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ABSTRACT
Widget recognition is crucial for automated Android black box test-
ing. Over the past ten years, different industrial tools and academic
works have been available for identifying Graphical User Interface
(GUI) components in Android screens. Traditional identification
methods, like GUI hierarchy parsing, often struggle with dynamic
content and complex structures. In contrast, Computer Vision (CV)
techniques provide greater robustness and flexibility to adapt to dif-
ferent screen resolutions, design specifications, and patterns. How-
ever, the CV-based solutions available are still limited concerning
the variety of widgets that can be recognized. Moreover, the current
identification of GUI components mainly relies on classification,
which can lead to ambiguous lists with repeated elements. In this
paper, we combine different CV-based techniques to extract context-
based descriptions for each widget, to enhance the identification
process by going beyond class recognition for describing widgets.
We also implemented two primary CV-based approaches for widget
recognition: Object Detection combined with Classification, and
a One-Stage Recognition method. We trained and evaluated the
approaches on a custom 105 classes widget dataset. Moreover, we
present a Computer Vision-based method for describing widgets
using their contextual meaning on Android screen captures.
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1 INTRODUCTION
Automated testing of Android applications is a critical component
in ensuring the quality and reliability of software. One key aspect
of this process is widget recognition, which involves identifying
and interacting with various elements of a Graphical User Interface
(GUI) [36]. Effective widget recognition allows testing frameworks
to simulate user actions, verify the presence and state of User In-
terface (UI) components, and ensure that applications respond cor-
rectly to user inputs. This is essential for detecting and diagnosing
issues that might not be apparent through manual testing alone,
ultimately leading to higher-quality software [34].

Current approaches to widget recognition primarily fall into
two categories: GUI hierarchy parsing and Computer Vision (CV)
techniques. The first one involves extracting and analyzing the
structural information of the application’s UI, while CV techniques
rely on image processing to recognize widgets directly from screen-
shots [4, 17, 31, 33, 40]. While GUI hierarchy parsing is intuitive
and straightforward, it often struggles with dynamic content and
complex structures, leading to incomplete or inaccurate results.
On the other hand, CV-based methods offer greater flexibility and
robustness, particularly in environments with frequent interface
changes or non-standardized structures [37].

In this paper, we explore and compare two primary approaches
to widget recognition: Object Detection combined with Classifica-
tion, and a One-Stage Recognition method. We also address how
we generated two datasets tailored for deep learning widget clas-
sification and recognition. Our data and recognition approaches
focus on identifying a wide variety of widgets, up to 105 differ-
ent classes, and generating UI context-based descriptions for each
widget, attempting to expand the scope of automated black box
Android testing [37].

The main contributions of our work are:
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Figure 1: Two main approaches identified in the literature and industrial tools.

(1) We have trained two widget recognition approaches using
a dataset of 105 classes of GUI components and compared
their performance.

(2) We have trained and evaluated awidget identificationmethod
that is not limited to class recognition but generates context-
based information for complementing the widget descrip-
tion.

To the best of our knowledge, this is the first widget identification
approach (recognition + smart description) that focus on identifying
a larger variety of widgets, up to 105 different classes, and generates
a context-based description for each widget identified.

The rest of the paper is organized as follows: section 2 reviews
the main knowledge and related works with this research. Section
3 explains our methodology, detailing each stage of the widget
identification process, including recognition, smart description,
and the datasets used. Section 4 presents the evaluation of our
methods, comparing the two recognition techniques and assessing
the performance of our smart descriptor method. We also address
five research questions to demonstrate our contributions. Finally,
sections 5 and 6 provide our final considerations and conclusions,
respectively.

2 BACKGROUND AND RELATEDWORKS
Widget recognition is crucial for Android testing automation tasks
such as GUI and functional verification. It allows the testing frame-
work to interact with and validate the behavior of the application’s
UI elements [53]. By recognizing widgets, automated tests can sim-
ulate user actions, verify the presence and state of UI components,
and ensure that the app responds correctly to user inputs. This level
of interaction is essential for issues detecting and diagnosing that
might not be apparent through manual testing alone, leading to
higher quality and more reliable software. Moreover, widget recog-
nition facilitates the creation of more robust and maintainable test
scripts, as the tests can adapt to cross-device-release changes in the
UI layout or design without requiring extensive manual updates
[16].

Furthermore, maximizing the number of widget types that a
GUI recognizer can identify is paramount for automated Android
testing, as it directly influences the comprehensiveness and accu-
racy of the testing process. Diverse widget recognition ensures the
testing framework can interact with all elements of an application’s
interface, from basic buttons and text fields to complex custom
widgets and dynamic content. Limitations in recognizing certain

widget types can lead to incomplete testing and overlooked bugs
[3]. By expanding the range of recognized widget types, developers
can ensure that their automated tests cover a wider spectrum of UI
elements, thereby improving the overall quality and stability of the
application [49].

Nowadays, several industrial and academic solutions are avail-
able for automated GUI testing. These solutions were implemented
following two main approaches: GUI hierarchy parsing and Com-
puter Vision (CV) techniques for widget recognition. Moreover,
some of these approaches extract the contextual meaning of the
GUI elements, resulting in more detailed and complete identifiers.

2.1 GUI hierarchy parsing for widget
identification

Component recognition through metadata, such as dump hierar-
chies, leverages the structural information of the application’s UI
to identify and interact with various widgets. This method relies on
parsing the UI’s XML or other hierarchical representations to ex-
tract widget properties and relationships, allowing precise targeting
and manipulation during testing. This can be done using software
[18, 21, 30, 32] or employed by frameworks and tools responsible
for assisting in Android testing [2, 4–7, 13, 19, 20, 25, 26, 28, 33, 38,
40, 46, 48, 51, 54, 55, 58].

Although GUI hierarchy parsing for widget recognition is an
intuitive and easy-to-implement solution, it has several notable lim-
itations. First, it often struggles with dynamic content, and complex
and deeply nested structures, leading to incomplete or inaccurate
parsing results [36]. Moreover, this approach can be significantly
hindered by variations in widget naming conventions and incon-
sistencies in hierarchical organization across different applications
[34]. Additionally, it tends to perform poorly when encountering
custom widgets or those that deviate from standard GUI frame-
works, as these elements may not be accurately represented in the
hierarchical data [36]. Furthermore, the reliance on a static repre-
sentation of the GUI state can limit the technique’s effectiveness in
real-time or interactive environments where the GUI can change
frequently. This can be translated into maintenance costs and poor
portability of automation scripts. Finally, GUI hierarchy parsing
can be computationally expensive, making it less suitable for appli-
cations that require real-time performance or those operating on
resource-constrained devices [36].
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Figure 2: Research steps for widget recognition and description using Computer Vision techniques.

Figure 3: Number of classes (a) and samples (b) of Rico, Redraw, and VINS original
datasets.

2.2 Computer Vision-based widget recognition
CV-based solutions offer distinct advantages over GUI hierarchy
parsing for widget recognition in software applications. Primarily,
Computer Vision techniques provide a more robust and flexible
approach, as they can recognize and adapt to a wide variety of
visual styles, themes, and customizations that GUIs often employ
[37]. This adaptability is crucial in environments where interfaces
frequently change or lack standardized structures [34]. Further-
more, CV methods do not rely on the underlying code structure or
access to the application’s source code, making them applicable to
a broader range of scenarios, including black-box applications [14].
They also enhance cross-platform compatibility since the visual
elements remain consistent regardless of the operating system or
the framework used to build the GUI [36].

CV-based widget identification have been addressed through two
main stages in the academic and industrial solutions [43]. Figure
1 illustrates them: widget recognition and description. The first one
aims to localize and classify widgets on screen capture images.
For this recognition task, we identified two recurrent approaches:
Object Detection + Widget Classification [27, 31, 43, 52, 59, 61] and
One-Stage Recognition [1, 12, 14, 22, 44, 57, 60]. Sparsely, some
works also included the second stage, the widget description stage,
whose goal is to generate more detailed information about the GUI
element [10, 11, 29, 35, 39, 41, 43, 56, 62]. In other words, this stage
seeks to differentiate GUI elements of the same class according to
their contextual meaning on the screen. Figure 1 shows a screen
capture fragment of the “Settings” application that contains three
GUI elements: an “Icon arrow backward”, a text label “Display”, and
an “Icon search”. Thewidget recognition stage localizes and classifies
the elements according to a set of class names, in this example,

(a) (b)

Figure 4: Example of “Multi-Tab” non-atomic widget (a) and “Text Button” atomic
widget (b). Non-atomic widgets contain different atomic components, and their center

coordinates (x,y) may have no effect during automated interactions (a).

“Icon”, “Text”, and “Icon”. Then, with the widget description stage,
the class information is complemented with the icons sub-category,
“Icon-arrow backward” and “Icon search”, and the actual content of
the text element “Display”.

In automated Android testing scenarios, like functionality tests,
performing a stage one + stage two pipeline will generate better wid-
get representations for maximizing the reproducibility of test steps.
Moreover, GUI tests will improve the precision and also readability
of bug reports, since problematic widgets will be fully described
and easy to localize, which is desirable by Quality Assurance (QA)
and Development teams [36].

It is important to highlight that according to our study, only a few
solutions attempt to go beyond class-basedwidget identification [11,
39, 41]. Also, most of these works use the UI metadata information
for locating and classifying the GUI elements, which is not scalable
and leads to incompletely described widgets. Moreover, these works
are limited concerning the variety of widgets that can be recognized,
from 10 to 15 different classes [35, 43, 62].

To address the above limitations, we developed a methodology
with two main goal: to expand the recognition capacity in terms
of widget classes and to enhance the contextual description of
the GUI components identified. Our solution is based on state-of-
the-art Object Recognition techniques for widget localization and
classification. Novelty, we present a combination of CV techniques,
called Smart Descriptor, for contextual-based widget description.

3 METHODOLOGY
Figure 2 illustrates our research methodology. Firstly, we selected
a dataset to work with Computer Vision techniques for widget
recognition and description. Then, we implemented the most re-
current approaches in the literature and industrial solutions for

135



WebMedia’2024, Juiz de Fora, Brazil López et al.

widget recognition: Object Detection + Classification, and One-
Stage Widget Recognition. After that, we studied how to extract
contextual information about text, images, and “context-dependent”
widgets to generate descriptions for those GUI components. Finally,
we evaluated the widget recognition and description methods using
appropriate metrics for each technique.

3.1 Mobile GUI dataset
Rico [15, 24], ReDraw [42, 43] and VINS [8, 9] datasets are the most
recurrently used collections for widget recognition, publicly avail-
able. Figure 3 shows the number of classes (a) and samples (b) for
each one of the three datasets. Rico is the largest, with 782, 589
Region of Interest (RoI) of widgets in different screenshots mined
over 9.3k free Android apps from 27 categories [24]. His extension
makes Rico ideal for working with deep-learning algorithms. How-
ever, Rico is noisy, presenting wrong and missing GUI component
bounds in the semantic annotations [14, 37]. Still, to our knowledge,
Rico is the Android screen capture dataset with a greater variety of
widgets, specifically 115 classes, and 98 icon types [24]. Moreover,
Rico includes the GUI hierarchy for each screen capture, which
contains valuable widget information such as the actual “text” for
components like “labels” and “text buttons”, which serve as ground
truth data for evaluating GUI recognition methods [37].

This work seeks to recognize and describe widgets while maxi-
mizing their variety. Regarding this, we decided to work with the
Rico dataset because it is publicly available and has the largest
number of annotated classes and Android screenshots [37]. Nev-
ertheless, we did not work with the total of 213 types of widgets
annotated on the original Rico dataset.

We analyzed the Rico classes and grouped them into categories:

• 8 Atomic classes1;
• 13 Container classes2;
• 98 “Icon” types3;
• 27 “List Item” sub-types4;
• 3 “Pager Indicator” sub-types5;
• 7 “Text” sub-types6;

1Atomic classes: “Checkbox”, “Input”, “Number Stepper”, “On/Off Switch”, “Pager
Indicator”, “Radio Button”, “Slider”, “Text Button”
2Container classes: “Advertisement”, “Background Image”, “Bottom Navigation”, “But-
ton Bar”, “Card”, “Date Picker”, “Drawer”, “Map View”, “Modal”, “Multi-Tab”, “Toolbar”,
“Video”, “Web View”
3“Icon” types: “add”, “arrow_backward”, “arrow_downward”, “arrow_forward”, “ar-
row_upward”, “attach_file”, “av_forward”, “av_rewind”, “avatar”, “bluetooth”, “book”,
“bookmark”, “build”, “call”, “cart”, “chat”, “check”, “close”, “compare”, “copy”, “dash-
board”, “date_range”, “delete”, “description”, “dialpad”, “edit”, “email”, “emoji”, “ex-
pand_less”, “expand_more”, “explore”, “facebook”, “favorite”, “file_download”, “fil-
ter”, “filter_list”, “flash”, “flight”, “folder”, “follow”, “font”, “fullscreen”, “gift”, “globe”,
“group”, “help”, “history”, “home”, “info”, “label”, “launch”, “layers”, “list”, “location”,
“location_crosshair”, “lock”, “menu”, “microphone”, “minus”, “more”, “music”, “na-
tional_flag”, “navigation”, “network_wifi”, “notifications”, “pause”, “photo”, “play”,
“playlist”, “power”, “redo”, “refresh”, “repeat”, “reply”, “save”, “search”, “send”, “set-
tings”, “share”, “shop”, “skip_next”, “skip_previous”, “sliders”, “star”, “swap”, “switcher”,
“thumbs_down”, “thumbs_up”, “time”, “twitter”, “undo”, “videocam”, “visibility”, “vol-
ume”, “volume”, “warning”, “weather”, “zoom_out”
4“List-Item” sub-types: “add”, “avatar”, “book”, “bookmark”, “call”, “chat”, “check”,
“close”, “date_range”, “delete”, “email”, “emoji”, “facebook”, “favorite”, “flash”, “folder”,
“font”, “fullscreen”, “location”, “more”, “national_flag”, “notifications”, “playlist”, “set-
tings”, “sliders”, “star”, “warning”
5“Pager Indicator” sub-types: “menu”, “more”, “sliders”
6“Text” sub-types: “check”, “close”, “date_range”, “favorite”, “font”, “photo”, “wallpaper”

• 54 “Text Button” sub-types7;
• 3 Confusing classes8 which samples have an identical ap-
pearance with atomic samples.

In this work, we created our dataset by extracting all samples
from the 8 Atomic classes and the 97 Icon types.

We decided to exclude Container classes since they accom-
modate other clickable elements inside, which may demand more
complex interaction flows in test automation tools and lead to incor-
rect interactions. For example, as shown in Figure 4(a), interacting
with a “Multi-Tab” widget is impossible through a single tap on the
center coordinate. Instead, it requires a second routine for recog-
nizing the contained widgets, and then, selecting one of them to
interact with. In this figure, the red lines indicate that the center of
the “Multi-Tab” element does not correspond to a valid clickable
coordinate. On the other hand, as shown in Figure 4(b), “Text But-
tons” can be triggered with a single tap. Green lines show that the
center of this widget leads to activating the “Log in” action.

Moreover, we also excluded classes from the following sub-type
groups: “List Item”, “Pager Indicator”, “Text” and “Text But-
ton”. Samples of these classes are originally annotated in Rico as
belonging to more than one class. However, visually they have
the same appearance, i.e., “Text Button-delete” and “Icon-delete”,
have the same “image pattern” but are annotated as belonging to
more than one class. This is considered noisy information that may
hinder the convergence of machine learning algorithms. Accord-
ing this, the Confusing classes was not considered as well, and
analyzing images of Icon types, we found that the “Icon-switcher”
class is composed of 1046 identical instances, which also look very
similar to other types of icons. To avoid this noise information, we
also excluded this class.

After discarding the mentioned classes of widgets, we kept 105
categories: 8 Atomic classes and 97 Icon types.

3.1.1 Rico Annotations.
We created two different datasets for implementing the widget

recognition approaches: (1) Object Detection + Classification and
(2) One-Stage Recognition. These datasets included the 105 classes
of widgets previously selected.

The first dataset was generated by cropping the RoIs from the
Rico screenshots. This was done by traversing the GUI graph avail-
able on the semantic annotations files [24] and saving the labeled
crops corresponding to the bounds of each “componentLabel” and
“iconClass” key. This dataset was used for training the classification
algorithm of the Object Detection + Classification approach. In to-
tal, this dataset resulted in 355, 999 images that we split for training,
testing, and validation in the proportion of 50:30:20 respectively.

The other dataset was created to train the One-stage recognition
approach. Here, we used the Rico semantic annotations files to
generate the class and bounding box ground truth annotations,
resulting in a dataset of 44, 873 screenshots. We also used the same

7“Text Button” sub-types: “add”, “arrow_backward”, “arrow_forward”, “av_forward”,
“av_rewind”, “avatar”, “bookmark”, “cart”, “chat”, “check”, “close”, “copy”, “date_range”,
“delete”, “edit”, “emoji”, “expand_more”, “facebook”, “favorite”, “file_download”, “filter,
“flash”, “folder”, “follow”, “font”, “gift”, “globe”, “group”, “help”, “home”, “info”, “launch”,
“layers”, “list”, “menu”, “minus”, “more”, “notifications”, “pause”, “photo”, “play”, “re-
fresh”, “search”, “send”, “settings”, “share”, “sliders”, “star”, “swap”, “time”, “twitter”,
“videocam”, “volume”, “warning”
8Confusing classes: “Image”, “List Item”, “Text”
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Figure 5: The two approaches implemented for Widget Recognition. The first one uses Digital Image Processing (DIP) techniques for Object Detection (edge filters, binarization,
and contour detection) and a Convolutional Neural Network (CNN) model for classification. The second approach uses YOLOv8 pre-trained model to detect and classify the widgets

in a single stage.

Table 1: Algorithms and parameterization used in Object Detection stage.

Algorithm Parameters

Canny Filter 1st Hysteresis threshold (threshold1): 100
2st Hysteresis threshold (threshold2): 200

Morphological
Closing

Morphological Operation (op):
cv2.MORPH_CLOSE

Kernel: np.ones((35, 35), np.uint8

Contour
Detection

Contour Retrieval mode (mode):
cv2.RETR_EXTERNAL

Contour approximation method (method):
cv2.CHAIN_APPROX_SIMPLE

proportion of 50:30:20 for splitting the data into training, testing,
and validation subsets.

3.2 Computer Vision-based widget recognition
The goal of the recognition stage is to localize widgets in Android
screenshots and classify them. For this, we implemented two ap-
proaches, where the first one uses more traditional techniques,
specifically, Digital Image Processing (DIP) for object detection
and Convolutional Neural Networks (CNN) for classification. The
second approach uses the state-of-the-art “You Only Look Once”
(YOLO) object detection algorithm9.

3.2.1 Approach 1: Object Detection + Classification.
According to shown in Figure 5, the “traditional” approach for

widget recognition has two stages, object detection and classifica-
tion. The object detection stagewas implemented by, firstly, locating
edges using the Canny filter10[43], followed by a morphological

9Real-time object detection and image segmentation model, built on cutting-edge
advancements in deep learning and CV, offering unparalleled performance according
to speed and accuracy [50].
10Was used the OpenCV implementation of Canny filter available on: https://docs.
opencv.org/4.x/da/d22/tutorial_py_canny.html

Table 2: Details of the 3-depth CNN classifier architecture and the training
hyper-parameters.

Configurations

Layers

Conv2D(64, (3, 3))
Conv2D(32, (3, 3))
Conv2D(16, (3, 3))

Dense(128))

Parameters

For all layers, was used ReLU as the
activation function, HeUniform as
kernel and bias initializers, and L1L2
as kernel and bias regularizers. Be-
tween then, a group of layers was
used, consisting of:

BatchNormalization()
AveragePooling2D((2, 2))

Dropout(0.5)

At the end of the network, was used:
Dropout(0.3)

Dense(105, activation="softmax")

Hyper-parameters
Optimizer:

Adam(learning_rate=1e-4)
Loss: "categorical_crossentropy"

closing11 to prevent object splitting [23] and finally, the find con-
tours technique12 [43] to get the potential RoI on the screenshots.
Table 1 shows the parameterization used in each function of the
object detection stage.

The Object Detector’s output is a set of bounding boxes of all
RoIs with a high probability of being widgets. The next step is

11Was used the OpenCV implementation of morphological closing available on https:
//docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
12Was used the find contour OpenCV implementation available on: https://docs.opencv.
org/4.x/d4/d73/tutorial_py_contours_begin.html
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Figure 6: Flowchart of theWidget Description stage.

classifying each RoI according to the 105 GUI component classes.
For this, we trained a CNN model with three convolutional lay-
ers of depth (CNN3). This classifier architecture was proposed by
[8]. In the training process, the training dataset was fed to the
model in Grayscale format, since early experimentation showed
better results when compared with the Red, Green, and Blue (RGB)
original format. The input dimensions were 50 × 50. The model
was trained using Tensorflow13 2.4 on a server with Ubuntu 18.04
operating system and GPU NVIDIA GeForce RTX 360 TI. Table 2
gives the configuration details about the model and the training
hyper-parameters.

3.2.2 Approach 2: One-Stage Recognition.
We implemented the one-stage widget recognition approach

using YOLOv8 as an alternative solution for Approach 1 described
above. YOLOv8 improves the detection accuracy and speed com-
pared with the previous version, making it highly suitable for real-
time applications. Although real-time recognition is not the focus
of this research, we wanted to explore how this model will per-
form in our scope, due to the potential application in automated
tests where the instant action-motion replay is valuable. To train
YOLOv8, we used the Ultralytics14 framework with the default
training parameters.

3.3 Widget Description
In this work, we propose to go beyond widget recognition and
describe the RoIs according to the contextual information on the
screenshot. For this, we use three main techniques, Optical Char-
acter Recognition (OCR), Image Classification, and distance-based
heuristic rules. The Figure 6 shows in a flowchart our proposal for
describing widget crops according to the class recognized. If the
RoI is a “Text Button” or an “Input Text” the content is extracted
using Keras-OCR15 or a Python wrapper of Tesseract16. We experi-
mented with both OCRs to verify which performs best in our scope.
Different from the “Text Button” class, “Input Text” components
are empty sometimes. Hence, if the OCR does not recognize any

13Available at https://www.tensorflow.org/
14Available at https://github.com/ultralytics/ultralytics
15Available at https://keras.io/
16Avaiable at https://github.com/tesseract-ocr/tesseract

text, the “Input text” crop gets the description of the nearest textual
element on the screenshot. This logic is applied also, to “Check-
box”, “Number Stepper”, “On/Off Switch”, “Pager Indicator”, “Radio
Button” and “Slider” classes. We calculate the Euclidean distance
of the RoI and all textual elements (which are described using the
OCR technique) and use the description of the nearest one. Finally,
if the approached techniques fail to generate a description, we use
the InceptionV317 model to extract any semantic information from
the RoI.

In the case of “Icon” types classes, we considered the class infor-
mation explicit enough to describe a RoI. In this work, we focused
on recognizing a nice variety of icons (97 classes). However, there
are still different icon types unknown to our models. Regarding this,
if a RoI is classified as any “Icon” type with a confidence below 0.5,
then we use the InceptionV3 model to extract semantic information
of the area and validate icon classes that do not exist in the 97 types
in our dataset.

4 STUDY
In this work, we have two main objectives. The first is to study
how the two state-of-the-art approaches for widget recognition
perform in an extended-class dataset (105 classes). The second goal
is to propose a method to describe widgets beyond the type or class
by including contextual information about what that component
represents on screen. We implemented the methods described in
the previous sections to attain these goals. Then, to evaluate our
proposal, we addressed the following research questions.

4.1 Research Questions
RQ1. Effectiveness of widget recognition: How accurate are
the implemented approaches for widget recognition to localize and
classify 105 classes of widgets?

RQ2. Analysis of miss-classifications: Which classes are
wrongly recognized by the implemented methods?

RQ3. Effectiveness of widget description: How accurate is
our proposal for describing widgets?

RQ4. Analysis of uncovered descriptions:What are themajor
reasons for our widget description method to fail?
17Available at https://keras.io/api/applications/inceptionv3/
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(a) (b)

Figure 7: Rico screenshot with the widgets annotations enclosed in green boxes (a)
and the Object Detector + Classifier predictions also enclosed in green boxes (b).

RQ5. Impact of approached CV-based methods for recog-
nizing and describing widgets:When integrated into a mobile
test automation tool, the approached CV-based methods for rec-
ognizing and describing widgets contribute to generating more
comprehensive steps for Test/Script Case generation or Bug Re-
view?

4.2 Measurement
To evaluate the performance of the “traditional” and one-stage wid-
get recognition approaches, we studied the Precision, Recall, and
mean Average Precision (mAP). The mAP is a key metric for evalu-
ating object detection models [47]. It combines both Precision and
Recall to offer a comprehensive assessment of a model’s accuracy.
The Precision (P) is the ratio of True Positive detection to the sum of
True Positive and False Positive detection. The Recall (R) is the ratio
of True Positive detection to the sum of True Positive and False
Negative detection [47]. These can be mathematically expressed as:

Precision =
1
𝑁

·
∑︁
𝑁

(
True Positives

True Positives + True Negatives

)
(1)

Recall = 1
𝑁

·
∑︁
𝑁

(
True Positives

True Positives + False Negatives

)
(2)

mAP =
1
𝑁

·
∑︁
𝑁

(R𝑁 − R𝑁−1) · P𝑁 (3)

where 𝑁 is the number of classes. mAP metric provides a single
value that summarizes the model’s overall detection accuracy, mak-
ing it essential for comparing the performance of different object
detection models [47].

Moreover, we assess the widget description method using the
Character Error Rate (CER). This metric is crucial to evaluate text
recognition algorithms[45]. The CERmeasures the number of character-
level errors made by the OCR process and is calculated using the
formula:

CER =
𝑆 + 𝐷 + 𝐼

𝑁
(4)

(a) (b)

Figure 8: Examples of classes wrongly predicted by the widget recognition
approaches, (a) shows “on” and “off” switch samples, where “off” instances are

under-represented on the training data, and (b) shows a “versatile” appearance widget
that fits in two classes, an unselected checkbox, and an icon-app-switch.

where 𝑆 is the number of substitutions,𝐷 is the number of deletions,
𝐼 is the number of insertions, and𝑁 is the total number of characters
in the reference text. A lower CER indicates a more accurate OCR
system. This metric provides a granular view of OCR performance,
enabling developers to identify specific types of errors and improve
system robustness by refining algorithms to reduce substitutions,
deletions, and insertions. Thus, CER is vital for applications requir-
ing high precision in text recognition, such as digital archiving and
automated data entry [45].

5 DISCUSSION
5.1 Widget Recognition
RQ1. Effectiveness of widget recognition:We studied the per-
formance of the two approaches for widget recognition on the test
set compound by 17, 808 images and their respective annotations.
We measured the methods using the mean Average Precision (mAP)
metric and attained a low value, where the first approach achieved
0.065, while for YOLOv8, the result was 0.690. To understand these
metrics, we did an exhaustive manual inspection of the Rico an-
notations and the predictions of the widget recognition methods
implemented in this work. Then, we find out that Rico has a very
high number of missed widget annotations, representing most of
the False Positives that impacted the precision of the recognition
methods. Figure 7 illustrates this problem: (a) is an annotated screen-
shot of the Rico dataset, and (b) is the result of executing the Object
Detector + Classifier approach for widget recognition on the same
image. In (a), more than 80% of the RoI are not annotated, but our
recognition approach can detect those areas, unfairly counting as
False Positives. Furthermore, the object detector used in the first
approach is sensitive to capturing extreme details of the interface,
helping to explain the extremely low value performed for the first
approach.

RQ2. Analysis of miss-classifications: Regardless of the men-
tioned Rico annotation problems, we detected some false predic-
tions for both of the widget recognition approaches. During the
manual inspection of themethods’ predictions, we observed that the
“off” samples belonging to the class “On/Off Switch” were always
misclassified. Then, we revised the training samples and discovered
that only 2.5% of the “On/Off Switch” RoIs were “off” instances, see
Figure 8(a). This justifies the miss-predictions of the YOLOv8 recog-
nition model and the CNN3 classifier. To overcome this problem,
the “off” switch samples must be augmented to balance with the
“on” ones.
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Figure 9: Selection of “Text Button” samples of the dataset created for evaluating
the smart descriptor and a fragment of the respective UI hierarchy metadata

highlighting the bounds and text attributes.

Table 3: Character Error Rate (CER) and Response time per request in seconds for
Tesseract, Keras-OCR, and the combination of both, in 1, 021 “Text Button” crops

extracted from manually selected screenshots from Rico testing set.

Method Mean CER Response Time (sec)

Tesseract 0.204 2.1
Keras-OCR 0.172 2.28

Tesseract + Keras-OCR 0.171 1.98

Moreover, we found wrong predictions caused by widgets having
a “versatile” appearance, meaning that the same image belongs to
more than one class. Figure 8(b) shows an example of this, where
an unselected “Checkbox” is identical to the “app-switch” icon of
the navigation bar.

5.2 Widget Description
To evaluate our Widget Descriptor proposal, we needed the con-
textual meaning annotations of Rico images. However, the Rico
view hierarchies files [24] only have this information for textual ele-
ments like “Text Buttons”, which is contained in the “text” attribute.
This information sparsely appears for other widget types in the
“content-desc” attribute. Regarding this, we managed to evaluate
quantitatively, only the description generated for “Text Buttons”.
Due to the mentioned ground truth limitations for the other classes,
we did a manual inspection to identify problems in the descriptions
generated and have an overall notion of the method’s performance.

To evaluate the Widget Descriptor’s capacity for recognizing
textual components we created a dataset of 1, 021 “Text Button”
RoIs randomly extracted from the 17, 808 samples of the test Rico
dataset. For this, we used the UI hierarchy json files from Rico [24]
to extract the bounds, class and text attributes for each node. Then,
we filtered the nodes belonging to the “Text Button” class, used the
bounds for cropping the RoIs on the full screenshot, and saved the
text information to generate the RoIs description ground truth.

Figure 9 shows a representative selection of this dataset and a
fragment of a UI hierarchy metadata highlighting the bounds and
text attributes.

(a) (b)

Figure 10: Example of “number-only” (a) and “noisy-background” (b) “Text
Button”.

Figure 11: Percentage of Issues reported by the automated exploratory test tool
using our widget identification (recognition+description) method for mapping the

device under test (DUT) UI at each timestamp.

RQ3 Effectiveness of widget description: The results of evalu-
ating the textual elements are shown in Table 3. Keras-OCR reached
a mean CER of 0.172 and a mean execution time per request of 2.28
seconds. Tesseract showed a higher mean CER, 0.204 but better
performance with a mean response time per request of 2.1 seconds.
Based on these results, we combined the two OCRs sequentially to
describe text-based components. Firstly Tesseract is used. Then, if
it fails to recognize the text, Keras-OCR should be called. This OCR
combination demanded in mean 1.98 seconds per request with a
mean CER of 0.171.

RQ4. Analysis of uncovered descriptions: While evaluating
the widget descriptor for textual elements, we collected the samples
with high CER for manual analysis. Here, we detected that while
Tesseract could not recognize “Text Button” samples containing
just numbers (Figure 10a), Keras-OCR made accurate predictions
for these cases. We also noticed that images with non-solid back-
grounds (Figure 10b) had poor results for both OCRs, Tesseract, and
Keras.

To have an overall idea of how effective is the widget descrip-
tion method for predicting non-textual classes, we ran it on the
17, 808 test portion of the Rico images, saved the screenshots with
the bounding boxes, and the description generated for each RoI.
Then, we manually inspected these results, finding some situations
where our method failed to retrieve a valid description for some
GUI components. Mainly, these fails occur in “context-dependent”
classes when the widget is not side-to-side with the textual widget,
but above or below. For example, in some applications is a com-
mon design practice to have “Radio Buttons” below a text label. In
those cases, our method distance-based method does not perform
accurately.
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5.3 Applying our widget identification method
on an exploratory test tool

RQ5. Impact of approached CV-based methods for recogniz-
ing and describing widgets: As a study case, we implemented
an API REST service to make available our widget identification
approach (recognition + description) for being consumed by an
automated Android testing tool focused on exploratory testing. Fig-
ure 11 shows the Issues reported by the exploratory tool using our
method for six months of 2021–2022. In total 41% of the Issues were
stated as being non-reproducible or having insufficient information
for reproduction (red and orange portions), 29% were fixed (green)
and 29% were reported to third-party owners (blue). From this, we
can conclude that the development team effectively processed more
than half of the issues reported using our widget identification
method to describe steps.

5.4 Limitations and future works
This study investigates two principal approaches for enhancing
widget recognition in automated black box Android testing: Object
Detection combined with Classification, and a One-Stage Recogni-
tion method. Our analysis was supported by two newly introduced
datasets, tailored to the demands of deep learning applications in
widget recognition and classification. By targeting a comprehensive
set of 105 different widget classes and incorporating context-based
descriptions, we aimed to improve the scalability of automated
testing frameworks.

Despite these advancements, several challenges remain. The
diversity and complexity of Android UIs continue to pose significant
hurdles. Variations in widget design, dynamic content updates, and
the presence of custom widgets that do not adhere to standard
conventions all impact the effectiveness of recognition methods.
Futurework should focus on further refining recognition algorithms
to handle these challenges, potentially incorporating additional data
sources or leveraging more advanced machine learning techniques.

Even though the One-Stage Recognition Approach has proven to
be better, the two approaches implemented for widget recognition
presented poor mAP, due to the noisy nature of the data, according
to our manual inspection of the two datasets created from Rico. We
propose future work to improve the quality of the datasets using
techniques and data proposed in a previous work [37], in addition
to extending the number of samples for our 105 with smaller but
consistent datasets like VINS [9].

To improve our widget description method, we propose to re-
view the distance-based algorithm for “content-dependent” widgets,
specifically for those cases where the element is positioned below
or above the label. To analyze the feasibility of using the proposed
pipeline in real time testing applications, we propose as future
work to test the best widget recognition approach of this research
combined with widget description component in an environment
prepared for this purpose, in order to collect metrics so that im-
provements and studies can be made.

6 CONCLUSIONS
This paper presents a study of using two advanced approaches to
widget recognition for automated Android testing: Object Detection
combined with Classification, and a One-Stage Recognition method.

We created two datasets of widgets from Rico, one for classifica-
tion and another one for recognition. We filtered atomic widget
types resulting in 105 classes including 97 icon types. We also pre-
sented a method for describing widgets beyond just using the class,
instead, we extract contextual information about what those com-
ponents represent on screenshots. Our evaluation of YOLOv8 and
the OpenCV Object Detector + CNN Classifier approaches exposed
several annotation problems of the Rico dataset, concluding that
is not recommended to work with this Rico without performing
noise removal routines. Furthermore, the proposed combination
of Keras and Tesseract OCRs for extracting information of “Text
Button” RoIs presented a low mean CER of 0.172.
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