this work to explore more sophisti-
cated models and techniques, aiming for even higher accuracy and
broader applicability in real-world scenarios.

6 CONCLUSION
This research presents an unsupervised method for sign recognition.
The model that uses FastDTW, together with angle measurement,
demonstrated good generalization capacity across two datasets,
without the use of data augmentation. Our approach uses visual
information to describe signs without the analysis of depth sensors
or gloves, facilitating its dissemination to different languages and
datasets.

For future work, we plan to incorporate data augmentation tech-
niques, which have shown significant improvements in accuracy.
One possible model enhancement is to include the position of the
hand relative to the face as a feature to be measured, as well as
identifying contextual cues such as facial expressions and other
parts of the body. This can be essential for understanding the sign
and further improving the model’s accuracy. Another aspect we
intend to address is the weighting of angles, allowing more impor-
tant angles to have greater influence, thereby aiding the model’s
identification process.
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