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ABSTRACT

Lossy video compression introduces artifacts that can degrade the
perceived visual quality of the video. Improving the quality of com-
pressed videos involves mitigating these artifacts through filtering
techniques. Deep neural network (DNN) models have emerged as
powerful tools for this task, demonstrating effectiveness in arti-
fact reduction. However, traditional approaches typically evaluate
these models using videos compressed by a single coding stan-
dard, limiting their applicability across diverse codecs. To address
this limitation, this study proposes a novel multi-domain architec-
ture built upon the Spatio-Temporal Deformable Fusion technique.
This innovative approach enables the development of models capa-
ble of enhancing videos compressed by various codecs, ensuring
consistent performance across different standards. Experimental
results showcase the efficacy of the proposed method, yielding
significant improvements in average Peak Signal-to-Noise Ratio
(PSNR) for videos compressed with HEVC, VVC, VP9, and AV1,
with enhancements of 0.764 dB, 0.448 dB, 0.736 dB, and 0.228 dB,
respectively. The code of our MD-STDF approach is available at
https://github.com/Espeto/md-stdf
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1 INTRODUCTION

Video compression plays a crucial role in services dealing with the
distribution and storage of audiovisual content, becoming essential
for the operation of companies like Netflix, TikTok, and YouTube.
Due to the high demand for this type of service, digital video rep-
resented the highest volume of data transmitted over the Internet
in recent years. It has been predicted that 4K videos represented
66% of Internet consumption on television devices by the end of
2023, surpassing the 2018 estimate [8]. Consequently, research ef-
forts by both academia and industry are dedicated to improving
not only compression efficiency but also reducing undesired visual
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effects caused by this process. As video content continues to prolif-
erate across various platforms and devices, maintaining high visual
quality while efficiently managing data transmission and storage
becomes increasingly paramount.

Compressed videos suffer from visual effects such as blocking,
ringing and blurring artifacts [12], which compromise the perceived
video quality for users. In Figure 1, the visual effects of these ar-
tifacts can be observed. The patches (c), (d) and (e) are separated
by the artifact that predominantly affects the selected part of the
image. Generally, artifacts can blend with or appear next to oth-
ers, making it difficult to generate a patch that isolate only one
compression artifact. In (c), the division between blocks used in
the compression process is perceptible in the middle of the blue
part of the ball, evidencing a blocking effect. In (d), we can see the
ringing effect, noticeable as wave-like patterns along the edges of
the orange rim. In (e), details from the original image, such as the
nails on the ground and the separations in the wooden floor, are
lost during compression, leading to a blurring effect.

Filtering algorithms like the Deblocking Filter (DF) [24], address-
ing blocking effects, Adaptive Loop Filter (ALF) [29], that minimize
the distortion between the original and decoded samples, and the
Sample Adaptive Offset (SAO) [13], focused on reducing banding ef-
fects, are standardized processes in formats such as High Efficiency
Video Coding (HEVC) and Versatile Video Coding (VVC).

Both DF and SAO are heuristic-based methods, devised based
upon statistical observations for reducing compression artifacts.
These models are applied as filters that traverse all pixels in each
frame, aiming to enhance visual quality. While these heuristic-
based approaches have demonstrated effectiveness in mitigating
certain artifacts, they have inherent limitations. For example, DF
may introduce a blurring effect on the image as it attempts to re-
duce blockiness, potentially sacrificing fine details and sharpness.
Additionally, both DF and SAO may inadvertently amplify the pres-
ence of other compression artifacts, such as ringing or mosquito
noise, particularly in regions with high contrast or intricate tex-
tures [17]. Despite that, heuristic-based methods remain valuable
tools of video compression techniques, especially when used in
conjunction with more sophisticated algorithms and Deep Neural
Networks (DNN) to achieve comprehensive artifact reduction and
enhance overall visual quality.

Currently, a significant amount of studies exploring the Video
Quality Enhancement (VQE) problem employ DNN models based on
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Figure 1: Compression Artifacts: (a) Original frame (RAW); (b) Compressed Frame; (c) Blocking Artifact; (d) Ringing Artifact; (e)

Blurring Artifact

Convolutional Neural Networks (CNN) [9-27]. CNNs have emerged
as a powerful tool in image and video processing tasks due to
their ability to automatically learn hierarchical features from data.
Unlike traditional image processing techniques that operate on
individual pixels, CNNs operate by convolving learned filters across
the input image, enabling them to capture spatial hierarchies and
dependencies. By processing local image patches and learning from
their correlations, CNNs can effectively extract meaningful features
that represent various visual patterns, such as edges, textures, and
object shapes. This enables them to understand the contextual
connection between neighboring pixels and learn complex patterns
in the data [18]. Therefore, CNN-based models are well-suited for
VOQE tasks as they can identify and address overall image quality
degradation caused by compression artifacts rather than focusing
solely on specific types of artifacts.

It has been observed that many DNN models for VQE are tested
using videos compressed with the same codec and configuration as
the training videos. The authors in [15] show that the VQE mod-
els tend to produce better results for videos compressed with the
same codec and quantization parameter as those used for training.
Oppositely, for videos compressed with different codecs and con-
figurations the VQE models lead to little improvement in quality or
even quality degradation. Thus, considering the large number of
video codecs and encoding configurations available nowadays, it is
desirable that the VQE model at the decoder side is generic enough
to be used for enhancing videos compressed in different scenarios.

To address this issue, this work proposes the use of a multi-
domain training method [6] that allows identifying the video en-
coding scenario, generating a model that is adaptive to the video
codec and its associated compression artifacts. The proposed Multi-
Domain Spatio-Temporal Deformable Fusion (MD-STDF) architec-
ture explores multi-domain training for quality improvement of
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compressed videos, ensuring that a single model is efficient in en-
hancing the quality of videos originating from any of the domains
involved in training. In this work, the videos used in both the train-
ing and testing phases have been categorized into domains based
on the video codec used for compression: HEVC, VVC, VP9, and
AV1.

Experimental results demonstrate that the proposed architecture
generates a model that achieves a consistent increase in objective
quality for videos compressed with multiple codecs, reaching an
average APSNR value of up to 0.764 dB. To the best of the authors’
knowledge, this is the first DNN architecture to employ multi-
domain training for VQE and that has been trained and tested for
multiple video codecs and formats.

This paper is organized as follows. Section 2 presents previous
VQE works that are based on deep learning and other multi-domain
solutions for other video-related tasks. Section 3 presents the pro-
posed Multi-Domain Spatio-Temporal Deformable Fusion (MD-
STDF) architecture. Section 4 presents and discusses the obtained
results. Finally, Section 5 concludes this work.

2 RELATED WORK

In recent years, different architectures have been proposed to inves-
tigate the VQE problem. In this section, we present the main studies
that have contributed to the evolution of learning-based models for
VQE. Also, related works focusing on multi-domain learning for
video-related problems are discussed.

2.1 Video Quality Enhancement

The problem of VQE emerged with the application of frame-by-
frame image processing algorithms in videos. These methods orig-
inated from linear algorithms based on heuristics, processing all
pixels in the frame, disregarding spatial differences within the same
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frame, and applying the same equation to the entire image. While
this approach effectively addressed degradation issues concentrated
in specific parts of the image, it often detrimentally affected other
areas that did not share the same problem.

These algorithms have gradually given way to nonlinear ma-
chine learning models, which aim to comprehend a zone of pixels
and detect their characteristics, thereby determining which heuris-
tic yields superior results in a given scenario. Consequently, the
side effects caused by these processes tend to diminish. Moreover,
the advent of DNN has accompany in more robust architectures
for nonlinear learning, enabling the detection of increasingly in-
tricate characteristics as network depth increases. This evolution
has significantly contributed to the development of more effective
methods for Video Quality Enhancement.

One of the first solutions for improving video quality based on
deep learning is [12], which proposes an Artifact Reduction CNN
(ARCNN) that processes each frame individually, exploring only
the spatial information within the image. Building on [12], other
applications for the model were explored, such as an in-loop filter
that replaces DF and SAO filters [10] or as a post-processing filter
[16], which performs the filtering after the frames are fully decoded.

Some studies emerged with the proposal to explore the existing
temporal correlation between frames. Initially, models based on
multiple frames [5, 11, 14, 34] proved effective for the VQE problem.
These models define a temporal sliding window that processes a
fixed number of frames to improve the central one. This way, the
Group of Pictures (GOP) structure present in most of the video
coding standards can be explored, allowing information from high-
quality frames to be used to improve low-quality frames [28].

models based on multiple frames aim to synchronize past and
future frames with the currently processed frame. This alignment
process is typically achieved through motion compensation tech-
niques, such as optical flow estimation [28, 31]. Optical flow helps in
determining the motion vectors between consecutive frames, facili-
tating the alignment process and enabling the model to understand
the temporal relationships between frames.

Following alignment, the fusion of processed frames occurs, with
the objective of incorporating the best quality characteristics from
each frame. Two common fusion approaches include direct fusion
and slow fusion. In direct fusion, all frames are fused simultaneously,
leveraging the information from each frame to enhance the overall
quality. On the other hand, slow fusion involves iteratively fusing
pairs of frames until only one frame remains, gradually synthesizing
the final enhanced frame [20].

This alignment and fusion strategy allows models to exploit
temporal information across multiple frames, leading to more com-
prehensive and effective video quality enhancement. By aligning
frames and fusing their features judiciously, these models can bet-
ter capture and preserve the temporal coherence and visual details
present in the video sequence.

An alternative to the optical flow-based fusion is the use of
deformable convolutions [11, 30]. This mechanism replaces the
traditional convolution used by CNN layers with a deformable
convolution, where, instead of using a fixed conventional matrix as
a filter, a matrix with variably displaced points is used, learning the
process of displacing neighboring pixels relative to the processed
pixel through information obtained from previous convolutions.
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Another strategy employed to harness temporal information in
video processing involves the utilization of recurrent models, par-
ticularly Recurrent Neural Networks (RNNs). RNNs are designed to
handle sequential data by processing input sequences one step at
a time, maintaining a hidden state that captures information from
previous steps [19]. In the context of video quality enhancement,
RNNs operate by progressively analyzing each frame of the video se-
quence. As each frame is processed, its characteristics are extracted
and incorporated into the hidden state of the network. This hidden
state serves as a condensed representation of the temporal informa-
tion extracted from the video sequence so far, enabling the network
to understand the temporal dependencies and patterns present in
the data. Subsequently, this aggregated temporal information can
be utilized to enhance the quality of future frames through filter-
ing or other enhancement techniques. Studies explore recurrent
networks in different ways, either in a unidirectional manner [22],
where the characteristics are propagated from past frames to the
currently processed frame, or using a bidirectional improvement
[35], where both features from past and future frames are used to
improve the quality of the current frame.

2.2

The advancement of machine learning algorithms has been made
possible due to the abundance of available data. However, the cur-
rent training paradigms are limited in the variety of data they can
handle. Most methods operate on data from specific domains, caus-
ing the model to learn the inherent bias of the dataset. As a result,
the models perform well on tasks specific to the domains they
were trained on, severely limiting their ability to generalize when
processing data from new and previously unseen domains. These
challenges become more pronounced when dealing with data from
highly variable domains, especially when there is a need to de-
velop a single model capable of handling multiple distinct datasets.
Training a single model to encompass this diversity of domains
prevents the capture of specific nuances from each one. The com-
mon approach to address this issue involves recreating a model for
each domain and applying each model to the corresponding data.
However, this methodology proves to be highly inefficient

Videos exhibit characteristics with a high variability, making it
challenging for a model to generate a unique representation that can
capture them all. Therefore, the Multi-Domain Network (MDNet)
[23] emerged with the proposal of separating videos into annotated
domains, so that each domain follows a distinct path in the final
layers of the network. In this way, common features among all
domains are extracted in the initial layers of the network, while
features specific to the domain are extracted in the final layers.
Following the same proposal as the previous study, the Branch-
Activated Multi-Domain Convolutional Neural Network for Visual
Tracking (BAMCNN) [6] was developed. It leverages the concept of
multi-domain training to create an architecture for visual tracking,
separating videos into different domains based on their similarities.
This involves creating branches in the network for each domain,
thus detecting their specific characteristics. During testing, the
branch with the highest level of similarity to the processed video
sequence is identified and activated.

Multi-Domain Learning
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Recently, other studies have employed multi-domain learning
for different video-related problems. In [25], the authors addressed
the quality enhancement of multiview video coding. The work [1]
explores the detection of deepfake videos by combining features
from two distinct domains, spatial and frequency, in a discriminative
learning model.

This work aims to explore VQE under a generalized approach,
seeking to create a model that is not limited to improving the qual-
ity of videos in a specific domain but is generic enough to enhance
videos belonging to other domains. No studies were found that ad-
dressed the multi-domain training method from such a perspective.

3 MULTI-DOMAIN STDF

The proposed Multi-Domain Spatio-Temporal Deformable Fusion
(MD-STDF) architecture is based on the STDF architecture [11],
which employs the approach of using multiple frames to enhance
a central frame. Additionally, the architecture applies the multi-
domain training strategy, with training data originated from differ-
ent domains. The domain information is also incorporated in the
dataset to allow the model to learn the domain-specific characteris-
tics along the training.

The STDF architecture [11] is divided into two modules, with the
first one focusing on frame alignment and fusion, as well as shal-
low feature extraction. The second module is dedicated to quality
enhancement. The model receives as input the central frame to be
improved (fp), concatenated with temporally neighboring frames
(1 for the future frames and t_; for past frames). The number of
neighboring frames to be concatenated with the central frame is de-
termined by the Radius (R) parameter, which represents the number
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of neighboring frames. Thus, with R defined as 1, the total number
of frames to be concatenated and introduced into the model is 3.

As depicted in Figure 2, in the development of MD-STDF, the
alignment and fusion module is dedicated to obtaining general
features — i.e., those that are common to all videos regardless of the
domain. The network starts with a shallow U-Net Model [26] that
extracts the features for offset prediction. This model is based on
Stride 1 convolutions, which mantain the sample dimensionality,
Stride 2 convolutions, which reduce sample dimensionality, and
Stride 2 deconvolutions, which perform an upsampling. This part of
the network captures the temporal characteristics of the sequence
and generates an offset field mask. The kernel size of the offset
mask is 2K?. This mask is used with the input 2R+1 sequence in
the Spatio-Temporal Deformable Convolution (STDC) network,
generating a Fused Feature Map with 64 channels.

Instead of calculate the diference between two frames, that is the
method used in optical flow, in studies like [14], the STDC modules
uses a modulated deformable convolution layer [36], this layer
realize the motion compensation of the entire input sequence at
once. As an alternative of using a fixed grid of positions to apply the
convolutional kernels (as in conventional convolutions), deformable
convolution introduces additional offsets that are learned by the
network during training. These offsets allow the convolutional
kernel to ’deform’ to better align with the input patterns, resulting
in improved capture of spatial and temporal variations [9].

The multi-domain training is based on a label linking the video
to a specific domain (codec), which is employed in the transition
between the alignment and fusion module and the quality enhance-
ment (QE) module. The branches created for each domain ensure
that the QE module is updated with parameters specific to the codec.
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The activated branch delivers the Fused Feature Map to the corre-
sponding QE module according to the video label. The QE Modules
are composed by L convolutional layers with Stride 1, maintain
the dimensionality of the samples and extract domain-related fea-
tures. At last, the QE module generates a Residual Map, which is
added to the central frame (t), generating an enhanced frame (t,’).
The procedure is repeated for each frame of the compressed video,
generating an enhanced video sequence.

3.1 Data Preparation

A survey of the main datasets used for VQE was conducted. This
survey did not include image datasets, only videos. Additionally,
datasets with a specific purpose, such as screen content videos or
sports videos only, were not included, but rather those that cover
a wide category range. Among the possible choices for datasets
are the MFQE dataset [14], the Large-scale Diverse Video (LDV)
dataset used in the challenge proposed at the New Trends in Image
Restoration and Enhancement workshop and challenges on image
and video processing (NTIRE) in 2021 [32], and the Vimeo-90K
dataset [31].

Since this work was not restricted to a specific video category,
the videos from the chosen dataset encompass the broadest spec-
trum of possible categories (sports, screen content, face videos,
animals, etc.), as well as differences related to brightness, video
environment, and camera angle. The MFQE dataset [33] was cho-
sen, which contains 126 uncompressed videos (108 for training and
18 for testing) at different resolutions ranging from 352 x 240 to
1920 = 1080.

The video sequences were organized according to the standards
used for compression, in order to split the dataset for the multi-
domain training. Four versions of the training dataset were gener-
ated, each corresponding to the addressed domains. Thus, the 108
videos were encoded and decoded using the reference software for
the four standards/formats, resulting in a total of 432 videos. The
four distinct domains defined correspond to the High Efficiency
Video Coding (HEVC) standard [27], the Versatile Video Coding
(VVC) standard [4], the AOMedia Video 1 (AV1) format [7], and the
VP9 [21] format.

For HEVC encoding, the reference software HEVC Model (HM)
version 16.5 was used, and for VVC, the VVC Test Model (VTM)
version 13.0 was employed, both configured with Low Delay P
temporal setting. For AV1 encoding, the reference software libaom,
hashcode3.3 was used, whereas for VP9 the libvpx, hashcode1.12.0,
was used. For HEVC and VVC, the quantization parameter (QP) was
set to 37, while for VP9 and AV1, constant quality (CQ) parameter
was set to 55.According to the [2] analysis, there is no correlation
between the QP and CP values that indicates the same quality loss
is occurring in both encoders. Thus, CQ and QP values were chosen
as those that lead to the highest level of degradation according to
the recommended test conditions of HEVC/VVC and VP9/AV1. The
QP/CQ controls the level of quantization applied to the transforms
of video data blocks. A high QP/CQ value during compression
causes information to be discarded during the quantization process,
leading to a loss of fine details and, consequently, lower image
quality. A lower CQ value means that less quantization is applied,
resulting in superior quality.
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3.2 Training Process

For training, a computer with the following configuration was used:
AMD Ryzen 7 5700X processor, 32 GB RAM, Nvidia Geforce RTX
3070 GPU with 8 GB VRAM. The batch size and the number of
iterations were adjusted to achieve 10 epochs with one GPU (i.e.,
a batch size of 32 and 1,200,000 iterations over the dataset). The
training was conducted using Adam as optimizer and a learning
rate of 0.0001.

The algorithm employed was Stochastic Gradient Descent (SGD)
[23], where each training iteration was executed under a specific
domain. In other words, the batch of videos used belongs to a single
domain, activating only one branch of the network.

After a certain number of iterations, the model is updated based
solely on the processed batch. Subsequently, a new batch from
another domain is processed, causing the shared layers of the net-
work to be updated while keeping the previously updated branch
unchanged. This process is repeated until the predefined number of
iterations is reached. Following this approach, the generic features
common to all processed videos are obtained in the shared layers
of the network, while for each specific branch of each domain,
modeling is done to acquire domain-specific characteristics.

4 EXPERIMENTAL RESULTS

The obtained results offer a comprehensive view of the conducted
study and aid in assessing the effectiveness of the adopted multi-
domain training methodology. The results are presented in terms
of Delta Peak Signal-to-Noise Ratio (APSNR), which measures the
objective difference between the enhanced and the low-quality
decoded video. Positive numbers indicate and increase in objective
quality, whereas negative numbers indicate a quality decrease.

For comparison purposes, three single-codec STDF models were
also trained following the methodology presented in [11]: the first
with a dataset containing only videos compressed with the HEVC
codec; the second with videos compressed with the VVC codec; and
the third with videos compressed with the AV1 codec. Additionally,
the multi-codec, single-domain approach proposed in [15] is also
presented. The same encoder configurations and training setup
mentioned in the previous section were used.

Table 1 shows the comparison of different models trained for
comparison purposes. The Training Dataset column represents the
dataset used to train each model. The subsequent columns represent
the test dataset used to obtain the APSNR values. The first three
rows (HEVC, VVC and AV1) present the VQE results obtained from
training models using the single-codec approach. In the fourth row,
the results obtained from training using the multi-codec approach
[15] are shown. Finally, the last row presents the results obtained
with the model trained using the proposed multi-domain method.

As observed, the model trained with videos compressed with
HEVC achieves the best results (0.755 dB) when tested with videos
encoded with the same standard. However, for videos encoded with
AV1 standard, the model yields a negative result for VQE (-0.506
dB). A similar trend is observed for the model trained with videos
compressed with VVC, which performs poorly for AV1-compressed
videos. The multi-codec model proposed in [15] presents more con-
stant results (varying between 0.210 dB and 0.375 dB), but does not
perform as well as the single-codec models. Finally, the proposed
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Table 1: Comparison between single-codec, multi-codec and multi-domain approaches.

APSNR (dB)

STDF Model HEVC | VVC VP9 AV1
QP37 | QP37 | CQ55 | CQ 55
HEVC QP 37 [11] 0.755 0.250 0.357 -0.506
VVC QP 37 0.529 0.371 0.385 -0.016
AV1 CQ 55 0.285 0.144 0.389 0.286
Multi-Codec [15] 0.335 0.210 0.375 0.229
Multi-Domain  0.764 0.448 0.736 0.228

Table 2: VQE results for the MD-STDF model (APSNR and ASSIM).

APSNR (dB) and ASSIM

Test Dataset HEVC QP37 | VVCQP37 | VP9CQS55 AV1 CQ 55
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
Class A |_Traffic 0.662 | 0.011 | 0.420 | 0.006 | 0.727 | 0.009 | 0.120 | 0.003
People on Street | 1.126 | 0.020 | 0.582 | 0.009 | 0.911 | 0.014 | 0.200 | 0.004
Kimono 0.831 | 0.016 | 0.547 | 0.008 | 0.462 | 0.007 | 0.184 | 0.004
ParkScene 0551 | 0.013 | 0.426 | 0.011 | 0.487 | 0.008 | 0.152 | 0.005
Class B | Cactus 0.698 | 0.013 | 0.404 | 0.007 | 0.641 | 0.010 | 0.130 | 0.003
BQTerrace 0.543 | 0.009 | 0.217 | 0.005 | 0.402 | 0.006 | -0.024 | 0.001
BasketballDrive | 0.686 | 0.012 | 0.292 | 0.005 | 0.552 | 0.008 | 0.156 | 0.004
RaceHorses 0.447 | 0.011 | 0.220 | 0.005 | 0.473 | 0.011 | 0.153 | 0.003
Class ¢ | BOMall 0.838 | 0.017 | 0.529 | 0.009 | 0.828 | 0.012 | 0.231 | 0.004
PartyScene 0.640 | 0.019 | 0.380 | 0.011 | 0.731 | 0.014 | 0.197 | 0.005
BasketballDrill | 0.718 | 0.015 | 0.290 | 0.005 | 0.733 | 0.014 | 0.197 | 0.004
RaceHorses 0.691 | 0.018 | 0.436 | 0.011 | 0.661 | 0.015 | 0.344 | 0.008
Class | BSquare 1.020 | 0.015 | 0.667 | 0.009 | 1,234 | 0.010 | 0.488 | 0.004
BlowingBubbles | 0.635 | 0.020 | 0.453 | 0.015 | 0.702 | 0.015 | 0.328 | 0.008
BasketballPass | 0.971 | 0.019 | 0.716 | 0.015 | 0.860 | 0.015 | 0.496 | 0.008
FourPeople 0.913 | 0.012 | 0.548 | 0.006 | 1.046 | 0.008 | 0.325 | 0.002
Class E | johnny 0.804 | 0.008 | 0.414 | 0.003 | 0.843 | 0.006 | 0.164 | 0.001
KristenAndSara | 0.969 | 0.009 | 0.515 | 0.004 | 0.954 | 0.006 | 0.270 | 0.002
Average 0.764 | 0.014 | 0.448 | 0.008 | 0.736 | 0.010 | 0.228 | 0.004

multi-domain model is the one that presents the best results in all
cases (varying between 0.228 dB for AV1 and 0.764 dB for HEVC),
performing even better than the single-codec models trained specif-
ically for each standard.

Table 2 presents the results of objective quality variation for
each video sequence. The results are presented in terms of APSNR
and ASSIM for each video sequence, with the last row showing the
average results. The videos are grouped according to their Classs
[3]: Class A (2560x1600), Class B (1920x1080), Class C (832x480),
Class D (416x240), Class E (1280x720). Due to the good results
presented in terms of APSNR, it was decided to add the SSIM metric
to complement the analysis of the results.

As can be observed in the table, most of the results are positive,
with only one specific case showing a negative APSNR value. How-
ever, in terms of ASSIM, the result remained positive. On average,
all the results were positive. The worst result achieved, in terms of
APSNR, was -0.024 dB for AV1 in the BQTerrace sequence, but in
terms of ASSIM, the video showed a slight improvement. This is also
the worst result in terms of ASSIM. The best result in APSNR was
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1.234 dB for VP9 in the BQSquare sequence; in ASSIM, it was 0.020
for HEVC in the People on Street sequence. For average results of
APSNR, the worst improvement achieved was 0.228 dB for videos
encoded with AV1, and the best improvement was 0.764 dB for
videos encoded with HEVC. In terms of average ASSIM, the worst
improvement was 0.004 for videos encoded with AV1, and the best
was 0.014 for videos encoded with HEVC. Some specific cases, in
addition to the best case, showed results in terms of APSNR above
1 dB, such as the People on Street sequence encoded by HEVC with
QP 37, which achieved a result of 1.126 dB; the BQSquare sequence
encoded by HEVC with QP 37 achieved a result of 1.020 dB; and
the FourPeople sequence encoded by VP9 with CQ 55 achieved a
result of 1.046 dB.

5 VISUAL QUALITY PERCEPTION

This section presents an analysis of the perceived visual quality
improvement of the multi-domain STDF solution. For this section,
the selected frame of video sequence was the one in which the
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Figure 3: Frame number 14 of the BasketballDrill sequence: (a) Original frame (RAW); (b)(e)(h)(k) Cropped section of the
original frame; (c) HEVC compressed version; (d) Improved HEVC version; (f) VVC compressed version; (g) Improved VVC
version; (i) VP9 compressed version; (j) Improved VP9 version; (1) AV1 compressed version; (m) Improved AV1 version.

greatest difference in visual quality was observed after a series of
visual analyses.

The Figure 3 presents a composition based on frame number 14
of the BasketballDrill sequence. Observing the images in the second
column, i.e., the images that went through the compression process,
most of them exhibit a significant number of artifacts. The most
deteriorated images are (c) and (i), which correspond to the HEVC
and VP9 codecs, respectively. In image (1), which corresponds to the
AV1 codec, some artifacts are still noticeable, although in smaller
quantities. On the other hand, image (f), corresponding to the VVC
codec, has the fewest artifacts.

In all the compressed images, the blurring effect is noticeable,
especially in the background. The blocking effect can be observed
in images (c), (i), and (1). In image (c), this artifact creates a stair-step
effect on the edges of the ball. In image (i), it creates a mosaic effect.
In image (1), the stair-step effect is also noticeable on the upper
right edge of the ball.

Comparing the low-quality versions in the second column with
their respective enhanced versions in the third column, it is evident
that images (d) and (j) show a significant improvement in visual
quality. Image (m) also demonstrates a smoothing of artifacts. Image
(g), on the other hand, is the one that most resembles its compressed
version before the application of the enhancement filter, since image
(f) exhibits an extremely low incidence of compression artifacts.
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6 CONCLUSION

This work proposed a novel architecture named Multi-Domain
Spatio-Temporal Deformable Fusion (MD-STDF), which employs
multi-domain learning to enhance the quality of videos compressed
with different codecs, overcoming limitations of previous approaches.
The model was trained with videos generated by multiple video
codecs, thus learning characteristics of different types and levels
of compression artifacts more effectively. In the conducted experi-
ments, MD-STDF achieved promising results by providing signif-
icant improvements in VQE for videos compressed with HEVC,
VVC, AV1, and VP9. The multi-domain approach proved superior
to single-codec and single-domain techniques, consistently yield-
ing gains across all tests. On average, the quality improvement
in terms of APSNR ranged between 0.228 dB (AV1) and 0.764 dB
(HEVC),indicating that the model achieves a strong generalization
capability for different video compression scenarios. This can be
explained by the larger number of training samples, which may
have led to a greater refinement of the alignment and fusion net-
work, which is the network shared among all domains. The good
results from the objective analysis of the multi-domain model are
also reflected in the perception of subjective quality improvement.
As shown in the visual quality analysis, the multi-domain model
was able to satisfactorily remove the artifacts present in the frames,
smoothing the images. Some details cannot be restored due to the
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lossy nature of the compression process; however, overall, the qual-
ity improvement in the frames is noticeable. Knowing that PSNR
does not have a strong correlation with subjective video quality, it
is intended that for future work, other evaluation metrics such as
VMAF and LPIPS will be adopted. Furthermore, the authors intend
to explore training models with an even more diverse set of codecs
and QP/CQ configurations, aiming for increased generalization
and effectiveness across different scenarios. Additionally, it is also
intended to conduct an ablation study and explore cost reduction
techniques.
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