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ABSTRACT
This paper presents OntoDrug, an ontology designed to enhance
medicine management in Brazil by integrating regulatory frame-
works and standardizing terminologies. OntoDrug improves patient
safety and treatment efficacy by accurately identifying and clas-
sifying medications and supporting interoperability with health
information systems. A proof-of-concept application integrated
into the Hospital das Clínicas de Marília’s hospital EHR system
demonstrated OntoDrug’s utility, achieving high precision and re-
call. An experimental study using large language models grounded
on the ontology achieved, using GPT-4 turbo, 0.97 precision, 1.0
recall and an F1-score of 0.99. We also evaluated open-source mod-
els llama3-8b, llama3-70b, and gemma-7b-it. Their performance
was close to GPT-4’s. The significant effectiveness is primarily due
to the utilization of large language models (LLMs). While using
these large language models enhanced performance, challenges
related to cost, privacy, and service availability were identified. On-
toDrug represents a significant advancement in Brazil’s medication
information standardization and optimization.
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Medication Ontologies, Drug Management, Semantic Interoperabil-
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1 INTRODUCTION
Medication management is a critical component of healthcare, en-
compassing the entire lifecycle of a patient’s medications, from
procurement to discontinuation [33]. This cycle includes accurate
transcription of prescriptions, tracking of medication lots and ex-
piration dates, precise dispensation, and detailed administration.
Additionally, continuous monitoring and adherence checks are
conducted to optimize therapeutic outcomes. Regular reviews are
performed to adjust medication plans according to changing pa-
tient needs, leading to appropriate discontinuation of medications.
This systematic approach is essential for enhancing patient safety,
treatment efficacy, and optimizing healthcare resources [17].

Despite its importance, the medication management process is
fraught with challenges. One significant issue is the lack of stan-
dardization and controlled vocabularies, leading to ambiguities in
the nomenclature used throughout the cycle. Such ambiguities can
result in communication errors between prescribers, dispensers,
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and patients, ultimately compromising patient safety and treatment
effectiveness. Therefore, a controlled vocabulary is crucial in nor-
malizing terms for pharmaceutical forms, administration routes,
packaging, and measurement units, ensuring uniform communi-
cation and reducing errors [13]. Such harmonization can reduce
errors and ambiguity in medication prescription and administration,
fostering patient safety and effective treatment. [43] Furthermore,
the system supports interoperability with other health information
systems, making data management and exchange activities more
effective.

In Brazil, managing medications is challenging due to the pres-
ence of different regulatory frameworks and lists such as the DCB
(Brazilian CommonDenominations), CMED (Chamber of Medicines
Market Regulation), and RENAME (National List of Essential Me-
dicines). Prescribing drugs from RENAME is vital as it guarantees
patients access to treatments that are both effective and affordable,
supporting rational drug use in the healthcare system[11].These
lists standardize drug names, regulate the pharmaceutical market,
and detail essential medications for public health, respectively [21].
However, integrating these regulatory frameworks into a cohe-
sive system remains a challenge, often resulting in inconsistent
medication identification and classification.

The characteristics of medications and substances dictate their
classification and prescription restrictions. Categories include gene-
ric drugs, similar drugs, biological drugs, and biosimilars, each with
specific prescription levels indicated by colored stripes on their
packaging [2]. Additionally, regulatory lists categorize controlled
substances such as narcotics, psychotropic drugs, anorexigenic sub-
stances, immunosuppressants, antiretrovirals, anabolic steroids,
and precursors used in drug manufacturing. These classifications
ensure responsible prescription and dispensation practices, adher-
ing to health and legal standards to manage risks associated with
their use [12].

The primary objectives of this research were to develop and
implement the OntoDrug ontology to enhance medication manage-
ment within the Brazilian healthcare system.

The OntoDrug ontology aims to address these challenges by
providing a framework that integrates Brazil’s regulatory lists into
a standardized, computer-readable format. By leveraging controlled
vocabulary and coding systems like the CAS-Anatomical Ther-
apeutic Chemical Classification System and RxNorm, OntoDrug
ensures accurate identification and disambiguation of medications
[26]. This ontology enhances the organization and accessibility of
pharmacological knowledge and also supports interoperability with
other health information systems, improving data management and
exchange activities [9].
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To demonstrate the utility of OntoDrug, a proof-of-concept ap-
plication was developed and integrated into the EHR of the Hospital
das Clínicas de Marília hospital. Whenever a prescription is created
in the EHR system, this application reads it, identifies the medica-
tions, and warns physicians if some medication is not listed in the
Rename, suggesting alternatives whenever possible. The ontology
is used to ground the LLMs doing the medicine recognition and to
suggest replacements for the ones not in Rename. When recogniz-
ing medicines, its best results (when using the GPT-4 turbo LLM)
were 1.0 recall, 0.974 precision, and 0.987 F1-score. The physicians
were also happy with the replacement suggestions.

In the following sections, we discuss the development of the
OntoDrug ontology, its implementation in a clinical setting, and
its potential applications in improving medication management
practices.

2 RELATEDWORKS
In our exploration of medication ontologies, we reviewed several
key works that focus on the creation and utilization of drug on-
tologies. Peña (2020) [32] developed a Drug Ontology for the Mex-
ican public health system to provide a well-structured medical
knowledge base accessible to various stakeholders. Based on the
"Basic Table and Catalog of Medicines" from the Secretary of Pub-
lic Health, the ontology consists of 64 classes, 5 object properties,
and 18 data properties. Its evaluation, focusing on model compe-
tence and quality criteria, demonstrated its potential for enhancing
medical knowledge management.

A unified Brazilian drug database is meant to advance patient
safety and individualized care. Queiroz (2023) [34] emphasizes the
aspect of terminology standardization and semantic alignment re-
lated to medication nomenclature, underlying how this system
would be advantageous for healthcare providers in securing proper,
consistent, and safe pharmaceutical care for patients.

Avila (2021) [6] developed MediBot, a chatbot that provides drug
information, including prices and potential substitutes. The bot
works in two modes: Quick Response mode and Interactive mode.
It uses a Linked Data Mashup to extract real-time information from
the web. This system could be helpful for consumers and healthcare
professionals seeking accurate and up-to-date information related
to drugs.

DINTO1 is a drug-drug interaction-focused ontology along with
mechanisms concerning the improvement of clinical safety [19].
It efficiently classifies interactions and mechanisms, facilitating
large-scale prediction of potential interactions [20]. This helps de-
tect severe adverse reactions and safety issues mentioned under
Warnings and Precautions on the labels of drugs. Moreover, DINTO
supports the generation of new hypotheses on drug interaction and
can be helpful during testing at the new drug’s preclinical stage.

Sharp (2017) [37] and Hanna (2013) [18] contribute to the devel-
opment of a comprehensive drug ontology. Sharp’s work focuses
on the extraction of drug-indication relations from various sources,
while Hanna’s work builds the Drug Ontology (DrOn)2 based on
RxNorm and other sources. Li 2019 and Herrero-Zazo 2013 further
1DINTO ontology details can be found at https://portal.bioontology.org/ontologies/
DINTO
2DRON ontology details available at https://bioportal.bioontology.org/ontologies/
DRON

enhance the ontology by designing a drug-repurposing-oriented
Alzheimer’s Disease Ontology and an ontology for drug-drug in-
teractions, respectively. These works collectively contribute to the
creation of a comprehensive drug ontology that covers various
aspects of drugs, including their properties, classifications, and
relationships.

The OntoDrug ontology aligns with Brazilian regulations like
RENAME and CMED, distinguishing it from the broader Mexican
Drug Ontology and the specialized MediBot. Unlike the Brazil-
ian Medicines Ontology (OBM), which focuses on unifying drug
nomenclature for safety, OntoDrug includes detailed drug data and
regulatory information. It can enhance medication safety and be
used for educational purposes. Additionally, while DINTO focuses
on drug-drug interactions and DRON on drug properties, Onto-
Drug’s specific adaptation to Brazilian standards makes it a tool for
healthcare compliance and education.

3 METHOD DESCRIPTION
The OntoDrug ontology integrates Brazil’s DCB, CMED, and RE-
NAME listings into a standardized, computer-readable format. It
reuses the Schema.org3 ontology to enhance interoperability across
computational systems, including medical suppliers, and to struc-
ture medical information effectively[15, 16, 23, 28, 29, 35]. The
Schema.org defines a widely used formal ontology for web page se-
mantic markup, employing a collection of interconnected schemas
(classes) and properties (attributes) collaboratively developed by
major search engines like Google and Microsoft to standardize the
representation of web content entities, including medicines. [1]

We adopted Schema.org types such as Thing,MedicalEntity,Drug,
and DrugClass, facilitating a systematic categorization and enrich-
ing the ontology with entities like DrugCost and MedicalCode. We
reused the DrugStrength class for generic medicines but changed
its name (label) to GenericMedicine for clarity (but kept its original
ID). Reusing schema terms not only aligns OntoDrug with global
standards but also supports detailed descriptions of medicines. It
promotes a standardized representation compatible with semantic
web content about medications on thousands of sites, enhancing
the ontology’s functionality within web-based health information
systems.

For the development of the OntoDrug ontology, we have based
our work on the structured methodology of Noy and McGuinness
[29] for ontology development. We used the Web Ontology Lan-
guage (OWL) [5], which is a W3C standard for the representation
of ontologies, and the free, open-source Protégé ontology editor
[27] [10].

Our ontology development targeted the medication domain, aim-
ing to streamline drug identification by active ingredient or commer-
cial name and to categorize drugs based on their listing in RENAME.
We utilized OpenRefine 3.6.2, an open-source tool, for executing
ETL (Extract, Transform, Load) processes on the data sourced from
CMED, RENAME, and DCB tables. Data were extracted and then im-
ported into OpenRefine for necessary transformations. OpenRefine
was used to manage unstructured data, offering robust functionali-
ties for data cleaning, transformation, and reconciliation [41].

3https://schema.org
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Table 1: Details of CMED, DCB, and RENAME Lists

List Records Comments
CMED 26,062 Medications Marketed in Brazil
DCB 12,459 Active Ingredients

Rename 921 Essential Medications

The transformed RENAME, CMED, and DCB tables encapsu-
lated essential drug information. The RENAME data, initially in
PDF format, was manually converted into CSV to facilitate the
detailing of generic names, concentrations, pharmaceutical forms,
components, and ATC codes. The CMED list encompasses detailed
pharmaceutical data, including active ingredients, manufacturers,
registration codes, presentations (concentration, dosage form, pack-
aging, quantity), therapeutic classes, product types (reference, simi-
lar, or generic), pricing, and regulatory categories by colored stripes
(black, red, or none). Additionally, the DCB table enriched the on-
tology with detailed chemical data, including the substance name
(active ingredient), its Chemical Abstracts Service (CAS) Number,
and classifications such as API (Active Pharmaceutical Ingredient),
Biological, or Homeopathic, enhancing the ontology’s utility for di-
verse pharmaceutical applications [44]. For details on the three lists,
see Table 1 for a summary of records and associated comments. Fig-
ure 1 displays the high-level structure of the ontology, highlighting
its primary classes. The central class, GenericMedicine, represents
the specific dosage at which a drug is available, combining active
ingredients (activeIngredient property) with its concentration and
unit of measure (strengthUnit and strengthValue properties), based
on data from the CMED list. This list offers a comprehensive cata-
log of medications along with their attributes [7]. The Drug class
corresponds to the active ingredients and is derived from the DCB
listing.

Medications listed in RENAME are categorized under the Gener-
icMedicine class. They correspond to entries found in the CMED
list and include additional details such as the pharmaceutical care
group(RenameGroup) to which each medication belongs, whether
basic, strategic, or specialized [8].

The CommercialMedicine class describes commercial drug prod-
ucts from private laboratories. These products are linked to the
GenericMedicine class and, through it, to the Drug class, allowing
for a connection based on shared attributes like active ingredient,
dosage form, and concentration. This linkage enables multiple prod-
ucts to be associated with a single GenericMedicine if they have
identical properties. Such a structure guarantees that medications,
identified by their commercial name or active ingredient, are con-
sistently represented in the ontology, enhancing its practicality.

All medications in the GenericMedicine class listed in RENAME
are designated as belonging to the Rename class. To verify RENAME
membership, we determine if a medication is a GenericMedicine of
type Rename or a CommercialMedicine equivalent to such a Gener-
icMedicine. If there is no direct match, we check whether the medi-
cation belongs to a CommercialMedicine or GenericMedicine with an
active component in RENAME. We then gather all GenericMedicine
entries with this active ingredient to see if alternative combinations

Figure 1: OntoDrug: Overview of the Ontology Structure.

match the required strength. For example, if Ibu-tab 400 mg is pre-
scribed and unavailable, the system might suggest two doses of the
generic medicine Ibuprofen 200 mg as an alternative.

The controlled vocabulary detailing pharmaceutical forms, routes
of administration, and packaging, as published by Anvisa [3], was
successfully and manually transformed into an RDF taxonomy for
integration with the OntoDrug ontology. This transformation in-
cluded:

• Pharmaceutical Forms: Solids, liquids, semi-solids, and
gases were identified as categories, each containing specific
entries under them, as in the case of tablets, capsules, creams,
and inhalants.

• Routes of Administration: This consisted of classifica-
tions under mechanisms like oral, intravenous, topic, and
inhalation.

• Packaging: It listed all kinds of packaging forms under this
category as ampoules, bottles, blister packs, and tubes, which
were grouped under categories of primary, secondary, and
special packaging.

In RDF, each term from the controlled vocabulary was repre-
sented as an instance within its respective class, with properties to
denote relationships and characteristics, enhancing interoperability
and standardization across healthcare systems.

In developing the OntoDrug ontology, we included the Units
of Measurement Ontology (UO) to standardize measurements like
mg, g, mcg, mg/mL, and ml, ensuring clarity in medication proper-
ties across health systems. The UO facilitates data and knowledge
integration, enabling interoperability and semantic information
processing across various biomedical resources and domains. [31]
This integration supports precise drug administration and enhances
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OntoDrug’s interoperability with health informatics systems4. The
ontology data were exported in RDF format using the RDF exten-
sion in OpenRefine and stored in GraphDB 10.0.15, a triplestore.
A triplestore, or RDF store, is a database specifically designed for
storing and retrieving data via semantic queries, which facilitates
the handling and querying of ontology data.[36]

4 ONTODRUG ONTOLOGY
This section presents the ontology structure, such as the class hi-
erarchy, primary axioms, and retrieval of individuals. OntoDrug
contains about 33 classes, 18 object properties, 19 data properties,
and over 78,000 individuals. It includes around 430 axioms that
make questioning and reasoning capabilities possible.

Structured relationships between key classes, such as Gener-
icMedicine, Drug, and CommercialMedicine, are shown in Figure 2.
In this regard, having a diagram is important as a way to make sure
that different elements relate in the proper way to one another.

Figure 2: Class Hierarchy of the OntoDrug Ontology

In our work, a significant emphasis was placed on the integration
of instances from diverse data sources (DCB, CMED, and RENAME)
into the ontology. For instance, we created an axiom to determine
4Units of Measurement Ontology details available at https://ontobee.org/ontology/UO
5https://graphdb.ontotext.com/documentation/10.0/index.html

if a medicine is part of Rename. The formal definition specifies that
within the entire set of medicines, only those classified under the
GenericMedicine class are considered part of the Rename list. This
classification is established through a relationship indicated by the
property :categorizedAs linking to an instance of the RenameGroup
class. Additionally, a commercial medicine can be indirectly in-
cluded in the Rename list because it has an equivalent generic.
This inclusion occurs through the association of its generic name
(:genericName property) with an entity within the RenameGroup.
The RenameGroup class is an enumerated type comprising 3 ele-
ments, rename-basic, renames-strategic, and rename-specialized,
each representing a different categorization within the Rename list.
This axiom is represented in Equation 1. It is key to the correct
classification of medicines as belonging to the Rename list.

Rename ≡ (CommercialMedicine∧
(∃:genericName (GenericMedicine∧
(∃categorizedAs.RenameGroup))))

∨ (GenericMedicine∧
(∃categorizedAs.RenameGroup)) (1)

Figure 3 shows a part of the OntoDrug ontology related to the
active ingredient Ivermectin. In the knowledge graph, products
containing different strengths of ivermectin are related, such as the
generic medicine Ivermectin 6 mg and the commercial Revectina
6mg. From this visualization, one can now realize that Soolantra
10mg/g is not part of the RENAME list as it is related to the generic
medicine Ivermectin 10mg/g, which is not part of the Rename list.

Figure 3: Knowledge Graph Generated from OntoDrug

5 USE CASE SCENARIOS
The application of the OntoDrug ontology can extend beyond its
integration with electronic health records (EHRs). This section
outlines some real-world scenarios where OntoDrug can enhance
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pharmaceutical practices and healthcare services. The ontology can
aid in the customization of drug therapies, streamline medicine
stock management, and serve as an educational resource. Each
scenario demonstrates the practical benefits and potential of On-
toDrug to improve patient care, optimize operational efficiencies,
and support the continuous education of healthcare professionals.

5.1 Personalized Medication Therapy
Integrating OntoDrug into a clinical decision support system allows
medication therapies to be personalized based on the individual
specifics of each patient. It could document drug interactions with
allergies, other drugs, and pre-existing conditions. Such systems
can use the detailed and structured information available in On-
toDrug to help identify problems and recommend safer or more
efficacious medications. This approach helps to optimize patient
safety and therapeutic outcomes by ensuring that suggestions of op-
timal medication options are made available. Options more suitable
to the unique health profile of each patient.

5.2 Medication Inventory Management
The OntoDrug ontology can also be leveraged to optimize inven-
tory management in pharmacies and hospitals by offering possible
options for medicines that are unavailable in the Rename list.

5.3 Pharmacy Education and Training
The OntoDrug ontology can serve as an educational tool for stu-
dents and healthcare professionals, offering a comprehensive knowl-
edge base on drug characteristics, classifications, and proper usage.
This resource can be integrated into e-learning modules that simu-
late prescription writing and drug administration scenarios. Such
training enhances learning through interaction with an ontology-
based system, reinforcing the application of theoretical knowledge
in real-world settings, leading to better-informed clinical decisions

The scenarios discussed illustrate the versatility and possible
uses of the OntoDrug ontology across various facets of healthcare
and education. The next section, Proof of Concept, shows a practical
use of the OntoDrug ontology. It was integrated into the electronic
prescribing module of a major hospital’s EHR system.

6 PROOF OF CONCEPT
This section reports the results of integrating the OntoDrug ontol-
ogy into the prescription module of the Marília Medical School’s
(FAMEMA) Hospital EHR system. This real-world deployment
showcases how the ontology can promote adherence to a prescrip-
tion standard, enhancing the efficiency of medication management
in a clinical setting.

As shown in Figure 4, the prescription module GUI incorporates
a user-friendly interface for entering medical prescriptions, which
allows healthcare personnel to easily create free-text prescriptions.

This functionality is provided by the Prescription Service, im-
plemented using .NET 4.5, which enhances the capabilities of the
hospital’s existing EHR system. It serves as an intermediary that
orchestrates the data exchange between the existing EHR and a pre-
scription database through the use of JSON objects (Listing 1). This

Figure 4: Proof of Concept: Medication Order Form

service ensures robust data integrity and secure communication
[24][38].

1 {

2 "prescription ": "INTERNAL USE new prescription:

3 1) Riluzole 70 mg Take 01 tablet every 12/12 hours.

4 2) Methyldopa 250 mg Take 02 tablets every 8/8 hours.

5 3) Carbamazepine 200 mg Take 02 tablets every 6/6 hours.

6 4) L-carnitine 1g continuous use Take 03 tablets every 12/12

hours.

7 5) Omalizumab 150 mg continuous use Take 01 tablet once a day

8 6) Simvastatin 40 mg continuous use Take 10 tablets 10 times a

day",

9 "cns": "001",

10 "name": "patient name"

11 }

Listing 1: Translated JSON for Medicine Prescription

Data interchange between the EHR and the Prescription Service
involves object serialization, which is managed by the Prescription
Backend. This backend handles business logic, data transforma-
tions, and interactions with the ontology [39][22].

In the workflow of the Prescription Backend, an Entity Extrac-
tion Service utilized a traditional pre-trained model specifically tai-
lored for Named Entity Recognition (NER) in medical prescriptions.
We tested the quality of the NER extraction by asking physicians
how many medications were successfully recognized in each pre-
scription (Figure 5). We had feedback for 3,761 prescription reports.
NER achieved good precision with 61% or 2,295 prescriptions where
all medicines were successfully recognized and 33.5% or 1,261 pre-
scriptions where at least one medicine was recognized [25]. This is
the current version in production.

After recognizing medicines in the prescription, the system uses
the ontology, employing the techniques explained earlier, to verify if
these medicines are part of Rename and, if they are not, try to find a
medicine or combination of medicines that can replace the original
one. In this way, the system can not only warn physicians about
non-compliant medicines but also suggest, if possible, substitutes.

The system uses SPARQL queries to a triple store that houses
the ontology to interact with it. This arrangement permits sophis-
ticated handling of queries related to medication, encompassing
drug classifications and potential alternatives based on active in-
gredients.
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The Prescription Backend constructs and dispatches SPARQL
queries to the GraphDB triple store, which executes them and
returns results in JSON format. Listing 2 shows a sample JSON
response from the backend. The valid section lists medications
successfully verified.

1 {

2 "valid": [

3 {

4 "name": "Carbamazepine",

5 "dosage ": "200 mg",

6 "rename ": true ,

7 "atc": "N03AF01"

8 },

9 "... other valid items ..."

10 ],

11 "invalid ": [

12 {

13 "originalname ": "Riluzole 70 mg",

14 "name": "riluzole",

15 "dosage ": "50 mg",

16 "rename ": "N",

17 }

18 ]

19 }

Listing 2: JSON Representation for Medication Validation

Figure 5 displays the user interface, which presents a list of
medications identified by the ontology along with information on
whether they belong to the Rename list. Additionally, the interface
requests physicians’ feedback to assess the information’s accuracy
and relevance.

Figure 5: Feedback Dialog: Display of Serialized Data in the
User Interface

6.1 Using LLMs for medicine recognition
The last section described the system currently in production at
the FAMEMA school hospital. Subsequently, the recognition of
medicines on the prescription based on traditional NER techniques
was replaced by more advanced LLM-based implementations, such

as LLM GPT-4 Turbo, which enhanced natural language processing
capabilities. The rest of the system remained the same.

Figure 6 shows the data transmission from the Prescription Ser-
vice to the EHR system, offering a succinct visualization of the new
workflow, which now incorporates the use of LLMs for enhanced
processing.

Figure 6: EHR to OntoDrug Data Flow Overview

We could have asked the LLM to directly determine if the recog-
nized medicines were or were not listed in the Rename. However,
that could lead to hallucinations [42]: the LLM falsely stating that
a medicine is part of Rename or, worst still, suggesting nonexistent
substitutes. We decided to use the ontology to “ground” the LLM
[14]. We limited the LLM to medicine recognition and left the rest
to the ontology. In this way, all possible answers are limited by the
ontology contents, reducing hallucinations. Notice that the LLM
can still make a mistake and not recognize a medicine, but the sys-
tem will not misclassify a correctly recognized medicine or suggest
nonexistent medicine substitutions.

For this new implementation, we tested different LLMs, remem-
bering that we still use the OntoDrug to find a medication Rename
membership and to suggest alternative medications whenever pos-
sible. The GPT-4 Turbo model achieved perfect recall (1.0) and high
precision (0.97), resulting in an overall F1-score of 0.99, showing
highly effective performance metrics.

7 EXPERIMENTAL STUDY AND RESULTS
We evaluated the new implementation across four different LLMs:
GPT-4 Turbo, LLaMA3-8b, LLaMA3-70b, and GEMMA-7b-IT to
assess their effectiveness [4, 30, 40]. One goal was to compare these
models to the original NER approach and determine their relative
performance.

In the original approach (NER + ontology), we used 3,761 pre-
scriptions obtained with physician feedback provided in response
to the dialog box shown in Figure 5. The results for this approach
[25] were:

(1) Complete Recognition (61% or 2,295 Prescriptions): The
system accurately identified all medications as reported by
the physicians in these instances.

(2) Partial Recognition (33.5% or 1,261 Prescriptions): The
system recognized only some of the medications reported
by the doctors.
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(3) No Recognition (5.5% or 205 Prescriptions): The system
did not identify any medications in these cases, indicating a
need for further investigation.

These results highlighted the possibility that better techniques
could enhance the system’s accuracy.

In our current study, we replaced the traditional NER-based
recognition with LLMs to recognize medications and dosages di-
rectly from the prescription texts.

We conducted tests with four models. A massive, more than 300
billion parameters, proprietary top model, gpt-4 Turbo, and three
open source smaller models, llama3-70b (70 billion parameters),
llama3-8b (8 billion), and gemma-7b-it (7 billion). We evaluated
their effectiveness and accuracy in comparison to the original NER-
based approach.

For each prescription, we used the list of the medicines actually
in the prescription, supplied by a physician, and the list of machine-
detected medicines. All medicines in both lists were considered
true positives (TP), medicines only on the physician’s list were false
negatives (FN), and only in the machine-detected list were false
positives (FP). There are no true negatives (TN).

We could not use all the original 3,761 prescriptions (from the
first study). For simplicity of the GUI, the physicians only informed
the total number of medicines prescribed and how many were
correctly recognized in each prescription. We do not know which
medicines were correctly identified. For that, physicians needed to
go on each prescription and manually annotate which medicines
were present.

Another problem is price restrictions. Currently, high-end, very
expensive hardware is needed to run LLMs locally. So, it is more
cost-effective to run them remotely using paid systems. That option
is cheaper but still quite expensive to run 3,761 examples. So, we
opted to use a random sample of 203 (5.4%) prescriptions from the
original set.

For the experiments, gpt-4 Turbo models run using OpenAI’s
cloud 6 and llama3-70b, llama3-8b, and gemma-7b models used the
Groq Cloud7.

After each of the fourmodels recognized themedicines in the pre-
scriptions, we calculated the precision, recall, and F1-score shown
in Table 2. We did not include measurements, such as accuracy,
that depend on true negative (TN) values, as these values are not
available.

Model Precision Recall F1-score
gpt-4 turbo 0.974 1.000 0.987
llama3-70b-8192 0.990 0.985 0.988
gemma-7b-it 0.995 0.971 0.983
llama3-8b-8192 0.985 0.973 0.979
ner-model* 0.976 0.501 0.662
(*Included for comparison purposes.)

Table 2: Metrics of different language models.

As expected, gpt-4 turbo had the best numbers, even achieving
100% recall. But the three open source models were not far behind
6https://openai.com/
7https://groq.com/

it. For instance, all four models achieved a precision above 98%.
In general, the bigger the model, the better (Figure 7). However,
Gemma-7b-it was slightly better than llama3-8b.

It is important to highlight that the smaller LLMs had values
very competitive in relation to GPT 4 performance. That indicates
that medicine identification is not such a hard problem for LLMs,
opening the possibility that sooner such models can run locally,
reducing costs and improving privacy.

Figure 7: Performance metrics of different language models.

All models outperformed the pre-trained NER model, which
achieved a Recall of 0.501, a Precision of 0.976, and an F1-score of
0.662 on the same sample.

Despite the significant improvement in accuracy with the LLM
use, they have disadvantages. One primary concern is the cost;
running such advanced models can be expensive, especially when
processing large datasets, making it less feasible for continuous
or large-scale applications (a hospital may produce thousands of
prescriptions daily).

Additionally, service availability can be an issue; reliance on
an external API means that any downtime or service disruption
from the provider or the internet could impact the accessibility
and functionality of the medication identification system. Privacy
is another issue because the sensitive data on patients is to be
transferred and processed by the API provider.

8 CONCLUSION
In this work, we presented the development and implementation
of the OntoDrug ontology, designed to enhance medication man-
agement within the Brazilian healthcare system. By integrating
regulatory frameworks and standardizing terminologies, OntoDrug
supports accurate identification and classification of medications,
reducing ambiguities and improving patient safety. Our proof-of-
concept application demonstrated the practical utility of OntoDrug
in a clinical setting, showing significant improvements in the preci-
sion and efficiency of medication management.

The experimental study revealed that the incorporation of ad-
vanced language models like GPT-4 turbo significantly outperforms
traditional NER methods in terms of recall, precision, and F1-score.
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However, these models provide substantial accuracy gains but come
with cost, privacy, and service availability challenges.

Our findings highlight the potential of OntoDrug to be a valuable
tool for various stakeholders, including healthcare providers, phar-
macists, and educators. OntoDrug can enhance clinical decision-
making by seamlessly integrating medication information into elec-
tronic health records.

Future research should focus on expanding the prescription vali-
dation process to include warnings of possible harmful interactions
between prescribed drugs. Additionally, exploring the use of lo-
cal open-source LLMs for entity recognition, as they can be more
cost-effective and privacy-preserving implementations of language
models.

9 ACKNOWLEDGMENTS
We thank the Clinical Hospital of the Faculty of Medicine of Marília
and the Otorhinolaryngology department doctors for their support,
infrastructure, and data management, which were crucial to our
research. This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Brazil – Fi-
nance Code 001 and by the São Paulo Research Foundation (FAPESP
grants #2019/07665-4 and #2013/07375-0 CEPID).

REFERENCES
[1] Burhan UdDin Abbasi, Iram Fatima, HamidMukhtar, Sharifullah Khan, Abdulaziz

Alhumam, and Hafiz Farooq Ahmad. 2022. Autonomous schema markups based
on intelligent computing for search engine optimization. PeerJ Computer Science
8 (2022), e1163.

[2] Agência Nacional de Vigilância Sanitária. 2004. Política Vigente para a Regulamen-
tação de Medicamentos no Brasil. Gabinete do Diretor-Presidente, Núcleo de Asses-
soramento emComunicação Social e Institucional - Comin/Anvisa. https://bvsms.
saude.gov.br/bvs/publicacoes/anvisa/manual_politica_medicamentos.pdf Im-
presso no Brasil. Permitida a reprodução parcial ou total desta obra, desde que
citada a fonte..

[3] Agência Nacional de Vigilância Sanitária (Anvisa). 2022. Vocabulário Controlado
de Formas Farmacêuticas, Vias de Administração e Embalagens. https://www.gov.
br/anvisa/pt-br/centraisdeconteudo/publicacoes/medicamentos/publicacoes-
sobre-medicamentos/vocabulario-controlado.pdf/view Accessed: 2022-05-19.

[4] AI@Meta. 2024. Llama 3 Model Card. (2024). https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md

[5] Dean Allemang and James Hendler. 2011. Semantic web for the working ontologist:
effective modeling in RDFS and OWL. Elsevier.

[6] Caio Viktor S Avila, Wellington Franco, Amanda DP Venceslau, Tulio Vidal
Rolim, Vania MP Vidal, and Valéria M Pequeno. 2021. MediBot: an ontology-
based chatbot to retrieve drug information and compare its prices. Journal of
Information and Data Management 12, 2 (2021).

[7] Letícia de Andrade Barbosa. 2013. Assistência farmacêutica no sistema único de
saúde. (2013).

[8] Ricardo José Magalhães Barros, Marco Antônio de Araújo Fireman, and Ma-
teus Rodrigues Westin. 2017. Relação nacional de medicamentos essenciais.
(2017).

[9] Erik Bülow. 2020. coder: An R package for code-based item classification and
categorization. J. Open Source Softw. 5 (2020), 2916. https://api.semanticscholar.
org/CorpusID:233302997

[10] Wander de Almeida Limeira and Dilvan de Abreu Moreira. 2020. KGWE-A
customizable editor for OWL ontologies. In Anais Estendidos do XXVI Simpósio
Brasileiro de Sistemas Multimídia e Web. SBC, 91–95.

[11] Daniela Moulin Maciel de Vasconcelos, Gabriela Costa Chaves, Thiago Botelho
Azeredo, and Rondineli Mendes da Silva. 2017. National Medicines Policy in
retrospective : a review of ( almost ) 20 years of implementation. https://api.
semanticscholar.org/CorpusID:22550643

[12] Agência Nacional de Vigilância Sanitária (Anvisa). 2020. Novo Marco Regulatório
de Farmacovigilância. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/
2020/novo-marco-regulatorio-de-farmacovigilancia-confira Accessed: 2024-06-
04.

[13] Frederico Freitas and Stefan Schulz. 2009. Ontologias, Web semântica e saúde.
Revista Eletrônica de Comunicação, Informação & Inovação em Saúde 3, 1 (2009).

[14] Maurice Funk, Simon Hosemann, Jean Christoph Jung, and Carsten Lutz.
2023. Towards Ontology Construction with Language Models. arXiv preprint
arXiv:2309.09898 (2023).

[15] Thomas R Gruber. 1995. Toward principles for the design of ontologies used
for knowledge sharing? International journal of human-computer studies 43, 5-6
(1995), 907–928.

[16] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. 2016. Schema. org:
evolution of structured data on the web. Commun. ACM 59, 2 (2016), 44–51.

[17] Curtis E. Haas, Mary Ann Kliethermes, Lori T. Armistead, Craig J. Beavers,
Christie A. Schumacher, Lisa Smith, John A. Armitstead, Roshni P. Emmons,
Lucy I. Darakjian, Krystal L. Edwards, and Michael Barr. 2023. Comprehensive
medication management: Review and recommendations for quality measures.
Journal of the American College of Clinical Pharmacy 6 (2023), 404 – 415. https:
//api.semanticscholar.org/CorpusID:256718733

[18] Josh Hanna, Eric Joseph, Mathias Brochhausen, and William R. Hogan. 2013.
Building a drug ontology based on RxNorm and other sources. Journal of Biomedi-
cal Semantics 4 (2013), 44 – 44. https://api.semanticscholar.org/CorpusID:2304775

[19] María Herrero-Zazo, Janna Hastings, Isabel Segura-Bedmar, Samuel Croset,
Paloma Martínez, and Christoph Steinbeck. 2013. An Ontology for Drug-drug
Interactions. InWorkshop on Semantic Web Applications and Tools for Life Sciences.
https://api.semanticscholar.org/CorpusID:187394

[20] María Herrero-Zazo, Isabel Segura-Bedmar, Janna Hastings, and PalomaMartínez.
2015. DINTO: Using OWL Ontologies and SWRL Rules to Infer Drug-Drug
Interactions and Their Mechanisms. Journal of chemical information and modeling
55 8 (2015), 1698–707. https://api.semanticscholar.org/CorpusID:20599292

[21] Adriana M. Ivama-Brummell, Daniella PINGRET-KIPMAN, Priscila G. Louly, and
Rosiene R. Andrade. 2022. Medicines regulation, pricing and reimbursement
in Brazil. Revista Brasileira de Farmácia Hospitalar e Serviços de Saúde (2022).
https://api.semanticscholar.org/CorpusID:247722354

[22] S Jagannatha, TV Suresh Kumar, and R RajaniKanth. [n. d.]. Comparative Study
of Back-End Vs Front-End System by Performance Analysis during Preliminary
Design stages. ([n. d.]).

[23] Christopher Manning and Hinrich Schutze. 1999. Foundations of statistical natural
language processing. MIT press.

[24] Microsoft. 2023. .NET Framework 4.5. https://docs.microsoft.com/en-us/dotnet/
framework/. Accessed: January 2023.

[25] Nelson Miranda and Dilvan de A. Moreira. 2024. Improving Medication Iden-
tification Accuracy and Regulatory Compliance through NLP and Ontologies:
An Analysis of Otorhinolaryngology Prescriptions. In 2024 IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE). IEEE.

[26] Ol’ga Alekseevna Mitina and Ivan Alexandrovich Yurchenkov. 2021. Data Classi-
fication in Medicine and Healthcare Service. Artificial Intelligence in Intelligent
Systems (2021). https://api.semanticscholar.org/CorpusID:237974497

[27] Mark A Musen. 2015. The protégé project: a look back and a look forward. AI
matters 1, 4 (2015), 4–12.

[28] Natalya FridmanNoy, RayWFergerson, andMarkAMusen. 2000. The knowledge
model of Protege-2000: Combining interoperability and flexibility. In International
Conference on Knowledge Engineering and Knowledge Management. Springer, 17–
32.

[29] Natalya F Noy, Deborah L McGuinness, et al. 2001. Ontology development 101:
A guide to creating your first ontology.

[30] OpenAI. 2024. GPT-4 Turbo: Advanced language model for natural language
understanding and generation. https://www.openai.com/models/gpt-4-turbo.
Accessed: 2024-03-22.

[31] Christian Pachl, Nils Frank, Jan Breitbart, and Stefan Bräse. 2020. Overview of
chemical ontologies. arXiv preprint arXiv:2002.03842 (2020).

[32] Cecilia Reyes Peña, Mireya Tovar, Maricela Claudia Bravo, and Regina Motz.
2020. Drug Ontology for the Public Mexican Health System. In SWH@ISWC.
https://api.semanticscholar.org/CorpusID:229366837

[33] Deborah L. Pestka, Caitlin K. Frail, Lindsay A. Sorge, Kylee A. Funk, Kristin K.
Janke, Mary T. Roth McClurg, and Todd D. Sorensen. 2020. Development of
the comprehensive medication management practice management assessment
tool: A resource to assess and prioritize areas for practice improvement. Journal
of the American College of Clinical Pharmacy 3 (2020), 448 – 454. https://api.
semanticscholar.org/CorpusID:208485233

[34] Joselio Emar Araujo Queiroz, Robson Willian Melo Matos, Elivan Silva Souza,
Paula Xavier Santos, Laís Bié Pinto Bandeira, Daniel Catão Moreira Licio, Beat-
riz Faria Leao, and Rafael Santos Santana. 2023. Ontologia brasileira de medica-
mentos: rumo à padronização terminológica de medicamentos no Brasil. JORNAL
DE ASSISTÊNCIA FARMACÊUTICA E FARMACOECONOMIA 8, s. 2 (2023).

[35] Bartira Dantas Rocha, Larysse Silva, Thais Batista, Everton Cavalcante, and
Porfírio Gomes. 2020. An ontology-based information model for multi-domain
semantic modeling and analysis of smart city data. In Proceedings of the Brazilian
Symposium on Multimedia and the Web. 73–80.

[36] Tomer Sagi, Matteo Lissandrini, T. Pedersen, and Katja Hose. 2022. A design
space for RDF data representations. The VLDB Journal 31 (2022), 347 – 373.

247



OntoDrug: Enhancing Brazilian Health System Interoperability with a National Medication Ontology WebMedia’2024, Juiz de Fora, Brazil

https://api.semanticscholar.org/CorpusID:246186959
[37] Mark E. Sharp. 2017. Toward a comprehensive drug ontology: extraction of

drug-indication relations from diverse information sources. Journal of Biomedical
Semantics 8 (2017). https://api.semanticscholar.org/CorpusID:26441866

[38] S. Stelting and B. Maassen. 2020. Understanding Data Transfer Object (DTO)
in C#. https://code-maze.com/different-ways-handle-errors-net-core-webapi/.
Accessed: January 2023.

[39] Clarence Tauro, Nagesswary Ganesan, Saumya Mishra, and Anupama Bhagwat.
2012. Article: Object Serialization: A Study of Techniques of Implementing
Binary Serialization in C++, Java and .NET. International Journal of Computer
Applications 45 (05 2012), 25–29.

[40] Gemma Team, Thomas Mesnard, Cassidy Hardin, and Robert Dadashi et al.
2024. Gemma: Open Models Based on Gemini Research and Technology.

arXiv:2403.08295
[41] Ruben Verborgh and Max De Wilde. 2013. Using openrefine. Packt Publishing

Ltd.
[42] Zizhong Wei, Dongsheng Guo, Dengrong Huang, Qilai Zhang, Sijia Zhang, Kai

Jiang, and Rui Li. 2023. Detecting and Mitigating the Ungrounded Hallucinations
in Text Generation by LLMs. In Proceedings of the 2023 International Conference
on Artificial Intelligence, Systems and Network Security. 77–81.

[43] Marieke Wermuth. 2021. Terminological cooperation in the biomedical field.
Terminology (2021). https://api.semanticscholar.org/CorpusID:237833789

[44] Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin, and Zhiyong Lu. 2019.
BioWordVec, improving biomedical word embeddings with subword information
and MeSH. Scientific data 6, 1 (2019), 52.

248


