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ABSTRACT
With the constant growth in available information and the popular-
ization of technology, recommender systems have to deal with an
increasing number of users and items. This leads to two problems
in representing items: scalability and sparsity. Therefore, many
recommender systems aim to generate low-dimensional dense rep-
resentations of items. Matrix factorization techniques are popular,
but models based on neural embeddings have recently been pro-
posed and are gaining ground in the literature. Their main goal is to
learn dense representations with intrinsic meaning. However, most
studies proposing embeddings for recommender systems ignore
this property and focus only on extrinsic evaluations. This study
presents a guideline for assessing the intrinsic quality of matrix
factorization and neural-based embedding models for collaborative
filtering, comparing the results with a traditional extrinsic evalu-
ation. To enrich the evaluation pipeline, we suggest adapting an
intrinsic evaluation task commonly employed in the Natural Lan-
guage Processing literature, and we propose a novel strategy for
evaluating the learned representation compared to a content-based
scenario. Finally, every mentioned technique is analyzed over es-
tablished recommender models, and the results show how vector
representations that do not yield good recommendations can still be
useful in other tasks that demand intrinsic knowledge, highlighting
the potential of this perspective of evaluation.

KEYWORDS
embeddings, intrinsic evaluation, qualitative evaluation, recom-
mender systems, similarity tables, intruder detection, autotagging

1 INTRODUCTION
Recommender systems are tools commonly used by companies for
enhancing the experience users have when utilizing their services
by filtering and recommending particularly relevant information [1].
Among different types of recommender systems, collaborative fil-
tering (CF) is one of the most popular [4].

Pioneer CF recommender systems represented items as sparse
vectors of consumption. However, due to the accelerated growth in
the number of users and items, this form of representation started
facing limitations related to: (i) sparsity, sincemodern recommender
systems must deal with a number of possible interactions that fol-
lows a power law according to the number of users and items,
yielding an often highly sparse interactions matrix; and (ii) scala-
bility, given that the vectors used to represent users and items can
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become quite large, increasing the demand for greater storage and
processing capacity.

To circumvent these problems, efforts are being made to repre-
sent users and items in a much smaller dimensional space [40]. In
this context, two main techniques gained ground with the literature:
matrix factorization [27] and neural networks [57]. In the latter,
neural embedding models inspired by Natural Language Processing
(NLP) have recently gained traction [34]. A significant advantage
of embeddings in NLP is their ability to carry intrinsic meaning, i.e.,
the knowledge encapsulated within the representation beyond the
information used for training. In recommender systems, this trans-
lates to the potential of leveraging item embeddings for various
tasks beyond mere recommendation.

Despite the promising nature of embeddings, most existing re-
search has focused primarily on extrinsic evaluations, neglecting
the intrinsic qualities of the learned representations. It is well
known that the performance of embeddings in downstream appli-
cations does not always correlate with their intrinsic quality [41].

While the primary goal of a recommender system is to provide
high-quality recommendations, the vector representations of items
and users can also be applied to other tasks such as automatic fea-
ture prediction, knowledge discovery, and clustering [21, 31]. These
applications can only be significantly improved if the intrinsic qual-
ity of the embeddings is adequately assessed. Therefore, evaluating
the intrinsic quality of matrix factorization and neural embedding
models is crucial for their successful application in diverse contexts.

To address this gap, we present various methods for using item
metadata to intrinsically evaluate vector representations of items
in a CF recommender system. We introduce a commonly used
evaluation technique in recommender system literature and adapt
an intrinsic evaluation task from NLP to our context. Given the
time-consuming and expertise-dependent nature of subjective anal-
yses, we propose a new quantitative, non-subjective strategy us-
ing content-based data to evaluate the intrinsic ranking quality of
embeddings. We illustrate our proposed pipeline with an extrin-
sic evaluation, assessing the quality of vector representations in
generating recommendations, and compare these results with our
intrinsic evaluation tasks. Our findings demonstrate that embed-
ding models can perform very differently across tasks, with some
models that perform poorly in recommendation tasks excelling in
intrinsic evaluations, underscoring the necessity of comprehensive
analysis when developing new representation models. With these
considerations, the primary objectives of this study are:

(1) Introduce new methods for evaluating item embeddings us-
ing strategies derived from Natural Language Processing,
such as intruder detection, and from content-based recom-
mendation, such as content-based ranking comparison;

(2) Present a collection of techniques for intrinsically evaluating
item embeddings in both subjective and objective manners;
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(3) Compare traditional embedding-based recommender mod-
els in extrinsic and intrinsic tasks to illustrate the varied
performance of embeddings across different applications.

2 RELATEDWORK
The earliest collaborative filtering recommender systems employed
neighborhood-based methods to compute recommendations. How-
ever, as the number of users and items increased, these techniques
encountered significant challenges related to sparsity and scalabil-
ity [25]. Consequently, the use of embeddings for representing users
and items gained popularity, i.e., low-dimensional vector represen-
tations that carry intrinsic meaning. Initially, matrix factorization
models were applied for this task [27], reducing memory consump-
tion and processing demand while generating valuable insights.
Over the years, numerous methods have been proposed to gener-
ate embeddings, employing diverse strategies such as graph-based
algorithms and quantization techniques [58].

Inspired by state-of-the-art Natural Language Processing (NLP)
techniques [32, 34], recent methods aim to learn neural embeddings
for items and users. The first studies in the area were Item2Vec [2]
and Prod2Vec [18], neural networks heavily inspired by the Skip-
gram architecture [32], and User2Vec [18], inspired by Paragraph
Vector [28]. Subsequent studies have built upon these foundational
models, incorporating various techniques to enhance performance,
e.g., consuming item metadata [15, 47], leveraging content infor-
mation to enrich embeddings [19, 51, 56].

Beyond incorporating item content, more complex neural mod-
els have been employed, including deep learning [43, 55], recurrent
neural networks [22, 51], convolutional neural networks [10, 46],
GANs [7, 50], and transformers [26, 54]. Another notable approach
is training NLP models on textual data from items, users, or in-
teractions [20, 44], with Large Language Models (LLMs) gaining
attention in recent years [16, 30].

A particularly intriguing aspect of neural embeddings is their
intrinsic meaning [17], though few studies have thoroughly investi-
gated this property. Themost common approach for evaluating item
embeddings is using similarity tables [2, 15, 18], but this method
heavily relies on subjective opinions, which can be misleading.
Other methods, such as genre plotting [2, 15, 44] and sample clus-
tering [26, 51], also depend on human judgment or are difficult to
apply across different domains, such as analogy analysis [19].

In NLP, several established methods exist for intrinsic evaluation
of word embeddings [3, 17, 35, 53], including: (i) comparing human
judgment of word similarity with embedding space similarity; (ii)
predicting word analogies through vector arithmetic; (iii) clustering
word embeddings and evaluating cluster quality; and (iv) detecting
synonyms or “intruders” in groups of similar embeddings. However,
many of these methods are challenging to adapt to recommender
systems due to their reliance on external semantic datasets.

In many areas of recommender systems, the accuracy of the
recommendation is prioritized over other characteristics such as
quality [52], and although item embeddings are often measured
in downstream applications such as recommendations, this does
not guarantee intrinsic quality [41]. High-quality embeddings can
boost various tasks in a recommendation scenario, such as auto-
matic feature prediction, user and item clustering, and knowledge
discovery [21, 31], or enhance semantic-based recommendation
engines, that use intrinsic knowledge as the main strategy for fil-
tering items [24]. Embeddings with strong intrinsic value can even

assist in uncovering item metadata for systems relying on categori-
cal features [6, 49], which are often incomplete or inaccurate, and
enhance traditional collaborative filtering models [33].

To the best of our knowledge, no work on the recommender sys-
tem literature has focused on studying the intrinsic aspects of item
embeddings. Studies proposing novel embedding-based models of-
ten perform simple forms of intrinsic evaluation, normally based
on subjective approaches that can add human bias and problems
to the conclusions. Neglecting or improperly conducting intrinsic
evaluations can result in the loss of valuable information that could
support related tasks and improve representation models.

In this context, we introduce alternative methods for intrinsically
evaluating recommender system embeddings. Besides presenting
commonly used evaluation techniques, we adapt an NLP evaluation
task to the recommender context and propose a novel quantitative
metric for intrinsic quality using a content-based ranking compari-
son approach. We conduct both extrinsic and intrinsic evaluations,
comparing results across different tasks to illustrate the varied
performance of embedding models.

3 SUBJECTIVE METHODS FOR INTRINSIC
EVALUATION

The intrinsic evaluation of embeddings in both NLP and recom-
mender systems often relies on subjective approaches, where the
quality of the representation is assessed based on human opinions.
In this section, we present two subjective tasks: similarity tables
and intruder detection.

3.1 Similarity Tables
The similarity table evaluation strategy involves training different
models on the same datasets and selecting a known item as a seed.
The distances between this seed item and all other items are calcu-
lated for each representation using a measure of angular similarity.
The top-𝑁 nearest items for each representation are then displayed
side-by-side in a table. Human evaluators can subjectively assess
each group of nearest items to determine how well they match the
target item. This task can be repeated with multiple known items,
providing a broader perspective on the representations’ behavior.

Similarity tables are the most straightforward and intuitive way
to check for intrinsic meaning in the evaluated representations.
This ease of use makes it one of the most commonly employed
schemes [2, 15, 18]. However, it heavily depends on human inter-
pretation based on subjective analysis [17].

3.2 Intruder Detection
In NLP, intruder detection, also known as outlier detection, involves
identifying "intruder" words in a set [41]. We propose adapting
this task for the recommender system context by treating items
as words. To do this, we first select a few target items (which can
be randomly drawn or, preferably, human-selected) and, using the
embedding-vector space, find the top-𝑁 nearest items to each target.
A random item from the representation space is then added to the
neighboring items, and Human evaluators must then determine the
“intruder” items (i.e., the randomly selected ones). The accuracy of
these guesses can be computed and used to compare the methods.

Although the task’s outcome is quantitative, subjectivity is re-
duced but not eliminated. It still relies on human interpretation and
can be time- and cost-intensive, requiring one or more individuals
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to analyze each chosen example. However, the need for multiple
evaluators can be mitigated using crowdsourcing platforms, such as
Amazon Mechanical Turk1 and Prolific2, which allows researchers
to hire participants from diverse demographics.

3.3 Shortcomings of subjective evaluation
The weak point of using the aforementioned subjective strategies
resides in their high dependence on human opinions, which may be
heavily biased or too shallow for a particular domain [12]. Human
opinions can unfairly penalize embeddings when the grouping
criteria selected by the algorithm differs from the one preferred by
the evaluator [59].

To avoid human bias, the experiments must be conducted with
a vast range of people, which is more time-demanding and will
most likely result in cost increases. To overcome subjectivity in the
existing evaluation schemes, it is recommended to use objective
approaches, i.e., the ones that consume additional data to quantify
the intrinsic quality and are calculated automatically.

4 OBJECTIVE METHODS FOR INTRINSIC
EVALUATION

To avoid bias problems that subjective evaluation suffers, here we
suggest the use of two different metrics: automatic feature predic-
tion and a novel metric of content-based ranking comparison.

4.1 Automatic Feature Prediction
Automatically discovering item features involves predicting a set
of unknown tags for a target item 𝑖 based on its most similar items.
Also known as auto-tagging, it is a specific problem in the fields
of recommender systems and knowledge discovery, with many
methods proposed exclusively for this [8, 29, 45].

We can employ a neighborhood-based automatic feature predic-
tion approach to assess the intrinsic value of a vector representa-
tion [2, 15]. For each item 𝑖 in the entire catalog, its 𝑘 nearest items
are selected, considering the embedding-vector space. Next, the
attributes of the target item are discovered through some voting
process, such as a simple majority vote.We can then compare the
original item’s attributes with the ones predicted by the neighbors
and quantify the intrinsic quality of the representation using tradi-
tional classification metrics, such as precision, recall, or F1-score.

4.2 Content-based Ranking Comparison
As an additional objective and automatic method for intrinsically
evaluating vector representations of items, we propose a novel met-
ric that compares the neighborhood generated by the embeddings
in the vector space with a neighborhood constructed using content-
based information about the items. The quality of the comparison
can then be quantified using a ranking comparison metric.

To properly evaluate the spatial distribution generated by the
learned embeddings, we first assume that there is a correct order
for the neighborhood of a given item when filtering its most similar
items on the embeddings vector space. In this study, we constructed
the target ordering using the similarities between the high-level fea-
tures of the items: the item’s category, genre, or tags. As we aim to
1Amazon Web Services. Amazon Mechanical Turk. Available at: https://www.mturk.
com/.
2Prolific. Prolific: Definitive human data to deliver world-leading research and AI. Avail-
able at: https://www.prolific.com/.

approximate items with similar features, we can compare this neigh-
borhood with the one generated by the embeddings. Moreover, it is
possible to use more complex and domain-specific techniques for
ranking, e.g., low-level visual features for movies [13] and context
and metadata graph embeddings for music [48].

Using those general features to describe the items, we can rep-
resent an item 𝑖 through a bag-of-words encoding, i.e., an array
of attributes ®𝑖 . With this representation, we can build a similarity
matrix C of dimensions |𝐼 | × |𝐼 |, in which |𝐼 | represents the number
of items in the catalog. Thus, for a given pair of items 𝑖 and 𝑗 , C𝑖, 𝑗
stores their similarity when using the content-based representa-
tion, i.e., vectors ®𝑖 and ®𝑗 , calculated using a metric such as cosine
similarity. Similarly, we construct the similarity matrix E, which
stores the similarity of the items’ dense embeddings.

Afterward, for each item 𝑖 ∈ 𝐼 , we can construct two neigh-
borhoods, N C

𝑖 and N E
𝑖 . The former corresponds to the subset of

items most similar to 𝑖 considering the similarity matrix C, i.e., the
items that share the most related content-based features. The latter
represents the same neighborhood concept but uses the similarity
values stored in matrix E. Both N C

𝑖 and N E
𝑖 may be limited to a

restricted number of neighbors, defined by a hyperparameter 𝑘 , to
reduce memory consumption when calculating the ranking.

With both similarity matrices constructed, we can compare them
using different metrics and approaches, e.g., traditional or utility-
based rankingmeasures, and sample sets’ similaritymetrics. Regard-
less of the adopted strategy, all of them are maximized according
to the same ordering, i.e., the one created using the content-based
representation, with the differences being in how the neighbor-
hoods are used to calculate the final score. In the following, we
offer metrics for each one of those approaches.

4.2.1 Rank correlation metrics. When considering the order of the
items, we can calculate metrics designed to compare the correlation
of rankings when you have a reference ranking, such as Spear-
man’s rank correlation coefficient 𝜌 , Kendall’s 𝜏 coefficient, or the
Normalized Distance-based Performance Measure (NDPM).

For comparing the rankings using Spearman’s 𝜌 , we can calculate
the correlation coefficient for each item and average the results, as
shown in Equation 1. To calculate 𝜌𝑖 , we use Equation 2, in which
𝑑 corresponds to the difference among ranking positions when
sorting the items according to N C

𝑖 and N E
𝑖 .

𝜌 =
∑
𝑖∈𝐼 𝜌𝑖
|𝐼 | (1) 𝜌𝑖 = 1 −

6
∑

𝑗∈𝐼 𝑑2𝑗
|𝐼 | ( |𝐼 |2 − 1) (2)

4.2.2 Set similarity metrics. If we limit the neighborhoods to the
top-𝐾 similar items, we can treat them both as sample sets and
calculate metrics designed to compare the similarity and diversity
of sets, such as the Jaccard Index or the Sørensen–Dice coefficient.

For the Jaccard Index 𝐽 , we must first calculate the Jaccard Index
𝐽𝑖 for each item 𝑖 , and then average the results, as shown in Equa-
tion 3. For 𝐽𝑖 , we must build two sets, 𝑆C𝑖 and 𝑆E𝑖 , consisting of the
top-𝐾 most similar items from bothN C

𝑖 andN E
𝑖 , respectively, and

then calculate the set similarity using Equation 4:

𝐽 =
∑
𝑖∈𝐼 𝐽𝑖
|𝐼 | (3) 𝐽𝑖 =

|𝑆C𝑖 ∩ 𝑆E𝑖 |
|𝑆C𝑖 ∪ 𝑆E𝑖 |

(4)
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4.2.3 Utility-based ranking scores. Finally, we can also adapt utility-
based ranking metrics, using the content-based similarities to quan-
tify the utility of the embeddings ranking.

Here, we explain how the Normalized Discounted Cumulative
Gain (NDCG) can be adapted for this type of evaluation. First, as it
is commonly calculated for the metric, we define the overall NDCG
as the average of the NDCG for each item 𝑖 (NDCG𝑖 ), as shown in
Equation 5. NDCG𝑖 , on the other hand, is defined as the Discounted
Cumulative Gain of the item (DCG𝑖 ) divided by its Ideal Discounted
Cumulative Gain (CB-IDCG𝑖 ), normalizing the final value to a 0–1
range, as shown in Equation 6.

NDCG =
1
|𝐼 |

∑︁
𝑖∈𝐼

(NDCG𝑖 ) (5) NDCG𝑖 =
DCG𝑖

IDCG𝑖
(6)

The main differences arise when calculating the DCG𝑖 and the
IDCG𝑖 . For both scores, we consider that the “gain” of a given
item 𝑗 in the neighborhood of 𝑖 is given by the values of matrix C,
i.e., the content-based similarity matrix. The ideal gain, IDCG𝑖 , is
retrieved using the top-𝑘 items of the content-based neighborhood,
N C
𝑖 , while the obtained gain, DCG𝑖 uses the embedding-based

neighborhood,N E
𝑖 , as presented in Equations 7 and 8, respectively.

IDCG𝑖 =
𝑘∑︁

𝑛=1

𝐶𝑖,NC
𝑖𝑛

log2 (𝑛 + 1) (7) DCG𝑖 =
𝑘∑︁

𝑛=1

𝐶𝑖,NE
𝑖𝑛

log2 (𝑛 + 1) (8)

For the ideal score (Equation 7), we defined the gain for the
𝑛th item in the neighborhood as 𝐶𝑖,NC

𝑖𝑛
, which corresponds to the

content-based similarity stored in C between the target item 𝑖 and
the 𝑛th item of 𝑖’s neighborhood in N C . For the generated score
(Equation 8), the gain is calculated similarly. It is represented by
𝐶𝑖,NE

𝑖𝑛
, corresponding to the similarity stored in C, but between

the target item 𝑖 and the 𝑛th item of 𝑖’s neighborhood in N E .

5 EXPERIMENTAL SETUP
This section details the experimental setup. First, we present the
datasets used in the experiments, then we describe the benchmark
algorithms and the fine-tuning phase.

5.1 Datasets and Data Preprocessing
Table 1 presents the datasets used in the experiments. They are
publicly available, used in past research or challenges, and pro-
vide item metadata. The features describing the items can be of two
types: (i) categories, attributes inherent to the item, informed by the
system owner; or (ii) tags, values informed by users without moder-
ation. Since user-informed tags are liable to noise and inconsistency,
we opt to use only the top-100 most recurring tags by dataset, as
performed in studies of tag-based recommender systems [11, 14].

3Anime Recommendations dataset. Available at: www.kaggle.com/datasets/
CooperUnion/anime-recommendations-database
4Data Mining Hackathon on Big Data (7GB). Available at: www.kaggle.com/c/acm-sf-
chapter-hackathon-big
5DeliciousBookmarks. Available at: www.grouplens.org/datasets/hetrec-2011/
6Last.FM. Available at: www.grouplens.org/datasets/hetrec-2011/
7MovieLens 25M. Available at: www.grouplens.org/datasets/movielens/

5.2 Embedding-based Algorithms
We have implemented two well-known methods for matrix factor-
ization, Alternating Least Squares (ALS) [23] and Bayesian Person-
alized Ranking (BPR) [37], using the implicit 8 library. Moreover,
considering that a good intrinsic meaning is commonly achieved by
context-window models [32], we have also implemented two con-
textual neural embeddings-based recommenders, Item2Vec (I2V) [2]
and User2Vec (U2V) [18], using the gensim [36] library. All models
were selected based on their popularity in recent studies [38, 39],
ease of replication, and the fact that they do not rely on item meta-
data, showing the power those methods can have for figuring out
knowledge about the items without consuming this information.

We fine-tuned the methods through a grid search holdout max-
imizing NDCG@15 [42], with a rate of 8:1:1 for training, valida-
tion, and test sets, respectively. For ALS and BPR, we tested hid-
den factors of sizes 𝑓 = {50, 100, 300}, regularization factor 𝜆 =
{0.01, 0.1, 1} and learning rate 𝛼 = {0.0025, 0.025, 0.25}, using 100
epochs for training. For the embedding models, we varied the num-
ber of epochs 𝑛 = {50, 100, 200}, sub-sampling rate of frequent
items 𝑡 = {10−5, 10−4, 10−3}, and exponent to shape the negative
sampling distribution 𝛼 = {-1.0, -0.5, 0.5, 1.0}, as recommended
by Caselles-Duprés et al. [5]. For any unmentioned parameter, we
used the library default values.

6 EXTRINSIC RESULTS
To assess the representation models’ ability to provide good recom-
mendations, i.e., to evaluate the models extrinsically, we conducted
a top-𝑁 ranking task, calculating the NDCG for multiple values of
𝑁 . Results are shown in Table 2, in which darker-toned cells corre-
spond to better results, with the best result for each combination
of dataset and the value for 𝑁 highlighted in bold.

The results indicate a similar performance between ALS, BPR,
and Item2Vec. On the contrary, User2Vec was the worst, obtaining
low results for every dataset and threshold. ALS and BPR tend to
present better results for small values of 𝑁 , with their worst results
being achieved when 𝑁 = 20. The same is not true for Item2Vec
and User2Vec, which benefit from bigger values of 𝑁 .

To properly analyze the models, we conducted a non-parametric
Friedman test to verify if there is a statistically significant difference
between them [9], using a ranking constructed with the results.
The test indicates that the models differ, with 99% confidence (𝑋 2

𝐹 =
29.96). We then conducted a Nemenyi test to compare them to each
other [9]. With 95% confidence and considering a critical difference
of 1.21, there is no statistical evidence of superiority among ALS,
BPR, and Item2Vec. Additionally, we have that the three models are
statistically superior to User2Vec, considering that the differences
in the average rankings were superior to the critical difference [9].

Results of the extrinsic experiment show that ALS, BPR, and
Item2Vec achieve very similar results and that User2Vec is the most
unsuitable method for this task compared to the others. However,
following insights for the NLP area [41], this behavior may not
necessarily repeat when we apply the same representation vec-
tors to intrinsic tasks. Therefore, we conducted different intrinsic
evaluation strategies to assess this particularity.

8Ben Frederickson. 2017. Implicit: Fast Python Collaborative Filtering for Implicit
Datasets. Available at: https://github.com/benfred/implicit
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Dataset Users Items Interactions Sparsity Categories Tags

Anime3 73,514 11,200 7,813,733 99.05% 43 N/A
BestBuy4 1,268,702 69,858 1,865,269 99.99% 1,540 N/A
Delicious5 1,867 69,223 104,799 99.92% N/A 14,346
Last.FM6 1,892 17,632 92,834 99.72% N/A 9,718
MovieLens7 162,541 59,047 25,000,095 99.74% 20 65,464

Table 1: Description of each dataset used in the experiments. N/A is used for datasets without categories or tags.

Dataset 𝑁
Representation Model

ALS BPR I2V U2V

Anime
10 0.2548 0.1826 0.1196 0.0080
15 0.2374 0.1736 0.1275 0.0084
20 0.2302 0.1700 0.1348 0.0090

BestBuy
10 0.0633 0.0746 0.0485 0.0135
15 0.0633 0.0746 0.0557 0.0160
20 0.0633 0.0746 0.0611 0.0176

Delicious
10 0.0548 0.0467 0.0855 0.0177
15 0.0548 0.0467 0.0969 0.0235
20 0.0548 0.0467 0.1045 0.0389

Last.FM
10 0.1865 0.1598 0.1729 0.0173
15 0.1864 0.1597 0.1894 0.0229
20 0.1864 0.1597 0.1999 0.0306

MovieLens
10 0.3067 0.1870 0.1132 0.0004
15 0.2727 0.1683 0.1211 0.0004
20 0.2568 0.1599 0.1291 0.0005

Table 2: NDCG achieved by each algorithm in each dataset in
a top-𝑁 recommendation task with different values of 𝑁 .

7 INTRINSIC RESULTS
To intrinsically evaluate the vector representation, we performed
the tasks presented in Sections 3 and 4, discussing the main dif-
ferences of each experiment. The results show how the same rep-
resentation model can perform differently according to the task,
especially when comparing subjective to objective strategies.

7.1 Similarity Table
We built two similarity tables using popular items from datasets of
widely known domains: Last.FM (Table 3) and MovieLens (Table 4),
along with their top-3 neighbors in each representation.

In Table 3, all methods found a neighborhood with similar items
to the target. In most cases, the bands and artists have completely
varied for each representation model, with only a few exceptions
such as Jay-Z, 30 Seconds to Mars, and Beyoncé, that were present
on three of the algorithms. Even with the selection of different
artists, the music genres were normally very related to the target.
Some methods behave in a more conservative manner, such as BPR
returning only hip-hop and rap artists for Eminem, while others
returned relevant items, but deviating from the tags, such as Ke$ha
and P!nk in the I2V neighborhood for Eminem. Even so, we can say
that every method achieved some pertinent neighborhood. ALS

was the worst due to certain tag contradictions in its results, such
as the learned neighborhood for The Beatles, which instead of other
rock or 60s bands, contains Arabic and baroque artists.

We can not say the same for Table 4. BPR and User2Vec, espe-
cially, found some very related items, such as the sequels for X-Men.
However, they also found some odd neighbors, such as Jack-O or
Men in Black, a horror and sci-fi movie, respectively, for Toy Story,
a children’s animation. For some movies, such as Titanic, all meth-
ods performed poorly when comparing the genres between target
and neighbor items. On the other hand, all neighboring movies are
considered classic films, implying the representations discovered a
pattern. Due to these conflicting results, it is hard to select a superior
representation without relying on human personal opinions.

As mentioned, this evaluation method is heavily influenced by
human subjectivity. For instance, in Table 3, among all neighbor-
hoods of Shakira, the ones composed by Rihanna, Britney Spears,
Katy Perry, Mariah Carey and Beyoncé would be the most similar if
we consider that they are all world-famous pop artists. However,
Thalía, Fanny Lu and Juanes are all Latin pop artists; hence, they
are strongly connected with the target, Shakira. Therefore, deciding
what is more similar is complex, and our opinions and backgrounds
can strongly skew our guesses.

7.2 Intruder Detection
We conducted the task usingAnime,MovieLens, and Last.FM datasets,
as they are from well-known domains and contain well-curated
additional information, e.g., genre and release year. For each dataset,
we selected 15 items to use as seeds, of which 10 were popular items,
and 5 were completely random. We then built five questionnaires,
each with 15 items, alternating between the representation models.
Finally, we asked a group of 10 individuals to discover the intruder.
Each representation model received 30 votes, and the accuracy for
each model is shown in Table 5. Results are shown in three different
views: the general accuracy, considering all of the 15 items, the
accuracy for only the 10 popular items, and the accuracy for the 5
random (and probably unknown) items.

BPR and User2Vec performed better at building a good quality
neighborhood, as they usually presented the highest number of cor-
rect answers per dataset. Item2Vec also constructed a satisfactory
neighborhood, being a close second in almost every case.

BPR generally achieved the best results in the scenario consider-
ing all items, being the best model for MovieLens and Last.FM, and
the second-best for Anime. User2Vec presented promising results
for the Anime dataset and reached 100% accuracy in the scenario
where items were randomly selected, showing that it could gen-
erate a relevant neighborhood even in cases where there is little
knowledge about the item. This result is exciting, considering the
scores obtained by the model in the extrinsic evaluation (Section 6).
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Target item Representation Model
ALS BPR I2V U2V

The Beatles
Ricky Nelson
rock

Beach Boys
60s

David Bowie
rock

The Kinks
60s

classic rock Souad Massi
female, arabic

John Lennon
classic rock

Radiohead
alternative

Rolling Stones
classic rock

Andrés Segovia
baroque

Ringo Starr
classic rock

Led Zeppelin
hard rock, rock

Velvet Underground
psychedelic

Eminem
Ice Cube
hip-hop, rap

Jay-Z
hip-hop, rap

Ke$ha
pop, dance

Akon
hip-hop, rap

hip-hop, rap Bizarre
hip-hop, rap

50cent
hip-hop, rap

P!nk
pop, female

Nelly
hip-hop, rap

Xzibit
hip-hop, rap

Kanye West
hip-hop, rap

Jay-Z
hip-hop, rap

Jason Derulo
pop, rnb

Shakira
Juanes
latin, pop

Beyoncé
rnb, pop

Rihanna
pop, rnb

Katy Perry
pop, female

female, pop Fanny Lu
latin, pop

Marilyn Monroe
jazz, female

Beyoncé
rnb, pop

Mariah Carey
rnb, pop

Thalía
latin, pop

Rihanna
pop, rnb

Britney Spears
pop, dance

Beyoncé
rnb, pop

Table 3: Similarity table of five popular artists from the Last.FM dataset

Target item Representation Model
ALS BPR I2V U2V

Friday the 13th
A View to Kill
action

Nigthmare in Elm Street
horror

Gremlins 2
comedy, horror

Friday the 13th 2
horror

horror, thriller Child’s Play
horror, thriller

Friday the 13th 3
horror

Texas Chainsaw Massacre
horror

Halloween II
horror

Pet Sematary
horror

Children of the Corn
horror

Halloween
horror

Child’s Play
horror, thriller

Titanic
Groundhog Day
comedy

Truman Show
comedy

Gd. Will Hnt.
drama

Jurassic Park
action, sci-fi

drama Truman Show
comedy

Catch Me If You Can
crime, drama

Men in Black
action, sci-fi

Truman Show
comedy

Christmas Do-Over
comedy

My Best Friend’s Wedding
comedy

Saving Private Ryan
drama, war

Men in Black
action, sci-fi

Toy Story
Average Italian
comedy

Muppet Treasure Island
children

Braveheart
drama, war

Lion King
children

children The Pride & The Passion
war, action

Babe
children

12 Monkeys
sci-fi, thriller

Toy Story 2
children

Barbie
animation

Jack-O
horror

The Usual Suspects
crime

Men in Black
action, sci-fi

Table 4: Similarity table of five popular movies from the MovieLens dataset

It is important to highlight that the conducted experiment does
not have strong statistical rigor and may not represent an accurate
evaluation of the embedding models. The interview was conducted
with only ten participants without concern about selecting persons
with different backgrounds and belonging to contrasting demo-
graphic groups. Nonetheless, this is one of the main drawbacks of
this evaluation scheme. Conducting a proper intruder detection
task is very time and resource-demanding. Even so, the obtained
results can provide some valuable insights about the models.

7.3 Automatic Feature Prediction
In every evaluated dataset, each item is described with a single
feature related to the domain of the problem, such as genres for
movies and styles for music artists. For each item in the datasets,
we predicted their features using the most recurrent features of
other 𝑘 nearest items, with 𝑘 ranging between 10, 15 and 20. For
each prediction, we checked if the selected feature was correct, and
using the average multiclass precision and recall, we computed the
F1-score for each model, selecting the value for 𝑘 that resulted in
the best F1-score. Table 6 shows the results.

When comparing the results, it is challenging to indicate a supe-
rior model. However, User2Vec performed best on BestBuy and for
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Seed items Dataset Representation Model
ALS BPR I2V U2V

All
Anime 43.3% 63.3% 60.0% 90.0%
MovieLens 33.3% 66.7% 46.7% 43.3%
Last.FM 66.7% 90.0% 86.7% 66.7%

Popular
Anime 44.4% 66.7% 55.6% 83.3%
MovieLens 38.9% 61.1% 44.4% 44.4%
Last.FM 72.2% 94.4% 88.9% 77.8%

Random
Anime 41.7% 58.3% 66.7% 100.0%
MovieLens 25.0% 75.0% 50.0% 41.7%
Last.FM 58.3% 83.3% 83.3% 50.0%

Table 5: Accuracy for the intruder detection task

some values of 𝑘 for the Delicious dataset, also being a close second
on Last.FM. This indicates that the neural model discovered the
most about the intrinsic content of all evaluated methods for these
specific datasets. This outcome is interesting when we compare
the results of the feature prediction task with those of the extrinsic
experiment. In the latter, User2Vec was the worst representation
model for every value of 𝑁 and dataset. For the BestBuy dataset,
the NDCG when 𝑁 = 10 was more than five times worse than that
of BPR. This behavior highlights how the results of extrinsic and
intrinsic tasks can drastically differ.

Dataset 𝑘
Representation Model

ALS BPR I2V U2V

Anime
10 0.4717 0.5251 0.4931 0.4771
15 0.4049 0.4635 0.4342 0.4003
20 0.4002 0.4661 0.4422 0.3998

BestBuy
10 0.0835 0.1208 0.3006 0.3361
15 0.0658 0.0999 0.2542 0.2854
20 0.0657 0.1006 0.2514 0.2797

Delicious
10 0.1362 0.1236 0.1318 0.1355
15 0.0951 0.0840 0.0893 0.1003
20 0.0979 0.0871 0.0917 0.1036

Last.FM
10 0.4649 0.3753 0.4046 0.4579
15 0.4268 0.3274 0.3418 0.4249
20 0.4365 0.3350 0.3485 0.4334

MovieLens
10 0.5009 0.5158 0.4597 0.4083
15 0.4572 0.4722 0.4052 0.3438
20 0.4730 0.4879 0.4181 0.3576

Table 6: F1-score in an automatic feature prediction task with
different values of 𝑘 .

In addition, we can see those methods that reached better scores
in Table 6 may differ from those of the intruder detection task. In
the former, ALS was the most accurate model for datasets Last.FM
and Delicious when 𝑘 = 10, while the latter was the least accurate
for every dataset, including the aforementioned ones. This shows
how even different intrinsic metrics can achieve varying results,

especially when comparing subjective approaches to objective ones
since the former is more prone to human bias.

7.4 Content-based Ranking Comparison
Lastly, we have calculated the three metrics for assessing the item
embeddings’ intrinsic quality using a content-based ranking com-
parison, as detailed in Section 4.2. Results for the Spearman cor-
relation coefficient are shown in Table 7, for the Jaccard Index in
Table 8, and NDCG in Table 9. For both the Jaccard Index and the
NDCG, we used a neighborhood size 𝑘 ranging from {10, 15, 20}.

Like the automatic feature prediction task, the performance var-
ied widely according to the metric and dataset, with each model
scoring higher in a specific case. For Spearman’s 𝜌 , Item2Vec was
the best model for Anime and BestBuy datasets, contrary to what
happened on the intruder detection and automatic feature predic-
tion, in which the model was surpassed by BPR and User2Vec,
depending on the dataset and task. User2Vec achieved the best
results for Delicious and Last.FM, which is also impressive since
its behavior on the intruder detection task for dataset Last.FM was
poorly, being the worst or second-worst model.

When limiting the observed neighborhood to a subset of items,
as it is performed on the Jaccard Index and NDCG, the scores
were vastly different from Spearman’s 𝜌 . For the Jaccard Index,
Item2Vec achieved the worst results for the Anime dataset and the
best for Delicious and Last.FM. User2Vec presented the highest
scores for BestBuy and competitive performance in the Anime
dataset. Although ALS achieved some promising results for the
Last.FM dataset, it was surpassed by every other model for every
dataset. Finally, for the NDCG, the results were similar to the ones
obtained in the automatic feature prediction (Table 6), which is
expected given that both metrics limit the observed neighborhood
and weigh their scores according to the content information.

The experiment shows how different metrics of ranking compar-
ison can achieve different results for the same representation model
and dataset. The use of a specific metric can vary according to the
analysis’s objective and the content-based representation’s charac-
teristics. When we want to evaluate the entire ranking, considering
only the relative position of items, rank correlation metrics, such as
Spearman’s 𝜌 , are more well-suited. In cases where only the quality
of the neighborhood is important, disregarding the intensity of the
item’s similarity, metrics of set similarity are more recommended,
such as the Jaccard Index. Lastly, when we are only interested in
the neighborhood’s items but want to weigh the results accord-
ing to their similarity scores and rank positions, we can calculate
utility-based metrics such as NDCG.

When comparing the content-based ranking metrics and the
achieved results for the extrinsic evaluation, it is clear how repre-
sentation models not useful for generating recommendations may
still have value when used in intrinsic tasks. User2Vec, statistically
proven as the worst method for the top-𝑁 recommendation prob-
lem, presented excellent results for some datasets on the content-
based analysis, especially when calculating the NDCG. Additionally,
the differences in the obtained results with the intruder detection’s
accuracy show how subjective approaches can lead to contrast-
ing conclusions about the model’s quality. This entire comparison
demonstrates how a thoroughly performed analysis can lead to
more knowledge about the behavior of representation models.
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Dataset Representation Model
ALS BPR I2V U2V

Anime 0.1440 0.2504 0.2801 0.1860
BestBuy 0.4729 0.4648 0.4839 0.4798
Delicious 0.2922 0.2809 0.2773 0.2927
Last.FM 0.2325 0.3239 0.2567 0.3551
MovieLens 0.2566 0.2543 0.2270 0.2139

Table 7: Spearman’s rank correlation coefficient 𝜌 of the
content-based ranking comparison.

Dataset 𝑘
Representation Model

ALS BPR I2V U2V

Anime
10 0.0368 0.0404 0.0320 0.0416
15 0.0345 0.0382 0.0310 0.0379
20 0.0327 0.0368 0.0302 0.0350

BestBuy
10 0.0040 0.0060 0.0220 0.0263
15 0.0050 0.0072 0.0266 0.0321
20 0.0057 0.0082 0.0308 0.0368

Delicious
10 0.0024 0.0023 0.0026 0.0026
15 0.0032 0.0031 0.0034 0.0033
20 0.0039 0.0037 0.0040 0.0041

Last.FM
10 0.0217 0.0176 0.0249 0.0187
15 0.0271 0.0221 0.0299 0.0229
20 0.0314 0.0258 0.0349 0.0266

MovieLens
10 0.0015 0.0017 0.0012 0.0014
15 0.0019 0.0021 0.0015 0.0017
20 0.0022 0.0025 0.0018 0.0019

Table 8: Jaccard Index@𝑘 of the content-based ranking com-
parison, with different values of 𝑘 .

8 CONCLUSION
Embeddings with strong intrinsic meaning can benefit many tasks
beyond recommendation. While intrinsic evaluation has gained at-
tention in NLP, it is poised to become a focal point in recommender
systems. However, intrinsic evaluations of vector representations
for recommender systems are rarely conducted, with most stud-
ies focusing solely on extrinsic assessments. Even when intrinsic
evaluations are performed, they often rely on human interaction,
which can be time-consuming and susceptible to human bias.

This study presented approaches to assess the intrinsic quality of
item embeddings.We first detailed a well-known evaluationmethod
and adapted an NLP evaluation task for recommender systems.
Since both methods are subjective and rely on human opinions,
we also introduced two evaluation schemes based on objective
metrics: a feature prediction task and a novel strategy for obtaining
a quantitative score through content-based ranking comparison.
For the latter, we provided various metrics to assess ranking quality.
We compared four models that learn item embeddings across these
evaluation approaches and conducted an extrinsic evaluation via
traditional top-𝑁 ranking recommendation.

Dataset 𝑘
Representation Model

ALS BPR I2V U2V

Anime
10 0.4690 0.4999 0.4677 0.4594
15 0.4563 0.4882 0.4579 0.4412
20 0.4475 0.4807 0.4513 0.4290

BestBuy
10 0.1151 0.1486 0.3210 0.3535
15 0.1107 0.1434 0.3086 0.3407
20 0.1075 0.1400 0.3000 0.3317

Delicious
10 0.1850 0.1776 0.1847 0.1862
15 0.1847 0.1775 0.1840 0.1868
20 0.1845 0.1774 0.1829 0.1870

Last.FM
10 0.4357 0.3850 0.4139 0.4232
15 0.4351 0.3850 0.4120 0.4226
20 0.4350 0.3849 0.4107 0.4220

MovieLens
10 0.4333 0.4439 0.4023 0.3636
15 0.4263 0.4376 0.3949 0.3560
20 0.4210 0.4330 0.3893 0.3502

Table 9: NDCG@𝑘 of the content-based ranking comparison,
with different values of 𝑘 .

The extrinsic evaluation revealed similarities between the two
matrix factorization methods and Item2Vec. Each model excelled
on specific datasets, making it difficult to declare a superior model.
Conversely, User2Vec performed poorly across all datasets in the
extrinsic evaluation, emerging as the worst method. Intriguingly,
the intrinsic tasks were the opposite. User2Vec excelled in gener-
ating representations with intrinsic value, ranking first or second
for most datasets for both subjective and objective approaches. Our
findings highlight the necessity of careful intrinsic evaluation to
avoid misleading impressions of a model’s capabilities.

Considering the presented metrics assume that metadata accu-
rately describes the item, which may only sometimes be the case,
for future research, we recommend a detailed study of content-
based representation and item-sorting methods to improve the pro-
posed strategy’s quality. Utilizing more domain-specific datasets
with extended feature sets and descriptive attributes can enrich
the results. We also plan to analyze why each algorithm performed
better in each task and dataset. Finding which characteristics favor
specific evaluation scenarios can help future researchers develop
task-specific recommenders. Additionally, a similar study focusing
on user embeddings is suggested, using demographic information
to overcome the problem of data scarcity users commonly have.

Ultimately, future studies on item embeddings should heed their
intrinsic quality. An in-depth analysis can offer a comprehensive
view of the models, useful for tasks beyond recommendation and
potentially accelerating the development of new methods.
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