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ABSTRACT
The exponential growth of data on the internet has made informa-
tion retrieval increasingly challenging. Knowledge-based Question-
Answering (KBQA) framework offers an efficient solution that
quickly provides accurate and relevant information. However, these
frameworks face significant challenges, especially when dealing
with complex queries involving multiple entities and properties.
This paper studies KBQA frameworks, focusing on improving en-
tity recognition, property extraction, and query generation using
advanced Natural Language Processing (NLP) and Artificial Intelli-
gence (AI) techniques. We implemented and evaluated combination
tools for extracting entities and properties, with the combination
of models achieving the best performance. Our evaluation metrics
included entity and property retrieval, SPARQL query complete-
ness, and accuracy. The results demonstrated the effectiveness of
our approach, with high accuracy rates in identifying entities and
properties.
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1 INTRODUCTION
The large volume of data available on the internet has made the
task of finding relevant information even more challenging [11].
In this context, new information retrieval methods have allowed
for more intelligent searches, taking into account the context of
the search. Additionally, advances in Natural Language Processing
(NLP) research have enabled a better understanding of the search
context, allowing Knowledge-based Question-Answering (KBQA)
frameworks to emerge as an efficient solution to meet this demand
[12].

The complexity of the questions users ask is one of the main
challenges faced by KBQA frameworks [17]. Questions can be com-
plex for various reasons, such as the presence of multiple concepts,
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the need to understand the context in which the question is cre-
ated, and the dependence on additional information that was not
mentioned in the question. These factors can lead to ambiguities in
questions and, consequently, to imprecise results.

Natural language questions can vary greatly in complexity. Sim-
ple questions might involve straightforward retrieval of facts, such
as “What is the capital of France?”. However, complex questions
often require the integration of multiple pieces of information, rea-
soning over data, and understanding nuanced context. For example,
the question “Which films directed by Quentin Tarantino were
nominated for an Oscar?” requires the system to identify multiple
entities (“Quentin Tarantino”, “films”, and “Oscar”) and understand
their relationships [23]. The complexity increases when questions
involve conditional statements, comparative structures, or tempo-
ral aspects. For instance, “What was the population of New York
City before 2000?” needs temporal reasoning and access to histor-
ical data. Similarly, questions like “Is the Eiffel Tower taller than
the Statue of Liberty?” require comparative reasoning and precise
entity linking.

Understanding the context in which a question is asked is crucial
for accurate KBQA. The same term can have different meanings
based on context, making disambiguation a significant challenge.
For example, the word “Java” can refer to a programming language,
an island in Indonesia, or a type of coffee. Determining the correct
interpretation based on the surrounding context is essential for
providing accurate answers [10]. Moreover, questions often rely
on implicit context that is not explicitly stated. For instance, in
the question “What is the country’s capital?”, the system must
infer which country is being referred to from prior context or user
interaction history. This requires the KBQA system to maintain and
utilize contextual information dynamically.

Large language models (LLMs) such as GPT have recently gained
popularity as Question-Answering (QA) systems, demonstrating
impressive results in answering questions posed in natural language.
These models are trained on massive amounts of text data, allowing
them to understand and generate human-like responses to various
prompts [2]. However, it is important to note that QA systems
solely using LLMs are limited by their training data [20]. They
are not designed to access external knowledge repositories and
cannot provide information not included in their training data. For
instance, if a question is asked about an event that occurred after
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the LLM’s training data was collected, it may be unable to provide
an accurate answer.

On the other hand, KBQA systems are designed to access and
search knowledge repositories, providing access to always up-to-
date information [14]. These systems can retrieve information
from various structured and unstructured data sources, includ-
ing databases and ontologies [4]. With their ability to access a
large and constantly updated knowledge base [15], KBQA systems
are more suitable for answering complex questions that require
domain-specific knowledge or information about recent events.

Complex Knowledge-based Question-Answering (C-KBQA) sys-
tems use natural language processing and artificial intelligence
techniques [8]. Natural language processing allows the system to
understand and interpret users’ questions, while artificial intel-
ligence enables the system to learn the characteristics of those
questions, their entities, properties, and relationships and to return
the appropriate values. Additionally, these systems have a robust
and up-to-date knowledge base, which allows the retrieval and
presentation of relevant and current information to users [15].

KBQA systems typically involve many steps in query processing,
from entity recognition to SPARQL query generation. In this work,
we propose a KBQA framework that features a practical and flexible
pipeline for complex knowledge-based question answering (KBQA).
This framework can serve as a model for other systems of this type,
including adaptations to other languages.

The proposed pipeline is designed to handle complex questions
involving multiple entities and properties and generate accurate
and complete SPARQL queries. A central feature of this pipeline is
its flexibility, allowing the replacement of entity recognition and
property extraction models with new ones that may offer better
performance or accuracy. Additionally, the pipeline can incorporate
refinements in SPARQL queries, using qualifier constraints for spe-
cific properties, increasing the completeness and accuracy of the
answers. We implemented methods to retrieve all properties related
to an entity and developed a system to dynamically fill placeholders
in templates with the correct values extracted from the knowledge
base. These methods ensure the pipeline can easily adapt to new
requirements and improvements, maintaining its effectiveness and
efficiency.

This structured approach ensures the system can handle complex
queries, decompose them, identify relevant entities and relation-
ships, and construct precise SPARQL queries to provide accurate
results. Using entity recognition, relation extraction, and template
matching, combinedwith effective ranking and slot filling, enhances
the accuracy of knowledge-based question answering. By structur-
ing the pipeline in a modular and flexible way, it can easily integrate
new models and rules, ensuring continuous improvements in accu-
racy and efficiency. Thus, the pipeline demonstrates how to handle
complex queries effectively and provides a solid foundation for
future adaptations and innovations in the field of KBQA systems.

This paper is organized as follows: Section 2 presents related
work, discussing existing approaches and their contributions to the
field. Section 3 describes the materials and methods used in this
study, including dataset preprocessing, template grouping by se-
mantic proximity, dummy template creation, and the tools used for
entity and property extraction. Section 4 presents and discusses the
obtained results, highlighting the tool combinations that achieved

the best performance. Section 5 concludes the work, discussing the
implications of the results and suggesting future research directions.

2 RELATEDWORK
Research in Knowledge-Based Question Answering (KBQA) has ex-
plored various approaches to enhance the precision and efficiency
of these systems, particularly when dealing with complex ques-
tions. This section reviews significant contributions across three
main areas: entity recognition, relation extraction, and template
matching.

2.1 Entity Recognition
Entity recognition is a fundamental task in KBQA, involving iden-
tifying entities mentioned in the user’s query. One notable work
in this area is TagMe [6], which introduces a technique for anno-
tating short text fragments with relevant Wikipedia hyperlinks.
The system leverages Wikipedia’s extensive collection of articles
and anchor texts to provide informative and accurate annotations.
The main technique used involves point identification, sense disam-
biguation, and annotation. Point identification analyzes the input
text to identify potential points that can be linked to Wikipedia
articles. Sense disambiguation selects each point’s most relevant
Wikipedia page, considering context and statistical information.
Finally, annotation adds hyperlinks to corresponding Wikipedia
articles, allowing users to access additional information and context
simply by clicking on the annotated points. TagMe demonstrates su-
perior performance and speed compared to other systems, making
it a valuable tool for entity recognition in short texts.

Another significant contribution in this field is Falcon [19], a
rule-based approach for linking entities and relationships in Wiki-
data. Falcon employs core principles of English morphology, such
as tokenization and N-gram tessellation, to link entity and relation
surface forms in short sentences to Wikidata entries. This method
includes a local knowledge base composed of DBpedia entities to en-
hance the recognition and linking process. Falcon provides a ranked
list of entities and relations annotated with their Internationalized
Resource Identifier (IRI) in Wikidata, aiding the NLP community in
entity and relation recognition. The approach outperforms existing
baselines in entity linking tasks, demonstrating high F-score val-
ues and robustness across various datasets like QALD-9 [16] and
LC-QuAD 2.0 [5].

2.2 Relation Extraction
Relation extraction is another crucial component of KBQA systems,
focusing on identifying and linking relationships between entities
within a query. SLING [13] is a semantic analysis framework de-
signed to link text relationships to knowledge bases accurately. The
approach integrates multiple methods, including statistical Abstract
Meaning Representation (AMR) mapping, distant supervision data
generation, and various relation-linking modules. The statistical
AMR mapping technique is pivotal in identifying relationships by
normalizing syntactic variations between sentences and provid-
ing strong predicates. Distant supervision data generation creates
training examples mapped to corresponding knowledge base rela-
tions, enhancing the system’s learning process. SLING leverages
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transformer-based architectures to encode AMR graphs and ques-
tion text for relation linking, achieving state-of-the-art performance
across datasets such as QALD-7 [22], QALD-9 [16], and LC-QuAD
1.0 [21].

Another innovative approach in relation extraction is presented
by [18], which proposes a sequence-to-sequence model enhanced
with structured data from the target knowledge base. This model
generates a sequence of relations based on the input question text,
enriched by an entity-linking system that queries the knowledge
base to retrieve candidate relations. The model’s decoder then
uses the enriched input representation to generate a structured
sequence of argument-relation pairs, considering the contextual
information and candidate relations. This approach significantly
improves relation-linking performance in question-answering sys-
tems, demonstrating notable enhancements over existing methods.

2.3 Template Matching
Template matching involves identifying patterns in user questions
and matching them to predefined templates, facilitating the genera-
tion of structured and well-formatted responses. In [3], the authors
explore machine learning models and preprocessing techniques
to classify natural language questions into appropriate templates
using the LC-QUAD 2.0 dataset. They train classifiers such as XG-
Boost and Random Forest, utilizing Part-of-Speech (POS) tagging
and FastText for preprocessing. POS tagging assigns grammatical
tags to words, helping the system understand the syntactic struc-
ture of questions, while FastText captures the semantic meaning
of words through embeddings. The combination of XGBoost and
POS+FastText preprocessing achieves superior accuracy in classify-
ing questions into relevant templates, showcasing the effectiveness
of template-based question answering.

Another noteworthy study is presented by [7], which introduces
a hereditary attention mechanism combined with template match-
ing to enhance semantic extraction from questions. This approach
categorizes complex questions into answer templates, leveraging
hierarchical structures within the questions. The hereditary atten-
tion mechanism operates bottom-up, where each neural network
cell inherits attention from another cell, capturing and prioritizing
the most relevant information at different levels of the question’s
structure. This method improves the robustness and accuracy of
KBQA systems, providing a reliable technique for answering com-
plex questions from knowledge bases.

2.4 Frameworks
Recent advancements in KBQA framework have highlighted the
effectiveness of integrating various methodologies to improve per-
formance in complex queries. Two works in this area are the RnG-
KBQA and ReTraCk framework, which present approaches to en-
hance the accuracy and generalization capabilities of KBQA frame-
work.

The RnG-KBQA system, developed by [24], addresses the limita-
tions of traditional KBQA systems that struggle with unseen knowl-
edge base (KB) schema items. RnG-KBQA combines a ranking-based
approach with a generation model to enhance coverage and gener-
alization. The system first ranks candidate logical forms based on
the question. Then, it uses a generation model conditioned on the

question and top-ranked candidates to create the final logical form.
This dual approach significantly improves performance, achieving
state-of-the-art results on the GRAILQA and WEBQSP datasets,
with notable improvements in zero-shot generalization.

However, RnG-KBQA also presents some limitations. The com-
plexity of combining ranking and generation can lead to longer
processing times and increased computational resource require-
ments. Additionally, the effectiveness of the generation model may
be limited by the quality of the training data, affecting the system’s
ability to handle ambiguous or poorly formulated queries.

The ReTraCk, developed by [1], introduces a flexible framework
that integrates multiple stages for entity recognition, relation ex-
traction, and ranking. ReTraCk emphasizes the importance of a
modular design, allowing for easy integration of different models
and techniques at each stage. The system has shown remarkable
performance in various benchmarks, demonstrating its adaptability
and efficiency in handling diverse KBQA tasks. The approach fo-
cuses on iterative refinement and ranking to enhance the accuracy
of the generated answers, contributing to the development of a
more robust KBQA framework.

Despite its advantages, ReTraCk also faces challenges. Integrat-
ing and adjusting multiple models and techniques can increase
the system’s complexity, making maintenance and updates more
difficult. Additionally, since ReTraCk relies on multiple processing
stages, any error in one of these stages can compromise the accu-
racy of the final answer. The modular approach, while flexible, can
result in inconsistencies when different modules are not perfectly
aligned. Moreover, ReTraCk is a resource-intensive system requir-
ing considerable computational resources, which can be a barrier
to deployment in production environments with limited resources.

These works underscore the importance of combining ranking
and generation techniques to overcome the limitations of the tra-
ditional KBQA framework, paving the way for more accurate and
generalizable solutions. By integrating advanced NLP and machine
learning models, both RnG-KBQA and ReTraCk contribute signif-
icantly to the field, offering valuable insights and methodologies
for future research in KBQA. However, the identified limitations
of these systems highlight the ongoing need for refinement and
innovation to improve the efficiency and effectiveness of KBQA
systems.

This work shares the same principles of these frameworks, such
as flexibility and their use for different datasets. However, our
approach stands out by focusing on complex queries, which often
require the integration of multiple pieces of information, reasoning
over data, and understanding nuanced context. The solution allows
new entity recognition and property extraction models if needed.
We implemented methods to retrieve all properties related to an
entity and developed a system to dynamically fill placeholders in
templates with the correct values extracted from the knowledge
base. These methods ensure the pipeline can easily adapt to new
requirements and improvements. Finally, the system’s structured
design can decompose complex queries, identify relevant entities
and relationships, and construct precise SPARQL queries using
entity recognition, relation extraction, template matching, ranking,
and slot-filling methods.
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3 MATERIALS AND METHOD
To validate our complex question-answering framework, we used
the LC-QUAD 2.1 dataset [9], a refined and cleaned version of LC-
QUAD 2.0. LC-QUAD 2.1 was chosen due to its structure, which
includes question templates and SPARQL queries with “dummy”
elements, facilitating subsequent filling with specific information.
This dataset was created based on the improvements made by [7].

The LC-QUAD 2.0 dataset [5] was created using the Amazon
Mechanical Turk crowdsourcing platform, resulting in over 30,000
complex questions intended to be answered by knowledge-based
question-answering (KBQA) systems. However, the original dataset
presented several inconsistencies, such as duplicate questions, mal-
formed questions, and extreme variations in question length. To
address these issues, [7] developed LC-QUAD 2.1. This new dataset
underwent a cleaning and standardization process, removing du-
plicate and malformed questions and adjusting question lengths to
ensure greater consistency. This process resulted in a cleaner and
more reliable dataset for testing KBQA systems.

The questions in this dataset are complex due to their multifac-
eted nature, involving multiple entities, relationships, and advanced
operations. These questions often require combining data from
different sources, applying temporal filters, and specific counting
operations. Additionally, many questions use qualifiers to provide
more detailed, contextually rich answers. Complexity also includes
the need for context disambiguation and handling multiple intents
in a single question. It also covers various question types, including
Boolean questions, counting operations, and questions requiring
string operations and temporal aspects. This diversity and complex-
ity are crucial for evaluating the robustness and effectiveness of
KBQA systems, ensuring they can handle realistic and challenging
queries.

We then started working on grouping templates by semantic
proximity. This process involved identifying common elements in
SPARQL queries, such as projections, jumps, filters, and logical
operators, and organizing them into coherent groups based on their
complexity and structure. Projections define the specific data to be
returned, while jumps represent the intermediate steps needed to
obtain that data by navigating relationships within the knowledge
graph. Filters narrow down results based on criteria like numeric
comparisons or string matches, and logical operators such as LIMIT,
ORDER BY, COUNT, and DISTINCT modify the presentation of
results.

To group the templates, we applied NLP techniques to analyze
the relationships between these components and measure their
semantic similarities. This allowed us to categorize the templates
into groups that reflect both their structural and semantic charac-
teristics. For example, Group 0 includes simple ASK queries that
verify the existence of relationships, while Group 1 also uses ASK
queries but involves multiple jumps between entities to verify more
complex relationships. Group 2 focuses on selecting distinct results.
As the complexity increases, groups such as 3 through 7 involve
counting entities, applying filters, and ordering results. The more
advanced groups, 8 through 12, handle multiple relationships be-
tween entities, require complex string matching, temporal filtering,
and often combine multiple values and nested conditions, signifi-
cantly increasing query complexity.

These grouped templates ensure that similar queries are orga-
nized in a way that preserves their logical structure, facilitating
efficient retrieval and adaptation for different questions. Empirical
validation using real datasets confirmed the effectiveness of these
groupings, resulting in improved template retrieval at runtime, al-
lowing the system to quickly and accurately handle a wide range
of complex questions.

Table 1: Examples of Grouped Templates

Group ID SPARQL Template
0 0.1 ASK WHERE { DUMMY_S DUMMY_P DUMMY_O }

0.2 ASK WHERE { DUMMY_S DUMMY_P ?obj
FILTER(?obj = DUMMY_F) }

0.3 ASK WHERE { DUMMY_S DUMMY_P ?obj
FILTER(?obj > DUMMY_F) }

0.4 ASK WHERE { DUMMY_S DUMMY_P ?obj
FILTER(?obj < DUMMY_F) }

2 2.1 SELECT DISTINCT ?answer WHERE { ?answer
DUMMY_P DUMMY_O }

2.2 SELECT DISTINCT ?answer WHERE { DUMMY_S
DUMMY_P ?answer }

As shown in Table 1, these examples illustrate how templates
with similar structures and semantic functions are grouped to facil-
itate retrieval and adaptation. By grouping templates in this way,
the system can reuse and adapt predefined templates more effi-
ciently, answering a wide range of complex questions accurately
and quickly.

The creation of dummy templates was another fundamental as-
pect of the work. These templates are generic SPARQL queries
where placeholders, such as DUMMY_S for the subject, DUMMY_P
for the predicate, and DUMMY_O for the object replace specific
elements. Analyzing existing SPARQL queries allowed the identi-
fication of common patterns, which were generalized into repre-
sentative dummy templates. These templates were then grouped
based on semantic similarities, using NLP techniques to organize
the templates efficiently.

The dummy elements in LC-QUAD 2.1 are essential for our
framework because they allow a structured and systematic slot-
filling process while generating the final SPARQL queries. These
dummies are replaced by actual values after the correct entities,
properties, and filters have been identified and extracted. Moreover,
queries with dummies are retrieved through models trained by [7]
and [3]. These models were developed to identify and structure
complex questions, facilitating the creation of SPARQL queries that
use dummies to represent entities and properties to be filled later.

To use this dataset in the framework, we performed initial pro-
cessing starting from the gold SPARQL query for each question.
We extracted entities, properties, and filters. At the end of the
pipeline processing, this extracted information is used to evaluate
the system, checking whether all expected entities, properties, and
filters or only a portion were found. This allows us to measure
the precision and efficiency of the framework by comparing the
expected information, ensuring that the system is aligned with the
gold SPARQL query.
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3.1 Tools for Entity and Property Extraction
With information about the templates, entities, and properties
needed to answer each question, we began searching for tools
that could efficiently perform this extraction. We identified three
main tools: DeepPavlov, Falcon 2.0, and Spacy. Each of these tools
has unique features that contribute to the accuracy and coverage
of our system.

DeepPavlov is an open-source NLP library that offers a variety of
pre-trained models for different NLP tasks, including named entity
recognition (NER) and entity linking. The DeepPavlov library is
known for its flexibility and efficiency, allowing customization of
models as needed.

Specifically, we used the Entity Linking model from DeepPavlov.
This model operates in two main stages. The first is named entity
recognition (NER), where the model identifies entities in the text
using a combination of linguistic rules and deep learning models.
It applies tokenization techniques, where the text is divided into
tokens, which are analyzed to identify possible entities. Then, entity
disambiguation, where the Entity Linking model links these entities
to specific entries in a knowledge base, such as Wikidata. This
process uses word embeddings, which are word representation
vectors, to calculate similarities between the identified entities in
the text and the candidates in the knowledge base, selecting the
best match.

Falcon 2.0 links entities and relations in short texts specifically
designed toworkwithWikidata. According to [19], Falcon 2.0 uses a
rule-based linguistic approach. The tool performs tokenization and
compounding, dividing the text into tokens using English morphol-
ogy rules. Tokens representing entities or relations are identified,
and compound tokens (like “operating income”) are treated as a
single unit. It also uses N-Gram tiling techniques to combine to-
kens close to the text and can form a composite entity or relation.
When necessary, the model can also split N-Grams to refine the
identification of entities and relations.

Falcon 2.0 generates a list of candidate entities and possible
relations from Wikidata for each identified token. This is done by
consulting a local knowledge base that contains alignments of labels
and aliases of entities and relations from Wikidata. The generated
candidates are then ranked based on similarity and the probability
of a correct match. The model uses rules and an inference process
to determine the most likely candidates. Falcon 2.0 stands out for its
ability to simultaneously link entities and relations, which is crucial
for answering complex questions involving multiple entities and
their interrelations. The tool is available as an online API, making
it accessible and easy to integrate into our system.

Finally, Spacy is a widely used open-source NLP library known
for its speed and efficiency. It offers robust models for tasks such
as named entity recognition, dependency parsing, and text classifi-
cation. We used Spacy’s entity linking model. The text is processed
through a pipeline that includes tokenization, lemmatization, POS
tagging (part-of-speech tagging), and dependency parsing. Each of
these steps contributes to accurately identifying entities in the text.

Spacy uses a deep learning model trained on large annotated
datasets to identify entities in the text. This model recognizes enti-
ties in various contexts and domains. After identifying the entities,
the entity linking model associates them with a knowledge base,

such as Wikidata. Spacy uses entity embeddings and a vector sim-
ilarity approach to find the best match for each identified entity.
The library allows significant customizations, enabling adjustments
to model parameters and adding new entities and relations to the
knowledge base as needed.

3.2 Tools Integration
After selecting the tools, we extracted entities and properties from
each question using the described tools. Each tool was applied
independently, and the results were compared to identify comple-
mentarities and redundancies. This process was fundamental to
ensuring that all relevant entities and properties were captured,
increasing the accuracy and coverage of our system.

3.2.1 Additional Properties Retrieval. We noticed that many prop-
erties were still not captured despite using these tools. To address
this, we implemented a method to retrieve all properties related to
an entity, treating it both as a subject and as an object.

To retrieve these additional properties, we performed specific
SPARQL queries. When the entity was treated as a subject, the
query searched for all properties where the entity was the subject
of the relationship. Conversely, when the entity was treated as an
object, the query searched for all properties where the entity was
the object of the relationship. These querying processes allowed
us to recover a broader set of properties related to the identified
entities.

The queries were executed for each identified entity, and the
results returned the related properties and descriptions. These ad-
ditional properties were then integrated into the original dataset,
improving the coverage and accuracy of our system. This additional
process allowed us to expand the set of captured properties, enhanc-
ing the comprehensiveness and precision of our system. However,
there was still a type of property that we could not accurately
capture.

3.2.2 Qualifiers Constraints for Specific Properties. Our system
could not generate correct answers for specific templates even
after using the tools and retrieving additional properties. We imple-
mented an additional approach to address these cases using qualifier
constraints of specific properties. Qualifiers are metadata that add
context to a statement in a knowledge base like Wikidata, speci-
fying additional conditions that must be met. These qualifiers can
be essential for correctly understanding the application of certain
properties in specific contexts.

To identify and use these qualifiers, we developed specific SPARQL
queries. These queries searched for the constraints associated with
particular properties, allowing us to refine data extraction further
and improve the accuracy of the answers generated by our system.
The query was structured to identify “qualifier value” constraints
associated with a specific property. This query selects objects and
their labels associated with the specified property’s constraints.

We ran this query for problematic properties identified during
the query generation process. By retrieving these constraints, we
could identify the additional conditions needed for the correct prop-
erty application. These qualifier constraints significantly improved
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our system’s ability to generate accurate answers for the problem-
atic templates. This allowed us to overcome previous limitations
and increase the framework’s overall precision.

3.2.3 Ranking. Although we had a relatively small number of enti-
ties, the number of properties was very large. This made it difficult
to combine entities with properties, resulting in many possible
SPARQL queries. To address this problem, we used the relation
ranking module of DeepPavlov to filter and select the most relevant
properties for each question.

The relation ranking module of DeepPavlov is designed to take a
question and a set of properties as input and then rank them based
on their relevance using a ranking model. The module assigns a
specific probability to each property, allowing the filtering of the
most relevant ones for the given question. This process is essential
to reduce the complexity of slot filling, where combining all enti-
ties with all possible properties would result in a huge number of
queries.

The relation ranking process uses word embeddings to represent
words in vector space semantically. These embeddings are loaded
from pre-trained models such as fastText, used in our case. The
ranking module receives the set of previously extracted properties
for each question. It processes these properties along with the ques-
tion and calculates the probabilities of the properties being relevant
to the question. The softmax layer in the model is responsible for
assigning probabilities, allowing only the most probable proper-
ties to be selected. Thus, for each question, we selected the top 5
properties from the ranking. This filtered the entities, keeping only
those related to the selected properties. This process reduced the
number of properties to be considered and restricted the relevant
entities, making the combination of entities and properties more
manageable and precise. This approach was necessary to reduce the
complexity of slot filling and avoid generating excessive SPARQL
queries. By focusing on themost relevant properties and entities, we
improved efficiency, ensuring the system could adequately respond
to complex questions.

3.2.4 Filters. In addition to extracting entities and properties, a
crucial step in our system was the extraction of filters. Filters are
additional components of SPARQL queries that restrict results based
on specific criteria, such as integer values, dates, or other conditions.
Identifying these filters is essential for generating correct SPARQL
queries.

Since we already knew which templates contained filters, we
developed rules based on regular expressions (regex) specific to each
template type. Each set of filters was associated with these specific
templates. Regex are tools used to identify specific patterns within
texts. First, we analyzed the templates to identify common filter
patterns, such as dates and numbers. Then, we defined specific regex
to capture these values in each template type and implemented
these rules in the processing pipeline. For example, we used regex
to identify dates or integer numbers in questions that contained
these as filters. We tested these rules on a validation set to ensure
the correct extraction of filters and adjusted the regex as necessary
to handle variations in question patterns.

After extraction, the filters were integrated into the SPARQL
query processing pipeline. Each filter was associated with the corre-
sponding entities and properties within the context of the specific

templates, completing the query construction. This process allowed
our system to handle complex questions with specific conditions,
ensuring that the generated SPARQL queries were accurate. The
regex-based approach specific to each template type proved efficient
in identifying and extracting filters directly from the questions, im-
proving the system’s ability to accurately respond to a wide range
of questions.

3.3 Pipeline
Our KBQA system was designed to efficiently handle complex
queries by breaking the process into several stages. Figure 1 de-
picts the complete workflow for answering the query: “Which films
directed by Quentin Tarantino were nominated for an Oscar?”

Quentin Tarantino

Oscar

WD:Q3772

WD:Q19020

Instance of, sex or gender, place of

birth, spouse, occupation, ...

Nominated for: P1411

Director: P57

RankingRelation Extraction

Named Entity Recognition Entity Linking

Question

Which films directed by Quentin Tarantito

were nominated for an Oscar?

SELECT ?s WHERE { ?s DUMMY_P DUMMY_O .

?s DUMMY_P DUMMY_O }

{ ?s wdt:p57 wd:Q3772 .

?s wdt:P1411 wd:Q19020 }

Slot FillingTemplate matching

SELECT ?s WHERE { ?s wdt:p57 wd:Q3772 .

?s wdt:P1411 wd:Q19020 }

Query Execution

Pulp Fiction, Inglourious Bastards,

Django Unchained

Results

Figure 1: Workflow of the KBQA system for the question:
“Which films directed by Quentin Tarantino were nominated
for an Oscar?”

Initially, the input question is parsed to understand its structure
and intent. Key entities such as “Quentin Tarantino” and “Oscar”
are recognized through Named Entity Recognition (NER) and sub-
sequently linked to their corresponding entries in the knowledge
base (in our case, the Wikidata). Relationships between these enti-
ties and other relevant attributes are then extracted. These entities
and relations are ranked based on their relevance to the query,
prioritizing properties like “nominated for” (P1411) and “director”
(P57).

Next, the query is matched to a predefined template to help gen-
erate the appropriate SPARQL query. Specific slots in the SPARQL
query are filled with the identified entities and properties. The
completed SPARQL query is executed against the knowledge base,
retrieving the relevant data. For instance, the query SELECT ?s
WHERE ?s wdt:P57 wd:Q3772 . ?s wdt:P1411 wd:Q19020 fetches
films directed by Quentin Tarantino and nominated for an Oscar.
The results are then processed and presented, identifying films
like “Pulp Fiction”, “Inglourious Basterds”, and “Django Unchained”.
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This structured approach ensures the system can handle complex
queries by breaking down the question, identifying relevant entities
and relations, and constructing precise SPARQL queries to provide
accurate results. Using entity recognition, relation extraction, and
template matching, combined with effective ranking and slot filling,
enhances the accuracy of knowledge-based question answering.

The central idea of our framework is to provide robust flexi-
bility, allowing the insertion and removal of models and rules as
needed. This includes replacing existing entity recognition systems
with new, potentially more accurate models, and allowing multiple
systems to operate in parallel for greater accuracy. The property
extraction component is tunable, allowing you to use different mod-
els or updated rules to refine SPARQL queries. The classification
system can be modified in some parameters or completely replaced
to prioritize the most relevant entities and properties.

This flexibility is crucial for adapting the system to diverse needs
and contexts, enabling continuous improvements in accuracy and
efficiency. By allowing you to add and remove models, with ad-
vances in NLP and AI techniques, the framework ensures it can
handle complex queries, identify relevant entities and relationships,
and build accurate SPARQL queries to provide accurate results.
This structured approach increases the accuracy of answers to
knowledge-based questions.

3.4 Metrics Description
To evaluate the effectiveness of our KBQA system, we used three
metrics that allow us to measure both the precision and coverage
of the answers provided: Correct Entities, Correct Properties, and
Corret SPARQL. The Correct Entities are the number of enti-
ties correctly identified in the queries. Identifying entities accu-
rately is crucial because entities represent the key components of a
query. For example, in the query “Which films directed by Quentin
Tarantino were nominated for an Oscar?”, “Quentin Tarantino” and
“Oscar” are entities that need to be correctly identified. The Cor-
rect Properties are the number of properties correctly identified
in the queries. Properties describe the relationships or attributes
of entities. For example, in the query “Which films directed by
Quentin Tarantino were nominated for an Oscar?”, “directed by”
and “nominated for” are properties that must be identified accu-
rately. Finally, the Correct SPARQL is the percentage of queries
where the SPARQL query was generated correctly. This metric
is critical as it reflects the overall ability of the system to under-
stand and translate natural language queries into correct SPARQL
queries, which are necessary for retrieving accurate information
from knowledge bases.

These metrics are essential for a comprehensive evaluation of
the KBQA system. They provide a detailed breakdown of where
the system performs well and where there are gaps. For example,
high entity accuracy but low property accuracy would suggest that
while the system is good at recognizing subjects, it struggles with
understanding the relationships between them.

By analyzing metrics such as correct entities and properties, we
can identify specific areas where the system needs improvement.
For example, if many properties are incorrect, we might need to
enhance our property extraction algorithms. Consider the query
“Which films directed by Quentin Tarantino were nominated for

Table 2: Correct Entities, Properties, and SPARQL queries
found

Group Entities (%) Properties (%) SPARQL (%)
0 82.32 67.09 62.94
1 84.92 86.67 51.67
2 76.66 52.47 37.14
3 94.30 74.68 73.42
4 65.01 54.92 14.29
5 81.76 55.97 14.32
6 42.62 24.42 0.00
7 96.76 51.18 10.03
8 97.50 84.38 76.25
9 53.96 7.17 2.26
10 95.06 66.67 30.86
11 55.06 32.91 0.00
12 84.46 50.90 14.86

Average 77.72 54.57 29.85
Average w/ filter 85.87 64.49 38.58

an Oscar?”. This query involves identifying the entity “Quentin
Tarantino” and the properties “directed by” and “nominated for”.
The SPARQL query generated from this should accurately reflect
these components to retrieve the correct films from the knowledge
base.

**Dummy Query:**

SELECT ?ent WHERE { ?ent DUMMY_P DUMMY_O . ?ent DUMMY_P ?obj

} LIMIT DUMMY_F

**Complete SPARQL Query:**

SELECT ?film WHERE {

?film wdt:P57 wd:Q3772. # P57 represents "directed by" and

Q3772 is Quentin Tarantino

?film wdt:P1411 wd:Q19020. # P1411 represents "nominated

for" and Q19020 is Oscar

} LIMIT 10

In this example, if the entities “Quentin Tarantino” and “Os-
car” are not identified correctly, or if the properties “directed by”
and “nominated for” are not mapped correctly to their SPARQL
representations, the query will fail to return the correct answer.

4 RESULTS AND DISCUSSION
Table 2 presents detailed results for the different tested tool combi-
nations, highlighting the combination that showed the best perfor-
mance: DeepPavlov, Falcon, and SpaCy.

The combination of DeepPavlov, Falcon, and SpaCy was selected
after testing with other tools, which generally did not yield good
results. These three tools proved to be the most efficient, com-
plementing each other where one might fail individually. Other
options were discarded due to recurring issues in achieving the
necessary accuracy. Thus, this combination ensured a more reliable
and balanced performance. The following sections discuss the main
results observed.
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4.1 Entity Recognition
Entity recognition is crucial for the accuracy of KBQA queries. The
combination of tools was highly effective in identifying entities,
achieving an entity accuracy rate of up to 95.06% in some template
groups. This high rate of correct entity identification demonstrates
the robustness of the tools in handling diverse and complex queries.
The average entity accuracy rate was 77.72%, and when filtering the
groups with the greatest difficulty (groups 6, 9, and 11), it increased
to 85.87%. However, there is still room for improvement in reducing
the number of missing entities, which can further enhance the
overall framework performance.

4.2 Property Extraction
Property extraction showed strong performance, with accuracy
rates reaching up to 86.67%. Accurately extracting properties is es-
sential for generating precise and relevant answers to user queries.
However, the average property accuracy rate (54.57%) was lower
than that of entities (77.72%), which can be explained because prop-
erty extraction depends on the correct identification of entities. If
the entity is incorrect, the property will likely be incorrect. By fil-
tering the groups with the greatest difficulty, the average property
accuracy rate increases to 64.49%. The results indicate that the tools
effectively understand and extract the required properties from
queries. Continuous refinement of property extraction models will
be beneficial in addressing this gap.

4.3 Overall Performance
The overall performance of the KBQA framework, reflected in the
SPARQL accuracy rates, varied among different template groups.
The highest SPARQL accuracy achieved was 76.25%, indicating that
the system can generate highly accurate SPARQL queries under
optimal conditions. The overall average SPARQL accuracy was
29.85%, and when filtering the groups with the greatest difficulty,
this average increases to 38.58%. This demonstrates the potential of
the tools to provide reliable and precise answers to complex queries.
However, further enhancements in entity and property extraction
will be critical to achieving consistently high performance across
all queries.

4.4 Discussion
The results obtained have significant implications for the devel-
opment of the KBQA framework. The 0 accuracy in some groups
reflects the difficulty of handling complex questions, where multiple
contextual meanings, intricate relationships between entities, and
the need to infer implicit information make the task challenging.
Improvements in context disambiguation and entity extraction are
essential, as incorrect identifications lead to inaccurate answers.
These challenges explain why other works often avoid complex
questions, focusing on simpler issues where existing tools are more
effective. Additionally, integrating inference mechanisms is crucial
to capture implicit contextual information, providing more com-
plete answers. Finally, enhancing scalability and performance is
vital to ensure that the framework can handle large volumes of
data.

Although the combination of DeepPavlov, Falcon, and SpaCy has
shown promising results, there is still much room for improvement.

So far, no fine-tuning has been performed on the models used, but
this practice could bring significant improvements, especially in
the groups where we encountered failures. The analysis of the
results highlights key areas for future advancements, which will
be essential for dealing with complex questions and advancing
knowledge-based question-answering frameworks.

5 FINAL REMARKS
This work addresses the challenges and advancements in devel-
oping a practical and flexible pipeline for KBQA. We proposed a
pipeline that can serve as a model for other KBQA systems, in-
cluding adaptations to other languages. The pipeline is designed to
handle complex questions involving multiple entities and proper-
ties, generating accurate and complete SPARQL queries.

The pipeline allows entity recognition and property extraction
models to be replaced with new ones that may offer better perfor-
mance or accuracy. We also implemented refinements in SPARQL
queries, using qualifier constraints for specific properties, increas-
ing the completeness and accuracy of the answers. Additionally, we
developed methods to retrieve all properties related to an entity and
dynamically fill placeholders in templates with the correct values
extracted from the knowledge base.

Our structured approach ensures the system can handle complex
queries, decompose them, identify relevant entities and relation-
ships, and construct precise SPARQL queries to provide accurate
results. Entity recognition, relation extraction, and template match-
ing, combined with effective ranking and slot filling, have increased
the accuracy of knowledge-based question answering.

The results highlight the effectiveness of the DeepPavlov, Falcon,
and SpaCy combination, which demonstrated superior performance
in identifying and extracting entities and properties. However, there
is still room for continuous improvement, especially in reducing
the number of unidentified entities and properties. Future research
should improve context disambiguation techniques, enhance prop-
erty extraction models, refine SPARQL queries for properties and
qualifiers, and integrate more advanced inference mechanisms.

By structuring the pipeline in a modular and flexible way, it
can easily integrate new models and rules, ensuring continuous
improvements in accuracy and efficiency. Thus, the pipeline not
only demonstrates how to effectively handle complex queries but
also provides a solid foundation for future adaptations and innova-
tions in the field of KBQA systems. Integrating KBQA with other
emerging technologies, such as the Internet of Things (IoT), can
open new possibilities for practical applications, further increasing
the applicability and effectiveness of these systems.
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