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ABSTRACT
The Versatile Video Coding (VVC) standard achieves high compres-
sion rates by introducing new encoding tools, such as the Intra
Subpartition Prediction (ISP). However, the ISP increases the com-
putational effort necessary to perform the mode decision of the
intra prediction step. This paper proposes a fast intra-mode deci-
sion solution for the ISP using machine learning. A Decision Tree
is employed to predict the most promising ISP modes to be opti-
mal to avoid the costly RDO test of ISP modes that are less likely
to be chosen. By reducing the number of modes fully evaluated
by the RDO process, the proposed solution achieves an average
time-saving of 3.15% with only 0.11% of coding efficiency loss when
tested for the common test conditions of VVC. Unlike the related
works, our solution avoids the time overhead of calculating image
features by adopting features from the encoding process. Compared
with related works, our solution presents competitive time-saving
and coding efficiency results.
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1 INTRODUCTION
Digital videos have been fundamental in many areas, from en-
tertainment and communication to surveillance applications and
live broadcasts. A study reveals that during the third quarter of
2022, live streams featuring gaming-related content accumulated
approximately 7.2 billion hours of content watched across leading
streaming platforms [6]. In this context, video coding standards
such as the Versatile Video Coding (VVC) [5] play a crucial role
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in enabling applications to manipulate high-definition videos for
storage and transmission.

The VVC [5] is one of the latest and most advanced video coding
standards. It offers superior bit-rate reduction without compro-
mising visual quality when compared to its predecessor, the High
Efficiency Video Coding (HEVC) standard [19]. This is possible due
to several new encoding tools introduced in the standard, especially
in the intra-prediction step of VVC. While VVC maintains the Pla-
nar, DC, and Angular directional modes from HEVC, it extends the
number of Angular modes from 33 to 65. VVC also introduces the
Matrix-weighted Intra Prediction (MIP) [18] and the Intra Subparti-
tion Prediction (ISP) [8] to improve prediction accuracy. Combined
with the Planar, DC, and Angular modes, the ISP tool enhances
prediction granularity by processing a block through subpartitions
in the horizontal or vertical directions. Despite the coding efficiency
improvements introduced by the new encoding tools of VVC, there
is a trade-off in encoding time, which makes it 34 times slower
than HEVC [12]. Therefore, it is important to develop solutions to
improve the encoding time by targeting the new intra-prediction
tools in VVC, such as the ISP tool.

Some related works propose solutions to save time in the intra-
mode decision in VVC, specifically focusing on the ISP tool. The
main idea of these works is to avoid the costly evaluation performed
by the Rate-Distortion Optimization (RDO) process for ISP modes
that are less likely to be optimal. The works usually use heuristics
or machine learning solutions to predict the most promising modes.
For instance, in [14], a machine learning model is trained with a
key feature computed over the image known as the Mean Abso-
lute Sum of Transform coefficients. The model predicts whether
the evaluation for each ISP mode is necessary or can be skipped.
Another approach, presented in [17], involves training a Decision
Tree model over another image feature, the block’s variance. The
Decision Tree predicts when the evaluation of all ISP candidates
can be skipped. In [11], the texture complexity of the block is ob-
tained through an image feature called Mean Absolute Deviation.
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Then, this feature is used to decide whether the evaluation of ISP
candidates can be skipped. A heuristic algorithm is proposed in
[13], where the list of ISP candidates is pre-pruned according to the
shape of the block and the ISP subpartition direction.

Although all these works report time-saving results on the ISP
mode decision, the solutions proposed by [14] and [11] rely on
computing image features, inevitably introducing a processing time
overhead to each one of these mode decision solutions — a fact that
is not thoroughly discussed in these works. The solution proposed
by [13] is the only one that does not rely on computing image
features. Nevertheless, none of the related works employ solutions
using features available at encoding time, such as the modes of
neighbor blocks or rate-distortion costs calculated during the RDO
process. In this work, we call these features "encoding features"
since they are available during the encoding process.

This paper proposes a fast ISP mode decision solution using
machine learning for the VVC intra prediction process. Our ap-
proach distinguishes from related works by using features available
at encoding time, aka encoding features, as input for the machine
learning model. This approach avoids the computations necessary
to calculate image features as it is adopted by most of the related
works. We classify the ISP candidates into two distinct classes based
on their associated intra modes: (i) ISP Planar/DC, comprising ISP
subpartitions associated with Planar/DC modes, and (ii) ISP Angu-
lar, comprising ISP subpartitions associated with Angular modes.
Then, we train a Decision Tree model to predict between these
two ISP classes using encoding features, such as rate-distortion
costs for various intra-modes and neighbor decisions, which are
accessible before the ISP mode decision. Leveraging these features
allows our solution to avoid ISP modes that are less likely optimal,
saving encoding time with negligible coding efficiency loss.

2 VVC INTRA SUBPARTITION PREDICTION
VVC introduced several innovations in the intra prediction. Firstly,
it enabled the prediction of video frames through blocks of square
and rectangular shapes, incorporating 17 block sizes. Considering
the intra modes, the Planar and DC modes were preserved from the
previous HEVC standard, while VVC expanded the Angular modes
from 33 to 65, which are indicated by the red arrows in Figure 1.
VVC also introduced a novel family of intra modes called MIP [18].
Alongside these, new tools that can be combined with the Planar,
DC, and Angular modes were incorporated, such as the Multiple
Reference Line (MRL) [7], which extends the number of available
reference samples for intra prediction and is showcased in Figure 2,
and the ISP [8], shown in Figure 3, which is the primary focus of
this work.

The ISP tool enables more granular block prediction. For this
purpose, the ISP tool horizontally or vertically divides the original
image block into two or four subpartitions, depending on the block
size, as illustrated in Figure 3. For blocks sized 8x4 and 4x8, the
ISP tool generates only two subpartitions, either in the horizontal
or vertical direction, as shown in Figure 3(b) and Figure 3(c), re-
spectively. This restriction ensures that each subpartition contains
at least 16 samples. For other block shapes, the ISP tool generates
four subpartitions in either the horizontal or vertical direction, as
shown in Figure 3(a). The prediction process for each subpartition

0: Planar
1: DC

2

18

34 50 66

Figure 1: Intra modes in VVC.
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Figure 2: Multiple Reference Line tool.

occurs sequentially, and samples generated from the prediction of
one subpartition are used as reference samples for the prediction
of the next subpartitions.

While predictions are conducted individually for each subparti-
tion, they must converge to the same intra mode, such as Planar,
DC, or one of the Angular modes. This is done to improve the
prediction accuracy of each subpartition and also to save the bits
necessary to signal the intra modes in the bitstream since only one
mode will be signaled. The addition of the ISP can improve coding
efficiency by approximately 0.57% with a 12% increase in encoding
time [8]. This increase in encoding time occurs because the ISP tool
introduces an additional step in the intra-mode decision process
of VVC. In this process, the encoder evaluates the Planar, DC, and
Angular modes twice. First, a list of these modes is evaluated for
the entire block by the RDO, and then, they are evaluated again for
each possible ISP subpartition.

The intra-mode decision process determines the best intra mode
for each block by evaluating several possible combinations through
the Rate-Distortion Optimization (RDO) process [20]. However,
this process is computationally intensive since the encoder must
evaluate many intra-mode candidates. For each one of these modes,
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Figure 3: Intra Subpartitions Prediction Tool.
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Figure 4: VTM standard intra mode decision.

the rate-distortion cost must be computed by the intra-mode deci-
sion. This cost is available only after the encoding steps, including
prediction, direct and inverse transformation and quantization, and
entropy coding. To handle this complexity, the reference software
that implements VVC, called VVC Test Model (VTM) [4], incorpo-
rates the Rough Mode Decision (RMD) [21] and the Most Probable
Modes (MPM) list [16]. The main idea behind the RMD and MPM
steps is to generate the RD-List, a subset of the most promising
modes. Only this subset is evaluated by the RDO process, avoiding
the evaluation of modes that are less likely to be optimal.

VTM performs the intra-mode decision following the steps of
Figure 4. The RMD, MPM, and MRL steps jointly select up to eight
intra modes to compose the RD-List. Both the RMD and MRL steps
compute fast rate-distortion costs for the intra modes, selecting the
six best ones. However, while the RMD evaluates the Planar, DC,
Angular, and MIP modes with MRL set to zero, as shown in Figure
2, the MRL step evaluates the MPMmodes twice. One with the MRL
set to one and then with MRL set to two. The MPM step generates
a list of six intra modes likely to be optimal for the current block
based on the best intra modes in neighboring blocks [16]. The first
MPM mode is always the Planar mode, while the remaining ones
can be the DC or one of the Angular modes. If the first two MPM
modes are not already in the RD-List, the MPM step adds them. At
the end of the RD-List, the encoder reserves 16 positions evenly
distributed between the horizontal and vertical subpartitions for
ISP. VTM includes the same intra modes obtained from the RMD

and MPM steps in the horizontal and vertical reserved positions,
excluding the MIP modes. In addition, three Angular modes with
the lowest costs during the RMD step, excluding the ones already
in the RD-List, are also selected for the ISP evaluation. Then, the
RDO evaluates all non-ISP modes (Planar, DC, Angular, and MIP
modes) and only then starts the evaluation of the ISP modes.

While the RD-List is a subset of the most promising intra modes,
only one will yield the best result in terms of coding efficiency.
Even when we consider only the subset of ISP candidates present
in the RD-List, the RDO must evaluate up to 16 modes for a single
block to decide the best ISP mode. In this context, there is a need for
solutions that target reducing the number of modes to be evaluated
by the RDO process. The solutions must accurately predict the most
promising ISPmodes to reduce the computational effort required for
the ISP mode decision with minimal loss of compression efficiency.

2.1 ISP Occurrence Rate Analysis
We performed two analyses to evaluate the occurrence rate of the
Planar, DC, and Angular modes during the ISP step. The idea is to
build our fast ISP mode decision solution based on the occurrence
rate of each type of intra mode during the ISP process. We organized
the ISP intra modes in two different classes: (i) ISP Planar/DC
and (ii) ISP Angular. The reason for this classification relies on
the nature of each intra mode. While the Planar and DC modes are
better for predicting homogeneous textures, the Angular modes
are better for predicting directional textures.

In the first analysis, we computed the occurrence rate of each
class organized by block size. The occurrence rate of a given class
measures how often an intra mode within that class is the best when
the final decision is an ISP. In the second analysis, we computed the
frequency of Angular ISP candidates in the RD-List to understand
the potential to avoid evaluating Angular ISP modes. We selected
the same 15 videos used in the work of [9] for both analyses in
this study. These videos were specifically chosen by the authors for
their variety in motion and texture characteristics, as indicated by
the Spatial Information (SI) and Temporal Information (TI) metrics
[10]. Each video was encoded using VTM 18.0 [4] with the All Intra
configuration and four Quantization Parameters (QP): 22, 27, 32,
and 37. Subsequently, for each block, we extracted the final mode
decision (ISP Planar/DC or ISP Angular) and the number of ISP
candidates in the RD-List during encoding. To achieve this, we
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Figure 5: Occurrence rate of ISP Planar/DC and ISP Angular
classes by block size.
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Figure 6: Frequency of angular ISPs in the RD-List.

modified the VTM code and inserted routines at specific points to
collect the necessary data.

Figure 5 presents the occurrence rate in which the (i) ISP Pla-
nar/DC and (ii) ISP Angular classes yield the best rate-distortion
result by block size. We can observe that the (i) ISP Planar/DC
class has a higher occurrence rate when compared to the (ii) ISP
Angular class for larger block sizes, particularly for 64x64 and
32x32. Furthermore, the (i) ISP Planar/DC class maintains a higher
occurrence rate across all block sizes, obtaining 60% of the occur-
rence rate on average. In other words, when the ISP is chosen for
prediction, the Planar and DC modes are more likely to be chosen.

In the second analysis in Figure 6, we can see the frequency of ISP
candidates associated with Angular modes. We can observe that the
number of ISP candidates associated with angular modes is always
even. That happens because the VTM software evaluates the same
intra modes for both horizontal and vertical subpartitions in the ISP.
Besides, it is possible to notice that in most cases, there are 8, 10, and
12 ISP candidates associated with angular modes. This means that,
in most cases, VTM will evaluate 8 to 12 ISP candidates associated
with angular modes for a single block. This finding highlights the
potential for reducing the computational effort of the intra mode
decision in VVC by early predicting when the encoder can avoid
evaluating the ISP candidates associated with the Angular modes.

Considering the high occurrence rate of the (i) ISP Planar/DC
class and the high frequency of the Angular ISP candidates in the
RD-List, it is possible to reduce the computational effort of the ISP
mode decision if an accurate machine learning model is employed
to predict when the best ISP mode is Planar or DC. When this
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Figure 7: Proposed fast ISP mode decision solution.

happens, the RDO evaluation of many Angular ISP candidates can
be skipped to save encoding time while minimizing the final coding
efficiency loss.

3 FAST ISP MODE DECISION
This paper proposes a fast ISP mode decision using machine learn-
ing for the VVC standard. The main idea is to use the encoding
features available at encoding time, thereby avoiding the additional
overhead of computing image features. Based on the two analy-
ses previously presented, our solution groups the ISP candidates
according to their associated intra modes in two classes: (i) ISP
Planar/DC class, containing the ISP candidates associated with the
Planar and DC modes, and (ii) ISP Angular class, containing the
ISP candidates associated with Angular modes. The goal was to en-
sure that the ISP Planar/DC class contains ISP candidates associated
with Planar and DC modes, which are known to be effective at pre-
dicting homogeneous blocks, while the ISP Angular class includes
ISP candidates associated with Angular modes, which are effective
at predicting blocks with directional textures. After defining the
classes, we train a Decision Tree offline using encoding features to
predict between these two classes. Once training is complete, we
integrate the final Decision Tree into the VTM. Whenever the Deci-
sion Tree predicts the (i) ISP Planar/DC class, the ISP candidates
belonging to the (ii) ISP Angular class are not evaluated, saving
encoding time. The choice for a Decision Tree model is justified
for two main reasons. First, Decision Trees usually present good
prediction accuracy for tabular datasets. Second, Decision Trees
have a fast inference time. As our solution aims to save encoding
time, we can not employ a complex model.

Figure 7 presents our solution, where the yellow rectangles rep-
resent the new steps introduced by the solution. Since the default
intra-mode decision of VTM evaluates all non-ISP modes (Planar,
DC, Angular, and MIP modes) and only then starts evaluating the
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ISP modes, we added our solution between the RDO for the non-
ISP modes and the RDO for the ISP modes. This way, the default
decision is the same until the RDO evaluation of the non-ISP modes.

Then, the Decision Tree (DT) acquires a series of encoding fea-
tures from the RMD, the MPM, the RD-List, and the RDO for non-
ISP modes to predict one of the previously mentioned ISP classes.
When the Decision Tree outcome is the (i) ISP Planar/DC class,
our solution removes the ISP candidates associated with Angular
modes from the RD-List, and the RDO is performed only for ISP
candidates associated with Planar/DC modes. On the other hand,
if the Decision Tree outcome is the (ii) ISP Angular class, all ISP
candidates are evaluated. We decided never to remove the ISP candi-
dates associated with Planar/DC modes to bring a balance between
the time reduction and the coding efficiency loss, given the high
occurrence rate of the ISP Planar/DC class presented in Figure 5.

3.1 Feature Extraction and Dataset Generation
Table 1 presents the encoding features extracted from VTM that
were used in our Decision Tree model. The features are presented
by name, description, the step where the feature is extracted from
(RMD, MPM, RD-List or RDO), the type (Boolean, Decimal or In-
teger), the min and max values for the feature, and the number of
values that the feature provides. RMD computes fast rate-distortion
costs for the Planar, DC, Angular, and MIP modes. These fast costs
hint at whether the ISP Planar/DC or ISP Angular classes will pro-
duce the best cost. This way, considering the best costs in RMD
for the Planar, DC, Angular, and MIP modes, we extract the Sum
of Absolute Differences (SAD), the Sum of Absolute Transformed
Differences (SATD), the estimated number of bits, and the fast rate-
distortion costs. Besides that, we also extract the x and y positions
of the block, the best angular and MIP modes, and the best angular
and DC MRL [7] numbers.

The MPM provides a list containing six intra modes. The first
one is always the Planar; the remaining modes will be the DC or
one of the Angular modes. These six intra modes are likely the best
ones since they were the best for the left and upper neighboring
blocks. Therefore, from the MPM, we extract the number of the
five selected intra modes, excluding the Planar as it is constant, the
number of the best intra modes in the left and upper neighboring
blocks, eight boolean values indicating whether the best intra mode
for the left and upper neighboring blocks is Planar, DC, Angular,
or MIP, and a boolean value indicating if the DC is an MPM.

The VTM software distributes the non-ISP modes in the RD-
List in ascending order according to their fast rate-distortion costs
obtained from the RMD step. This way, the modes distribution order
in the RD-List can also hint if the ISP Planar/DC or ISP Angular
classes are likely to provide the best rate-distortion cost. Therefore,
from the RD-List, we extract the position of the first occurrence of
Planar, DC, Angular, and MIP modes and also the mode number of
the first Angular and MIP modes.

Finally, since the RDO evaluation for non-ISP modes occurs be-
fore the evaluation of the ISPmodes, all the complete rate-distortion
costs computed by the RDO for non-ISP modes are available. This
way, we extract the best rate-distortion costs obtained by the RDO
step for the Planar, DC, Angular, and MIP modes. It is important
to highlight that despite the high number of features used by our
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Figure 8: Occurrence rate of ISP classes according to the posi-
tion of the first Angular mode in the RD-List.

model, there is no need for additional computations since they are
all available during the encoding process.

To obtain the 48 features presented in Table 1 for training the
Decision Tree, we encoded the same 15 videos using the setup
described in section 2.1. The dataset contains approximately 800,000
samples balanced by block size, QP, video, and class. Because there
is a single dataset for all block sizes, we normalized the features
related to rate-distortion costs according to Equation (1), where X is
the set containing the rate-distortion cost-related features, namely
the SAD, SATD, FracBits, RMD Cost, and RDO Cost in Table 1, w is
the width of the block and h is the height of the block.

𝑥_𝑛𝑜𝑟𝑚 =
𝑥

𝑤 · ℎ , 𝑥 ∈ 𝑋, 𝑤,ℎ ∈ {4, 8, 16, 32, 64} (1)

To analyze the behavior of some of the features, we computed
the information gain for each one of the encoding features consid-
ered in this work. Subsequently, the two features with the highest
information gains were selected to be analyzed, which are (1) the
position of the first Angular mode in the RD-List and (2) the intra
mode that appears in the second position of the MPM list. The anal-
ysis of these two encoding features was conducted by computing
the occurrence rate of the ISP Planar/DC and ISP Angular classes
according to the feature’s respective values.

Figure 8 illustrates the occurrence rate of the ISP Planar/DC and
ISP Angular classes according to the position of the first Angular
mode in the RD-List. One can notice that the first Angular mode
occurs from the first to the eleventh position in the RD-List. When
the first Angular mode occurs in the first position of the RD-List,
the ISP Planar/DC exhibits an occurrence rate of 26%, indicating
that in 74% of the cases, the ISP Angular class results in the best
rate-distortion cost. However, as the position of the first Angular
mode in the RD-List increases, the ISP Planar/DC class occurrence
rate also increases. For instance, when the first Angular mode in
the RD-List occurs from the second to the eleventh position, the ISP
Planar/DC class always achieves a higher occurrence rate, peaking
at 97% when the first Angular mode occurs in the eleventh position
of the RD-List. In other words, as the position of the first Angular
mode in the RD-List increases, it also increases the cases where
VTM can avoid the RDO evaluation of the ISP Angular modes.

In Figure 9, the occurrence rate of the ISP Planar/DC and ISP
Angular classes is shown according to the intra mode present in
the second position of the MPM List. Since the second position of
the MPM list can contain any intra mode among DC and Angular,
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Table 1: Encoding features extracted from VTM.

Name Description Step Type Min Max # of values

BlockPosition The x and y block positions. RMD Integer 0 4096 2
BestAngular Best angular mode. RMD Integer 2 66 1
BestMIP Best MIP mode. RMD Integer 0 7 1
MRLAngular MRL reference line from the best angular mode . RMD Integer 0 2 1
MRLDC MRL reference line from the best DC mode. RMD Integer 0 2 1
ModesMPM MPM modes excluding Planar. MPM Integer 1 66 5
ModesPosition Position of the first occurrence of each type of intra mode. RD-List Integer 1 11 4
FirstAngular First angular mode in the RD-List. RD-List Integer 2 66 1
FirstMIP First MIP mode in the RD-List. RD-List Integer 0 7 1
NeighborMode Best intra mode number in the neighboring blocks. MPM Integer 0 66 2
NeighborType Best intra mode type in the neighboring blocks. MPM Boolean 0 1 8
DCMPM DC mode is an MPM. MPM Boolean 0 1 1
SAD Sum of Absolute Differences. RMD Decimal 0.63 1390.38 4
SATD Sum of Absolute Transformed Differences. RMD Decimal 0.52 497.81 4
FracBits Estimated number of bits. RMD Decimal 1.19 15669.28 4
RMD Cost Fast rate-distortion cost. RMD Decimal 0.65 502.01 4
RDO Cost Complete rate-distortion cost. RDO Decimal 182.14 1881715.88 4

Total 48
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Figure 9: Occurrence rate of ISP classes according to the intra
mode in second position on the MPM list.

we grouped the values of this feature into two categories: DC, with
cases where the second position of the MPM list has the DC mode,
and Angular, with cases where the second position of the MPM list
has one of the Angular modes (modes 2 to 66 in Figure 1).

From Figure 9, one can see that when the second position of
the MPM list has the DC mode, the ISP Planar/DC class achieves a
68% occurrence rate. This means that in only 32% of the cases, the
ISP Angular class achieves the best rate-distortion cost. In contrast,
when the second position of the MPM list has one of the Angular
modes, the opposite occurs, and the ISP Angular class achieves a
higher occurrence rate of 68%. Therefore, the analysis of this feature
reveals that when the DC mode is the second in the MPM list, the
ISP Planar/DC class has a higher chance of containing the best
rate-distortion cost. As a result, when the DC mode is the second
in the MPM list, VTM can avoid the RDO evaluation of the ISP
Angular modes in 68% of the cases.

In summary, the analysis of these two features reveals the impor-
tance of encoding features in predicting when the RDO evaluation
of the ISP Angular modes can be avoided by VTM. For instance,
Figure 8 shows that when the first Angular mode in the RD-List
occurs from the second to the eleventh position, VTM can avoid the
RDO evaluation of the ISP Angular modes most of the time, given
the higher occurrence rate of the ISP Planar/DC class. Specifically,
when the first Angular mode occurs in the ninth, tenth, or eleventh
position, VTM can avoid the RDO evaluation of the ISP Angular
modes in 89%, 84%, and 97% of the cases, respectively. Similarly,
Figure 9 demonstrates that when the DC mode is in the second
position of the MPM list, VTM can avoid the RDO evaluation of
the ISP Angular modes in 62% of the cases.

Although only the two features with the highest information
gains were analyzed, similar behavior is expected from the remain-
ing features, such as the positions of the first occurrence of the
Planar, DC, and MIP modes, the rate-distortion costs associated
with the best Planar, DC, Angular, and MIP modes, and the intra
mode that occurs at each position of the MPM list. Since all these
encoding features are already computed by VTM and available at
encoding time, there is no additional overhead from computing
features from the image, as is common in most related works.

3.2 Decision Tree Training
Using the Scikit-learn library [15], the dataset was split into 80%
for training and validation, reserving the remaining 20% for testing.
This division ensured that our model never saw 20% of the data
throughout the training and validation stages. We performed the
training and validation with two steps: a Random Search and a
Grid Search. The Random Search [1] step involved the evaluation
of 1,000 random combinations across a wide search space over the
hyperparameters criterion, min samples split, min samples leaf, max
depth, max leaf nodes, and max features. Each combination was
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Figure 10: Confusion matrix for the final model in the test
set.

evaluated using a 5-fold cross-validation approach over 80% of the
data separated for the training and validation stages. Subsequently,
we employed the Random Search results to compute the Pearson
Correlation between each hyperparameter and the F1-score.

The max leaf nodes and the max features were the two hyperpa-
rameters with the highest correlation with an increased F1-score.
Then, these two hyperparameters went for a refining phase in the
Grid Search step, while the remaining stayed at their default values
or the best values found in the Random Search. The Grid Search
also considered the evaluation of combinations through a 5-fold
cross-validation over the same 80% of the data separated for train-
ing and validation stages. The final model is obtained from the
hyperparameter combination that generated the best F1-score in
the Grid Search.

Figure 10 presents the confusion matrix obtained by the final
Decision Tree model when evaluated under the 20% of the data not
used during the Random Search and Grid Search steps, reserved for
testing purposes. In the main diagonal, we have the accurate predic-
tions made by the model, while down and above the main diagonal,
we have the wrong predictions made by the model. The final model
obtained accuracies of 77% and 81% for the ISP Planar/DC and ISP
Angular classes, respectively.

Since we apply the Decision Tree model in the context of a
solution to reduce the encoding time in video coding, we can classify
the wrong predictions made by the model into two categories: time
errors and coding efficiency errors. A time error happens when
the model misclassifies an example of the ISP Planar/DC class in
the ISP Angular class. There is no coding efficiency loss when that
happens because our solution will not remove the ISP candidates
associated with the Planar/DC modes from the RD-List. However,
a time error occurs since the RDO evaluation for the ISP modes
could be performed exclusively for the ISP candidates associated
with the Planar/DC modes. On the other hand, a coding efficiency
error happens when the model misclassifies an example belonging
to the ISP Angular class in the ISP Planar/DC class. Then, our
solution removes the ISP candidates associated with the Angular
modes, reducing the encoding time but providing a loss of coding
efficiency. By looking at Figure 10, time errors occur 23% of the
time, while coding efficiency errors occur 19% of the time. Given
the negligible difference between the two types of errors, these

results highlight the model’s effectiveness in balancing the trade-
off between the time reduction and the loss of coding efficiency.

4 EXPERIMENTAL RESULTS
To evaluate the performance of our solution, we followed the Com-
mon Test Conditions (CTC) [3] of VVC, where we encoded 22 video
sequences with the All Intra configuration and the QP values 22,
27, 32, and 37, both in the anchor VTM 18.0 and in the modified
VTM 18.0 with our solution. The modified VTM 18.0 includes the
final Decision Tree model, which is integrated to generate predic-
tions for all processed blocks during encoding. We encoded the
videos sequentially on a dedicated server with an Intel® Core™
i7-8700K processor and 16GB of RAM. None of the videos from the
CTC of VVC were used to train the Decision Tree. Therefore, we
evaluated our solution using videos that our model never saw. To
obtain the performance of our solution, we calculate two metrics:
the time-saving (TS), obtained by comparing the encoding time of
the anchor with our solution, and the coding efficiency, measured in
terms of BDBR [2], which calculates the bit-rate variation between
two encoders considering the same visual quality.

Table 2 presents the results regarding Class, Video, TS, and BDBR.
The classes are defined according to the Common Test Conditions
(CTC) of VVC [3] and indicate the resolution of the videos. Videos
in classes A1 and A2 have 4K resolution, class B videos have 1080p
resolution, class C videos have 480p resolution, class D videos have
240p resolution, and class E videos have 720p resolution.

Our solution obtained a time saving of 3.15% with only 0.11% of
coding efficiency loss on average. The best result is observed for the
Campfire video sequence, with a time saving of 5.18% and a coding
efficiency loss of 0.01%. This video achieved the best result because
it has a simple texture containing many homogeneous areas, which
is appropriate for the ISP Planar/DC class. As a result, our model
predicts the ISP Planar/DC class more often, avoiding evaluating
the ISP Angular class. Conversely, the FourPeople video sequence
presented the worst result, with a time saving of 1.79% and a coding
efficiency loss of 0.11%. This video has a more complex texture,
presenting many edges that are more suitable for the ISP Angular
class. Consequently, our model predicts this class more frequently,
reducing the time-saving potential.

For high-definition videos, such as those in classes A1, A2, and B,
our solution achieves the highest time saving results, as shown by
the averages for these specific classes in Table 2. For instance, in the
A1 class, which includes 4K resolution videos, our solution obtains
the highest average time saving of 4.24% with only a 0.03% loss in
coding efficiency. Similarly, in classes A2 and B, which contain 4K
and 1080p video resolutions, our solution achieves the second and
third highest average time saving of 3.48% and 3.55%, respectively,
with only a 0.06% and 0.11% loss in coding efficiency. These results
are extremely important because high-definition videos require
the most significant encoding times. In other words, our solution
effectively saves time in the encoding of videos where it is most
critical while introducing only minor losses in coding efficiency.

To summarize, our solution demonstrates the capability to reduce
encoding time with minimal loss in coding efficiency across all
evaluated video sequences. This is possible through a Decision
Tree model, which leverages features directly extracted from the
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Table 2: Time-saving and coding efficiency results.

Class Video TS BDBR

A1
Tango2 4.07% 0.05%
FoodMarket4 3.48% 0.02%
CampFire 5.18% 0.01%

A2
CatRobot 2.79% 0.09%
DaylightRoad2 3.30% 0.06%
ParkRunning3 4.36% 0.04%

B

MarketPlace 5.06% 0.05%
RitualDance 3.80% 0.13%
Cactus 4.25% 0.13%
BasketballDrive 2.24% 0.14%
BQTerrace 2.40% 0.09%

C

RaceHorsesC 4.69% 0.14%
BQMall 1.92% 0.21%
PartyScene 3.06% 0.14%
BasketballDrill 2.08% 0.14%

D

RaceHorses 3.13% 0.05%
BQSquare 2.21% 0.14%
BlowingBubbles 3.82% 0.14%
BasketballPass 1.79% 0.16%

E
FourPeople 1.49% 0.18%
Johnny 2.10% 0.19%
KristenAndSara 2.19% 0.13%

Average (A1) 4.24% 0.03%
Average (A2) 3.48% 0.06%
Average (B) 3.55% 0.11%
Average (Overall) 3.15% 0.11%

encoding process, thereby circumventing the need for additional
computations to generate input features.

Table 3 compares our solution with related works, considering
the software version, time saving (TS), BDBR, and the TS/BDBR
ratio, representing the trade-off between time saving and coding ef-
ficiency loss. The solutions proposed by both [17] and [13] obtained
better results in terms of time saving. However, they also obtained
a higher coding efficiency loss than our solution. Specifically, [17]
demonstrated a smaller TS/BDBR trade-off than our solution, while
[13] showed a trade-off similar to ours. On the other hand, the
solutions presented by [14] and [11] achieve a similar BDBR when
compared to our solution while providing greater time saving and
TS/BDBR trade-off.

It is essential to observe that the impact of the time spent com-
puting the input features used by the solutions in [14]-[11] is not
discussed. These include calculating image features such as block
variance, mean absolute deviation (which entails summing the dif-
ferences between the value of each luminance sample and the mean
of all samples), and the mean absolute sum of transform coefficients.
The latter involves the summation of all transformed coefficients
within the block.

Table 3: Comparison with related works.

Solution Software TS BDBR TS/BDBR

Our VTM 18.0 3.15% 0.11% 28.64
Park [14] VTM 11.0 7.20% 0.08% 90.00
Saldanha [17] VTM 10.0 8.32% 0.31% 26.84
Liu [11] VTM 08.0 7.00% 0.09% 77.78
Park [13] VTM 09.0 12.11% 0.43% 28.16

Considering the complexity of calculating such features, the time-
saving results obtained by these works might vary significantly on
different computing systems. For instance, many of these image
features could be calculated in parallel with the encoding process
on systems with an embedded GPU. However, if a GPU is unavail-
able, the image features should be calculated sequentially before the
proposed ISP mode decisions, adding significant computations and
reducing the potential for time-saving. Unlike these related works,
our solution circumvents time overhead by exclusively utilizing
features derived from the encoding process, achieving competitive
results even without the power of the image features. To the best
of our knowledge, our work is the first in its approach to incorpo-
rating encoding features to minimize the number of evaluated ISP
candidates in the intra mode decision of VVC.

5 CONCLUSION
This paper presented a fast ISP mode decision solution using ma-
chine learning for the VVC standard. An analysis of ISP mode
occurrence revealed the prevalence of Planar and DC modes when
the ISP tool is used. In contrast, we found a high frequency of
many Angular modes in the candidate modes list for ISP. From
these findings, we decided to group the ISP modes into two classes
according to their associated intra mode: ISP Planar/DC and ISP
Angular. Then, we employed a Decision Tree trained with encoding
features to predict between these classes. Whenever the Decision
Tree predicts the ISP Planar/DC class, our solution avoids evalu-
ating the modes in the ISP Angular class, reducing the encoding
time. The experimental results demonstrate the effectiveness of
the proposed solution in reducing encoding time while preserving
coding efficiency. Compared to related works, our solution presents
competitive results and avoids additional computations to generate
the input features for the proposed fast mode decision solution.
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