Exploring Visual and Multimodal Interaction in NCL Authoring

Paulo Victor Borges
Pontifical Catholic University of Rio
de Janeiro
Rio de Janeiro, Brazil
pvborges@telemidia.puc-rio.br

Débora C Muchaluat-Saade
MidiaCom Lab
Fluminense Federal University
Nitéroi, Brazil
debora@midiacom.uff.br

ABSTRACT

This paper introduces two innovative tools for enhancing inter-
active multimedia authoring using the Nested Context Language
(NCL): (i) a visual extension that supports more traditional inter-
actions with mouse and keyboard and (ii) a multimodal extension
that incorporates gesture recognition and voice commands. These
tools were implemented as Visual Studio Code extensions and aim
to streamline the editing process, making it more intuitive and ac-
cessible. We present an evaluation of the usability and acceptance
of both tools with developers in an experiment with three tasks
for creating and manipulating spatial regions in hypermedia doc-
uments. By exploring the potential of multimodal interfaces, this
work sets the stage for more efficient and user-friendly document
editing.

KEYWORDS
Authoring, LLMs, NCL, Code Generation, Visual Studio Code

1 INTRODUCTION

Digital TV (DTV) applications [26] have revolutionized content de-
livery and consumption, offering a rich multimedia experience that
integrates text, images, audio, and video. These applications extend
beyond passive viewing by enabling interactivity and creating a
more engaging and immersive environment for the viewer.

DTV applications (as well as other interactive multimedia appli-
cations) can be developed using structured content, known as mul-
timedia/hypermedia documents. The structure of these documents
has been the goal of standardization efforts in many instances, in-
cluding the definition of declarative languages like the NCL (Nested
Context Language) [28], a language based on the NCM (Nested Con-
text Model), which facilitates the logical structuring of hypermedia
documents through compositions and specifies spatio-temporal
relationships using connectors and links within an event-based
paradigm.

Current digital TV scenarios require simple and quick method-
ologies to create interactive multimedia applications. As in other

In: Proceedings of the Brazilian Symposium on Multimedia and the Web (WebMe-
dia’2024). Juiz de Fora, Brazil. Porto Alegre: Brazilian Computer Society, 2024.

© 2024 SBC - Brazilian Computing Society.
ISSN 2966-2753

Daniel de S. Moraes
Pontifical Catholic University of Rio
de Janeiro
Rio de Janeiro, Brazil
danielmoraes@telemidia.puc-rio.br

153

Joel dos Santos
CEFET-R]
Rio de Janeiro, Brazil
jsantos@eic.cefet-rj.br

Sérgio Colcher

Pontifical Catholic University of Rio

de Janeiro
Rio de Janeiro, Brazil
colcher@inf.puc-rio.br

scenarios, there is a growing need for functionalities that can assist
programmers in developing these applications efficiently. Thus,
authors with varying skills might be able to create correct and
functional applications.

Therefore, creating and editing multimedia content, including
DTV applications, require precise and efficient tools that can effec-
tively manage various elements within a digital interface while also
maintaining ease of use. Traditional tools that have been relying on
mouse and keyboard interactions have proven their effectiveness,
but there is still considerable room for improvement. Natural user
interfaces (NUIs) [14, 17], such as body movements and gestures,
have been used in many settings to operate machines, communicate
with intelligent environments, and control smart home appliances
[5] and could also be applied in a multimedia context to create more
intuitive and engaging authoring experiences.

Large Language Models (LLMs), on their turn, have recently
revolutionized various fields, enabling their use in developing a
wide range of applications, such as chatbots (like chatGPT and
Gemini) that can handle queries in different contexts. These models
have also shown good results in tasks related to programming and
code synthesis [7, 8, 19, 23].

In this sense, this work proposes two distinct tools to help im-
prove the development of interactive applications for Digital TV,
specifically in creating the layouts defined by the region base of
a document. The first is a visual tool that allows the developer to
visualize the regions defined in a document’s region base and relies
on traditional mouse and keyboard interactions to create and ma-
nipulate regions graphically. The second tool incorporates gesture
recognition and voice commands, processed by a language model to
generate editing actions (in addition to the visualization of the cre-
ated regions). These tools are implemented as Visual Studio Code
(VS Code) extensions [9], taking advantage of its robust feature set,
versatility, and adaptability.

We also present an evaluation of the usability and acceptance of
both tools with developers in an experiment involving tasks of cre-
ation and manipulation of regions. This evaluation was conducted
through a custom usability questionnaire that was inspired by and
adapted from the principles of the System Usability Scale (SUS)
[4, 6, 18] to fit our specific case.

WebMedia’2024, Juiz de Fora, Brazil

The remainder of this paper is structured as follows: Section 2
provides a review of related work. Section 3 describes the method-
ology and implementation of the tools. Section 4 details the ex-
perimental setup, including the tasks and participants. Section 5
presents the results of the experiment and the usability question-
naire. Finally, Section 6 discusses the findings, implications, and
potential future work.

2 RELATED WORK

The development of interactive multimedia applications for digital
TV has been significantly advanced by authoring tools that facilitate
both textual and visual authoring approaches.

For example, NEXT (NCL Editor Supporting XTemplate) [24] is
a graphical editor developed to create NCL documents using hyper-
media composite templates specified in the XTemplate 3.0 language
[11], making the creation of interactive digital TV applications more
accessible to authors without in-depth NCL knowledge. NEXT of-
fers functionalities such as creating and editing NCL documents in
different views, utilizing an extensible template library that can be
adapted to different skill levels of authors. By providing a graphical
interface and a set of plugins, NEXT simplifies the development
process and allows authors to focus on the content rather than the
intricacies of NCL programming. This tool represents a significant
step forward in enabling a broader range of users to contribute to
the development of interactive multimedia applications, enhancing
both the usability and efficiency of the authoring process.

STEVE (Spatio-Temporal View Editor) [10] allows users without
prior knowledge of authoring languages to create interactive mul-
timedia applications for web and digital TV systems, presenting
a graphical interface that visually exposes the elements and their
relationships and exporting to HTML5 and NCL. These tools often
feature user-friendly interfaces, enabling a broader audience to
engage in multimedia content creation without the need for exten-
sive technical expertise. This inspires the development of a tool
that can generate code through a visual interface while seamlessly
integrating into popular development environments.

A notable contribution is the Lua2NCL framework [22], which
addresses the verbosity and complexity associated with NCL by
providing a set of textual features that reduce the effort required
for creating NCL applications. Lua2NCL leverages the Lua script-
ing language to enable the creation of applications with reduced
code size and enhanced readability, making it accessible even to
developers with limited experience in NCL. This framework has
demonstrated considerable effectiveness in reducing the time and
code length necessary for authoring digital TV applications, as
evidenced by experiments showing significant reductions in both
metrics compared to traditional NCL coding.

NCL Eclipse [25] is a textual integrated development environ-
ment designed to assist in developing interactive multimedia ap-
plications in NCL. As a plugin for the Eclipse IDE, NCL Eclipse
offers user-centred features such as automatic and contextual code
suggestion, validation of NCL documents, and syntax highlighting
for XML elements and reserved words. By providing functionali-
ties like automatic code formatting and error indication during the
authoring process, NCL Eclipse significantly enhances developers’
productivity.

154

Borges et al.

The development of authoring tools for interactive Digital TV
(iDTV) has focused on improving usability for content creators who
may not be programmers. NCL presents a particular challenge for
non-technical users due to its complexity. Recent studies, such as
those of Moraes et al. [21], highlight the potential of using LLMs
to facilitate NCL code generation. However, their initial findings
indicate that current pre-trained LLMs struggle to generate high-
quality NCL code due to syntax and language rule challenges. This
underscores the need for fine-tuning LLMs to more effectively pro-
cess domain-specific languages like NCL, which could significantly
enhance the usability of multimedia authoring tools by allowing
users to define application requirements in natural language.

In that context, numerous authoring tools have introduced sig-
nificant innovations to facilitate the creation of NCL documents
through graphical interfaces, reduced code verbosity, and enhanced
textual authoring features such as automatic code suggestion and
document validation. Inspired by these advancements, our work
proposes a visual approach to create and edit applications’ layouts
defined by the region base, allowing graphical manipulation of
those elements using a mouse and keyboard. We also propose a
version with interaction enriched by gesture recognition and voice
commands, integrated with an LLM tool to generate the region base
NCL code. With these tools we aim for an intuitive and efficient
approach that can facilitate the creation and edition of regions in
an NCL application.

3 METHODOLOGY

To create a tool available in IDEs and useful to users of different
experience levels, we sought to develop extensions that facilitate
the editing of NCL documents through intuitive visual interfaces.
These extensions were designed for both beginners, who benefit
from the simplicity of visual manipulation, and advanced users,
who need precise control over the document structure. Although
technologies exist to assist in the authoring of NCL code, there is
still a need for a more modern solution that integrates with current
development environments. Our methodology, therefore, focuses
on combining traditional and multimodal interaction techniques
to improve the user experience when creating and editing NCL
content.

In this context, our methodology involves two main aspects: (i)
the development of the two extensions for editing regions in an
NCL document and (ii) the implementation of an experiment to
evaluate these tools with developers with various experience levels.
The overall system architecture is designed to provide real-time
feedback and seamless interaction for multimedia content editing.

The main components of the systems are presented in the fol-
lowing sections.

3.1 VS Code Extensions

Two custom extensions were developed for VS Code using Type-
Script: a Visual Extension and a Visual Multimodal Extension. The
Visual Extension is based on the NCL document being edited in the
IDE and opens a WebView interface that visually represents the
regions described in the <regionBase> element.

Figure 1 illustrates the graphical elements in Visual Studio Code,
where a window opens alongside the code editor, allowing regions

Exploring Visual and Multimodal Interaction in NCL Authoring

to be visually represented in the interface and ready to receive user
interactions.

Figure 1: Visual Extension Interface

In the Visual Extension, authors can create new regions, change
the z-index, move, resize or delete them using the keyboard and
mouse, as illustrated in Figure 2. Any changes made in the graphical
interface are reflected in the code, providing an intuitive way to
manipulate the NCL document visually.

MOUSE
+
KEYBOARD

VISUAL
EXTENSION

REGIONS
GUI

Figure 2: Visual Extension

The Visual Multimodal Extension builds upon the capabilities
of the Visual Extension by incorporating gesture recognition and
voice commands. As Figure 3 depicts, it communicates with an
external multimodal API via WebSocket, which is responsible for
capturing gestures and voice commands. These inputs allow users
to interact with the regions in the same ways as with the Visual Ex-
tension—moving, resizing, deleting, and creating new regions—but
with the added convenience of natural user interactions.

Both extensions ensure that the generated code of the region
elements adheres to the rules specified in the NCL standards [1],
such as parent regions, z-index, and more.

155

WebMedia’2024, Juiz de Fora, Brazil

| -
REGIONS
GUI

VISUAL
MULTIMODAL
EXTENSION

ws://

e

MULTIMODAL
APl

http
CHAT GPT API

ws://

9 :

HANDGESTURE
CLASSIFIER
PROVIDER

ws://

SPEECH RECOGNITION
PROVIDER

Figure 3: Visual Multimodal Extension

3.2 Multimodal API (MMA)

The Multimodal API (MMA) serves as the central hub for process-
ing and routing data, playing an important role in the seamless
integration of multimodal interactions within the NCL authoring
tools. It receives messages from the Visual Studio Code extensions
and coordinates with external services for gesture classification
and speech recognition. Designed with SOLID principles [2, 16, 27],
the MMA ensures modularity, maintainability, and scalability, al-
lowing for easy updates and integration of new features without
compromising the system’s integrity.

To closely align the architecture with business requirements and
domain logic, Domain-Driven Design (DDD) practices [3, 20, 20]
were applied. This approach facilitated the creation of decoupled
components within the MMA, enabling seamless integration with
various models and services for gesture and speech recognition,
as well as any large language models (LLMs). This design ensures
that the system remains highly adaptable to future advancements,
allowing the incorporation of new technologies and methodologies
as they emerge.

Furthermore, the MMA’s architecture supports real-time pro-
cessing and feedback, crucial for maintaining an interactive and
responsive user experience. By adhering to SOLID principles and
DDD practices, the MMA meets current technical requirements and
also provides a robust foundation for ongoing development and
enhancement. This strategic design choice underlines the commit-
ment to creating a scalable, maintainable, and user-centric system
that can evolve alongside the rapidly advancing field of multimodal
interaction technologies.

3.2.1 HandGesture Classifier Provider. : This component is respon-
sible for capturing video from the user’s webcam and applying the
classification algorithm provided by the Mediapipe library [13, 31]
to identify specific hand gestures made by the user. It detects ges-
tures such as Thumbs Up, open hand, and the hand’s position for

WebMedia’2024, Juiz de Fora, Brazil

movement purposes. The identified gestures are then sent to the
Multimodal API (MMA) via WebSocket. The provider sends de-
tailed information about the current gesture, including the type of
gesture and the hand’s position, ensuring precise and responsive
interaction with the NCL authoring tools.

3.2.2 Speech Recognition Provider. : This component is responsible
for capturing audio from the user’s microphone and applying the
Google Speech Recognition API package in Python [30] to convert
it to text and identify voice commands. The process begins with
the continuous capture of audio input, which is then processed in
real-time to transcribe spoken words into text. The Google Speech
Recognition API is designed to handle various accents and speech
patterns, ensuring high accuracy in the transcription of commands.
By breaking down the audio into phonetic units and comparing
them against a comprehensive database of known speech patterns,
the API generates an accurate textual representation of the spoken
commands.

Once the speech is converted to text, the recognized commands
are parsed to identify specific keywords and phrases corresponding
to predefined actions within the NCL authoring tools. The parsed
commands are then formatted into a structured message, includ-
ing details such as the command type and relevant parameters.
This structured message is sent to the Multimodal API (MMA) via
WebSocket, enabling real-time processing and interaction within
the NCL authoring environment. The use of WebSocket technol-
ogy ensures low-latency, bidirectional communication, allowing
for seamless and responsive updates based on the user’s voice com-
mands.

3.2.3 Chat GPT API. : The Multimodal API (MMA) sends HTTP
requests to the Chat GPT API for processing recognized gestures
and voice commands using the GPT-3.5-turbo model. This lan-
guage model generates specific editing actions based on the input
provided. After each recognition by the speech recognizer, the rec-
ognized text is sent to the Chat GPT API along with a carefully
crafted prompt to ensure the returned information is accurately
processed. This method guarantees that the response is correctly
formatted for seamless communication with the VS Code exten-
sion, thereby eliminating the need for any additional cleanup of
the spoken command.
An example of the prompt used is:

You are an intelligent assistant that helps create
and manipulate

regions in a graphical interface.

The user's command is: "{command}"

You are working with a screen resolution of 1920x1080
pixels.

Here are the types of commands you can generate:

1. createRegion - Creates a new region based on the
provided coordinates. Example: Create a region

of 100x100 pixels at position 200,200.

Your job is to interpret the user's command and
generate the appropriate response in correct format.

Please provide a structured response in the following
format:

156

Borges et al.

- Command: createRegion
- left: <value>

- top: <value>

- width: <value>

- height: <value>

- id: <value>

- title?: <value>

- z-index?: <value>

Now, interpret the user's command and provide the
appropriate response, ensuring to use integer values for
coordinates and dimensions.

In this context, prompt engineering involves designing and opti-
mizing input prompts to enhance LLM performance and effective-
ness. This technique guides LLMs to produce accurate, relevant, and
contextually appropriate responses [12]. Carefully crafted prompts
allow users to control the model’s output, ensuring alignment with
specific requirements and objectives.

We used a prompt to enable an LLM to assist in creating and
manipulating regions within a graphical user interface (GUI). This
structured approach, akin to software patterns, ensures clarity and
reusability. The goal is to program interactions between the user
and the LLM to efficiently generate NCL code for content editing
tasks, with a standard return format that the client application can
always interpret correctly. This approach is informed by principles
outlined in the prompt pattern catalog by White et al. [29].

This prompt has been adapted for various method calls to achieve
different objectives, such as resizing, deleting, and moving regions.
Each adapted prompt ensures that recognized voice commands or
gestures are accurately interpreted and formatted for seamless com-
munication with the VS Code extension. By tailoring the prompt to
handle specific commands, the system efficiently processes a wide
range of editing actions, enhancing flexibility and usability.

4 USER EXPERIMENT

A remote experiment was conducted to evaluate the effectiveness
and usability of the proposed systems for multimedia application
editing. This study explores whether visual and multimodal tools
for NCL authoring can enhance the editing experience compared
to traditional methods.

After the planning phase a pilot study was conducted, lasting 1
hour via call, to assess the validity of the questions, the quality of
the instructions, and the material provided.

Based on the pilot study feedback, corrections and improvements
were made, and then an extended experiment was carried out with a
larger group of participants. The experiment involved programmers
of various experience levels from different universities performing
editing tasks using three different interaction methods: (a) using
only the code editor; (b) using the visual extension traditional mouse
and keyboard interaction, (c) and the visual extension integrated
with gesture and voice-based interface.

4.1 Participants

A total of 11 programmers participated in the study. The participants
were selected based on their familiarity with multimedia content
editing and their experience with programming in VS Code.

Exploring Visual and Multimodal Interaction in NCL Authoring

4.2 Tasks

The participants were asked to complete a series of basic tasks
involving the creation and manipulation of regions within an NCL
document. These tasks included:
(1) Creating 5 new regions by specifying dimensions and posi-
tions, following the example illustrated in Figure 4.
(2) Resizing the previously created regions to resemble the lay-
out illustrated in Figure 5.
(3) Resizing and moving regions to different positions, as shown
in Figure 6.

= ~

region region2 region3.

Figure 4: First Task - Create 5 regions that reproduce the
defined layout

Tarefa 2 - Redimensionar Regides

= ~

region! region2 region3.

Figure 5: Second Task - Resize existing regions

Each participant performed these tasks in three settings: once
using only the VS Code code editor; once using the traditional
mouse and keyboard interaction with the visual interface; and
once using the gesture and voice-based interaction alongside the
visual interface. The experiment always started with the code editor
setting, whilst the order of the two other settings was randomized
to mitigate any learning effects and ensure that the results were
not biased by the sequence in which the tasks were performed.

157

WebMedia’2024, Juiz de Fora, Brazil

Figure 6: Third Task - Move and resize the regions

4.3 Procedure

The experiment was conducted individually and remotely. Partici-
pants were given a script on how to install and use the extensions
before starting the tasks. The script also detailed each task and
exemplified the expected layouts, as shown in Figures 4, 5, 6. All
materials required for the implementation of the tasks were made
available, including the incomplete NCL documents, which the
participants were meant to fill. After completing each experiment
setting, participants were instructed to respond to a questionnaire
related to that specific setting.

After completing the tasks of a setting, participants were asked
to fill out a questionnaire assessing their experience and the us-
ability of the interactions. The questionnaire included questions on
various aspects such as ease of use, efficiency, accuracy, user satisfac-
tion, learning curve, preference, specific feedback, and suggestions
for improvement. These questions aimed to gather comprehensive
feedback on how easy and intuitive each interface was to use, how
quickly tasks could be completed, how accurately tasks were com-
pleted, overall user satisfaction, how easy it was to learn to use each
interface, preferences between the two interfaces, specific likes or
dislikes, and any suggestions for improvement. The questionnaire
was inspired by the System Usability Scale (SUS) [4, 18] and in-
corporates elements from it, although it does not strictly follow
the standard SUS format. This adaptation allowed us to focus on
particular aspects of usability that were crucial for our study, such
as the unique interaction methods of creating and manipulating
regions, and to gather more targeted feedback from participants.

Additionally, participants were asked to respond to the following
statements about their experience using a Likert Scale [15] from 1 to
7, where 1 represents Strongly Disagree and 7 represents Strongly
Agree:

(1) "I think it is easy to use the tool to create and edit regions."
(2) "I'was able to create and edit regions using the tool."

(3) "I'think the regions created and edited with the tool are correct.”
(4) "I am satisfied with using the tool to create and edit regions.”

WebMedia’2024, Juiz de Fora, Brazil

These statements helped evaluate the creation and editing capa-
bilities, the accuracy of the regions, and overall satisfaction with
the tool.

4.4 Data Collection

The data collection process involved timestamping each partici-
pant’s responses to track when the data was submitted. Participants’
email addresses were the only personal information collected, to
ensure the validity of responses and for follow-up purposes. Also,
participants’ experiences with NCL and VS Code were assessed to
understand the correlation between familiarity with these tools and
their performance and satisfaction with the interfaces.

Participants preferred interface and their reasons for this prefer-
ence were noted, providing valuable information on the usability
and practicality of the multimodal approach compared to tradi-
tional methods. Additionally, participants were asked about their
experience with the VS Code IDE and their familiarity with NCL to
better understand how these factors influenced their preferences
and feedback.

Additionally, participants were invited to submit the final version
of their NCL files and indicate if they would like to schedule a
meeting for further discussion, allowing for a deeper understanding
of their experiences and suggestions for improvement.

5 RESULTS

The collected data were analyzed to compare the performance of the
three interaction methods: only using the VSCode text editor, the
traditional mouse and keyboard interface (Visual Extension), and
the gesture and voice-based interface (Multimodal Extension). Each
session lasted approximately 50 minutes, during which participants
completed tasks and provided feedback.

Table 1: Summary of Results Comparing Textual, Visual Ex-
tension (VE), and Multimodal Extension (MME) Modalities

Metric Textual (median) | VE (median) | MME (median)
Ease of Use 5.0 7.0 5.0
Accuracy 6.0 7.0 6.0
Overall Satisfaction 5.0 6.0 5.0
Context of Use General General Specific Situations
Preference 0% 0.71% 29%

5.1 Participant Overview

A total of eleven participants took part in the study, with vary-
ing levels of experience with NCL and VS Code. However, only
seven participants completed the experiment and responded to all
survey sections. Therefore, we will use only these seven complete
responses for the analysis.

Their experiences ranged from beginners to advanced users,
providing diverse perspectives. This diversity in experience levels
helped ensure that the feedback covered a broad spectrum of poten-
tial users. Participants were primarily students, professionals, and
researchers from various fields, ensuring a well-rounded evaluation
of the interfaces.

158

Borges et al.

5.2 Performance Metrics

Participants rated the ease of use, efficiency, accuracy, and overall
satisfaction for the textual, traditional mouse and keyboard inter-
face (Visual Extension), and the gesture and voice-based interface
(Multimodal Extension) on a scale from 1 to 7. In this scale, 1 means
"Strongly Disagree" and 7 means "Strongly Agree". Additionally,
the preference ratings reflect the number of votes each interface
received. The following observations were made, which are detailed
below and summarized in Table 1:

o Ease of Use: Participants had the perception that the Visual
Extension (VE) interface was generally easier to use, with a
median rating of 7.0, compared to 5.0 for both the Multimodal
Extension (MME) and the textual interface. This significant
difference highlights the steep initial learning curve associ-
ated with the multimodal interface. Users thought the VE
interface was more intuitive and straightforward, whereas
the multimodal interface required more effort.

e Accuracy: Participants reported higher accuracy with the
Visual Extension, with a median rating of 7.0, compared to
6.0 for both the Multimodal Extension (MME) and the tex-
tual interface. The primary contributors to lower accuracy
in the multimodal interface were errors in gesture recogni-
tion and voice command interpretation. These inaccuracies
often resulted in unintended actions or the need for repeated
attempts to achieve the desired outcome, thereby affecting
overall task performance.

Overall Satisfaction: The Visual Extension received higher

overall satisfaction scores, averaging 5.9, while the gesture

and voice-based interface received a score of 4.3 and the
textual interface scored 4.0. Participants appreciated the reli-
ability and ease of use of the traditional interface. However,
despite the lower satisfaction score for the multimodal in-
terface, some users expressed excitement about its potential.

They highlighted that with further refinements and improve-

ments in gesture and voice recognition accuracy, the multi-

modal interface could become a powerful and efficient tool
for NCL document editing, enhancing user engagement and
interaction.

5.3 Qualitative Feedback

Participants provided detailed feedback on their experiences with
both interfaces. Key points included:

o Learning Curve: Participants perceived that the gesture and
voice-based interface had a steeper learning curve, particu-
larly for those unaccustomed to such interaction methods.
Training and practice were required to achieve proficiency.
Beginners found the traditional interface more intuitive and
less frustrating.

e Context of Use: Some participants suggested that the ges-
ture and voice-based interface could be more effective in
specific contexts where hands-free operation is beneficial,
such as during live presentations or when physical interac-
tion with a keyboard and mouse is impractical. For example,
professionals working in dynamic environments or those
with accessibility needs might find this interface particularly
useful. The textual interface, while less flexible in dynamic

Exploring Visual and Multimodal Interaction in NCL Authoring

contexts, was appreciated for its precision and suitability in
traditional coding environments.

o Preference and Usability: Despite the potential of the Mul-
timodal Extension, the majority of participants expressed a
preference for the traditional interface for most tasks due
to its familiarity and reliability. However, some found the
multimodal interface more engaging and enjoyable for cre-
ative tasks, suggesting that it could complement rather than
replace traditional methods.

o Improvements Needed: Feedback indicated that the gesture
recognition accuracy and voice command responsiveness
require significant improvements for the multimodal inter-
face to be viable for daily use.Participants highlighted the
need for better error correction mechanisms, more intuitive
gesture sets, and the possibility was considered that some
issues might be caused by occasional erroneous responses
from the Language Model (LLM). Enhancements in these ar-
eas could make the interface more user-friendly and reduce
the occurrence of errors.

e Task Suitability: Participants noted that simple tasks were
easier and faster with the Visual Extension, while more com-
plex tasks involving multiple regions and dynamic interac-
tions could benefit from the multimodal interface once the
initial learning curve is overcome. This indicates that each
interface has strengths in different areas of task complexity.

54

When asked to choose their preferred tool for creating and editing
regions, 5 out of 7 respondents indicated a preference for the Visual
Extension. The primary reasons for this preference included greater
accuracy, ease of use, and reliability. Conversely, the remaining
participants who favored the gesture and voice-based interface
highlighted the novelty of the interaction and the potential for more
natural and intuitive controls once the learning curve is overcome.
Comments such as "the multimodal interface feels more futuristic
and engaging" were common among this group, reflecting their
enthusiasm for the innovative approach.

Participant Preferences

5.5 Additional Insights

The study also revealed that the participants experience levels sig-
nificantly influenced their preferences and performance. Advanced
users were more likely to appreciate the efficiency gains from the
multimodal interface, while beginners found the Visual Extension
more accessible and straightforward. This suggests that the Mul-
timodal Extension could be more beneficial as an auxiliary tool
for experienced developers rather than a complete replacement for
traditional methods.

5.6 Detailed Task Analysis

Further analysis of specific tasks showed that:

e Region Creation: Participants found that creating new re-
gions was more intuitive with the multimodal interface once
they became proficient, thanks to the ability to use voice
commands for specifying dimensions and positions. It can
be inferred that initially the visual version brings greater

159

WebMedia’2024, Juiz de Fora, Brazil

satisfaction, but after learning how to use the tool, the mul-

timodal extension can be very useful.

Region Editing: Editing existing regions, such as resizing and

moving, was more accurate with the visual interface. The

precision required for these tasks often led to frustration
with gesture-based controls.

o Complex Interactions: Tasks involving multiple regions and
dynamic adjustments highlighted the potential of the multi-
modal interface. Participants who mastered the gestures and
voice commands found these tasks, such as creating mul-
tiple regions in a specific layout, easier and more efficient
compared to traditional methods.

5.7 Interview Feedback

In addition to the quantitative data collected, we conducted inter-
views with participants who accepted an interview to obtain deeper
feedback on their experiences and preferences. One participant pro-
vided particularly insightful feedback about the suitability of each
interface for different types of tasks.

The participant reported that for simpler applications, the Visual
Extension is more useful due to its straightforward and familiar
nature. They felt that the traditional interface allows for quick and
precise interactions without the need for extensive adjustments or
corrections. This preference aligns with the higher ease of use and
accuracy ratings observed in the quantitative data. Another inter-
viewee highlighted the ease of using the Visual Extension to quickly
understand where their content would be displayed, emphasizing
its effectiveness for straightforward visualization tasks.

However, the participant noted a significant advantage of the
multimodal interface for more complex tasks that involve managing
many regions. They highlighted that the ability to use voice com-
mands and gestures for creating and manipulating regions made
these tasks less cumbersome and more efficient. Specifically, for
tasks requiring multiple adjustments and dynamic interactions, the
multimodal interface’s intuitive control mechanisms reduced the
cognitive load and made the process more engaging.

This feedback underscores the potential for a hybrid approach
where the traditional interface could be used for simpler, more
precise tasks, while the multimodal interface could be leveraged
for handling complexity and enhancing user engagement in more
demanding scenarios. It suggests that offering users the flexibility to
switch between interfaces based on the task at hand could maximize
productivity and satisfaction.

The participant’s insights reinforce the need for further develop-
ment and refinement of the multimodal interface to fully realize its
potential for complex interactions while maintaining the reliability
and precision of the traditional interface for simpler tasks.

Furthermore, there are threats to the validity of this study, such
as the small number of participants and the variability in their
experience with NCL and VS Code, which may limit the generaliz-
ability of the results. The reliance on voice and gesture recognition
technologies, which are prone to errors, may also have influenced
users perceptions of the effectiveness of the Multimodal Extension.
Therefore, future research should consider a larger and more ho-
mogeneous sample of users and improvements in the supporting
technologies to ensure more robust and representative results.

WebMedia’2024, Juiz de Fora, Brazil

6 CONCLUSION

This paper presents two approaches to facilitate the creation and
manipulation of NCL regions graphically. The first approach uses
traditional mouse and keyboard interfaces, while the second inte-
grates gesture recognition and voice commands into a VS Code
extension to enhance the editing experience for NCL documents.
We experimented to evaluate the usability and developers’ pref-
erences for both tools. Our initial results indicate that, while the
traditional mouse and keyboard interface remains superior in terms
of user satisfaction and perceived accuracy, the multimodal inter-
face shows promise by significantly reducing task completion time
and the number of errors.

The integration of these new tools that help author NCL docu-
ments visually into VS Code for editing can represent a step towards
more practical and easy-to-use development environments. While
there are challenges to address, the potential benefits in terms of
efficiency, availability, and user satisfaction are substantial. By fo-
cusing on continuous improvement and user-centred design, we
anticipate that this approach can positively influence the future
development of multimedia applications

Future work will focus on refining the tasks performed using the
multimodal interface to ensure they match or exceed the efficiency
and accuracy of manual text editing. This includes improving ges-
ture accuracy, enhancing the responsiveness of voice commands,
and expanding the range of supported editing actions. Understand-
ing the potential of using LLMs to generate code snippets, we
believe a multi-agent approach could efficiently resolve multiple
blocks within an NCL document. By providing more comprehensive
support for generating entire NCL code blocks, we aim to offer a
tool that is not only innovative but also practical for everyday use
by developers.

Furthermore, exploring the integration of artificial intelligence
and machine learning techniques to enhance the accuracy of ges-
ture and voice recognition could lead to even more robust and
intelligent systems. Al-driven predictive models could anticipate
user actions and offer contextual assistance, thereby improving
overall efficiency. Future work could explore the possibility of al-
lowing users to select from various Large Language Models (LLMs)
based on their specific needs or preferences. This customization
would enable users to optimize the tool’s performance for different
tasks or domains, enhancing the overall flexibility and utility of the
system. Additionally, enabling users to submit their LLMs could
extend the tool’s capabilities, allowing for tailored solutions that
leverage specialized knowledge or proprietary data.

Finally, conducting extensive user studies with a larger and more
diverse participant pool will be crucial. This will help validate the
findings of our initial experiments and ensure that the multimodal
interface meets the needs of a broad range of users. Gathering de-
tailed feedback on usability, effectiveness, and user satisfaction will
provide valuable insights that can guide the continuous improve-
ment of the tool.

ETHICS STATEMENT

In this work, we adhere to ethical guidelines throughout our exper-
iments involving volunteers. All participants were provided with
an Informed Consent Form before their involvement, ensuring they

160

Borges et al.

were fully informed about the research scope, procedures, and their
rights. We ensure the protection of participants’ data by exclusively
using non-sensitive anonymized data, minimizing risks in data
handling.

In addition, a comprehensive document detailing all aspects of
the research, including objectives, methodology, potential risks,
and benefits, was submitted to the Ethics Committee of the Pon-
tifical Catholic University of Rio de Janeiro (PUC-Rio) for review
and approval, demonstrating our commitment to ethical research
practices.

ACKNOWLEDGMENTS

The authors would like to acknowledge RNP (Rede Nacional de
Ensino e Pesquisa) and CAPES (Coordenacéo de Aperfeicoamento
de Pessoal de Nivel Superior) for the financial support.

REFERENCES

[1] NBR ABNT. [n.d.]. Digital Terrestrial Television-Data Coding and Transmission
Specification for Digital Broadcasting-Part 2: Ginga-NCL for fixed and mobile
receivers, Brazilian Standard 15606-2, Brazil, 2007.

G Kumar Arora. 2017. SOLID Principles Succinctly. CreateSpace Independent
Publishing Platform. 1-4.

Abel Avram. 2007. Domain-driven design Quickly. 20-32. Lulu.com.

Aaron Bangor, Philip T Kortum, and James T Miller. 2008. An empirical evaluation
of the system usability scale. Intl. Journal of Human—Computer Interaction 24, 6
(2008), 574-594.

Moniruzzaman Bhuiyan and Rich Picking. 2009. Gesture-controlled user inter-
faces, what have we done and what’s next. In Proceedings of the fifth collaborative
research symposium on security, E-Learning, Internet and Networking (SEIN 2009),
Darmstadt, Germany. Citeseer, 26-27.

John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4-7.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

Xinyun Chen, Maxwell Lin, Nathanael Schrli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).
Visual Studio Code. 2019. Visual studio code. Recuperado el Octubre de (2019).
Douglas Paulo de Mattos and Débora C Muchaluat-Saade. 2018. Steve: A hy-
permedia authoring tool based on the simple interactive multimedia model. In
Proceedings of the ACM Symposium on Document Engineering 2018. 1-10.

Joel André Ferreira Dos Santos and Débora Christina Muchaluat-Saade. 2012.
XTemplate 3.0: spatio-temporal semantics and structure reuse for hypermedia
compositions. Multimedia Tools and Applications 61, 3 (2012), 645-673.

Louie Giray. 2023. Prompt engineering with ChatGPT: a guide for academic
writers. Annals of biomedical engineering 51, 12 (2023), 2629-2633.

Moh Harris, Ali Suryaperdana Agoes, et al. 2021. Applying hand gesture recog-
nition for user guide application using MediaPipe. In 2nd International Seminar
of Science and Applied Technology (ISSAT 2021). Atlantis Press, 101-108.

Jhilmil Jain, Arnold Lund, and Dennis Wixon. 2011. The future of natural user
interfaces. In CHI'11 Extended Abstracts on Human Factors in Computing Systems.
211-214.

Ankur Joshi, Saket Kale, Satish Chandel, and D Kumar Pal. 2015. Likert scale:
Explored and explained. British journal of applied science & technology 7, 4 (2015),
396-403.

Bipin Joshi and Bipin Joshi. 2016. Overview of SOLID Principles and Design
Patterns. Beginning SOLID Principles and Design Patterns for ASP. NET Developers
(2016), 1-44.

Dr Manju Kaushik and Rashmi Jain. 2014. Natural user interfaces: Trend in
virtual interaction. arXiv preprint arXiv:1405.0101 (2014).

James R Lewis. 2018. The system usability scale: past, present, and future. Inter-
national Journal of Human-Computer Interaction 34, 7 (2018), 577-590.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022.
Competition-level code generation with alphacode. Science 378, 6624 (2022),
1092-1097.

Scott Millett and Nick Tune. 2015. Patterns, principles, and practices of domain-
driven design. 50-64. John Wiley & Sons.

Daniel de Sousa Moraes, Polyana Bezerra da Costa, Antonio JG Busson, José
Matheus Carvalho Boaro, Carlos de Salles Soares Neto, and Sergio Colcher. 2023.

—
&

[o
[10]

(1]

[15

[16

o
=

(18]

[19

[20

[21

Exploring Visual and Multimodal Interaction in NCL Authoring

On the Challenges of Using Large Language Models for NCL Code Generation.
In Anais Estendidos do XXIX Simpésio Brasileiro de Sistemas Multimidia e Web.
SBC, 151-156.

Daniel de Sousa Moraes, André Luiz de B Damasceno, Antonio José G Busson, and
Carlos de Salles Soares Neto. 2016. Lua2NCL: framework for textual authoring
of NCL applications using Lua. In Proceedings of the 22nd Brazilian Symposium
on Multimedia and the Web. 47-54.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

Douglas Paulo de Mattos, Julia Varanda da Silva, and Débora Christina Muchaluat-
Saade. 2013. NEXT: graphical editor for authoring NCL documents supporting
composite templates. In Proceedings of the 11th european conference on Interactive
TV and video. 89-98.

Carlos de Salles Soares Neto Roberto Gerson de Albuquerque Azevedo, Mario
Meireles Teixeira. 2009. NCL Eclipse: Ambiente Integrado para o Desenvolvi-
mento de Aplicacdes para TV Digital Interativa em Nested Context Language. In
Saldo de Ferramentas - SBRC 2009. Sio Luis, MA, Brazil.

WebMedia’2024, Juiz de Fora, Brazil

[26] Victor Hazin da Rocha. 2013. DiTV-Arquitetura de desenvolvimento para aplicacoes

interativas distribuidas para TV digital. Master’s thesis. Universidade Federal de
Pernambuco.

Harmeet Singh and Syed Imtiyaz Hassan. 2015. Effect of solid design principles
on quality of software: An empirical assessment. International Journal of Scientific
& Engineering Research 6, 4 (2015), 1321-1324.

Luiz Fernando Gomes Soares and Rogério Ferreira Rodrigues. 2006. Nested
context language 3.0 part 8-ncl digital tv profiles. Monografias em Ciéncia da
Computagao do Departamento de Informatica da PUC-Rio 1200, 35 (2006), 06.

[29] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,

Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382 (2023).

Anthony Zhang. 2017. SpeechRecognition 2.1.3. https://pypi.org/project/
SpeechRecognition/2.1.3/. Accessed: 2024-08-20.

Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George
Sung, Chuo-Ling Chang, and Matthias Grundmann. 2020. Mediapipe hands:
On-device real-time hand tracking. arXiv preprint arXiv:2006.10214 (2020).

