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ABSTRACT
Wind energy generation through wind turbines has become increas-
ingly attractive as a clean and renewable energy source. Effective
maintenance of wind turbines is crucial, as failure can result in
significant economic losses and damage to equipment due to un-
planned downtime. Nevertheless, ensuring effective maintenance
remains challenging because these systems usually operate in se-
vere and remote environments. Considering that rolling bearings
are among the most necessary mechanical components in wind
turbines, accurately detecting faults in these bearings is important
for ensuring the regular and reliable operation of the equipment.
This paper proposes a deep learning-based monitoring architecture
that utilizes acoustic signals emitted from rolling bearings to detect
faults in wind turbines. Using real-world data collected via micro-
phones and a Raspberry Pi system, we constructed a structured
and manually annotated dataset. A convolutional neural network
(CNN) model was trained on mel-spectrogram representations to
distinguish between healthy and faulty operational states. The
system achieved promising performance, with 83.62% accuracy,
87.40% F1-score, 95% AUC-ROC, and 98% precision-recall AUC.
The proposed end-to-end pipeline integrates data acquisition, pre-
processing, classification, and confidence-based decision thresholds,
making it suitable for deployment in operational monitoring sce-
narios. These results demonstrate the viability of audio-based fault
detection as a scalable and non-invasive solution for predictive
maintenance in wind energy systems.
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1 INTRODUCTION
The climate crisis, primarily driven by greenhouse gas emissions
from human activities, has disrupted natural cycles, leading to
global warming and climate change [7]. In response, the global shift
towards for sustainable energy has accelerated the deployment of
wind turbines as part of a cleaner energy matrix [24]. However, this
growth has underscored significant operational challenges. The
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remote and harsh environments in which wind turbines operate
makemaintenance a costly and complex task. In addition, failures in
components, such as gearboxes and bearings, are leading causes of
unanticipated downtime [28, 30], often resulting in financial losses.
Operation and maintenance (O&M) expenses can represent up to
one-third of a wind farm’s total life-cycle cost, making reliability
and predictive maintenance crucial to the economic viability of
wind energy systems [31].

Wind turbine bearings are essential for efficient wind energy
production, and the system’s dependability and operational uptime
are directly impacted by their condition. Bearing failures are among
the leading causes of wind turbine downtime and costly repairs
[28]. These components are subjected to significant stress due to
challenging and variable operating conditions, such as changing
wind speeds, heavy loads, and extreme temperatures, which makes
them susceptible to failure [11]. The main reasons for bearing fail-
ures include fatigue, contamination, misalignment, physical wear,
overheating, and excessive load [14].

When a bearing’s raceway or rolling element has an issue, such
as a crack, spall, or insufficient lubricant, it causes repeated impacts
each time the damaged section passes through the load zone. These
impacts produce distinctive vibration and acoustic patterns that
can be reliably detected by sensors, enabling effective condition
monitoring of the bearing [35, 37].

Therefore, mitigating these problems through early detection or
prevention of faults is essential and increasingly relies on advanced
technological strategies [28]. The literature presents a wide range
of approaches for detecting wind turbine faults, such as monitoring
temperature, electrical signals, and oil conditions [30]. In particular,
bearing defects have been effectively detected through the analysis
of vibration and acoustic emission (AE) signals [34]. This strong
correlation between bearing degradation and distinctive signal pat-
terns underpins our work, enabling the monitoring of these critical
components by analyzing their audio and vibration signatures.

With the advancement of artificial intelligence technologies, in-
telligent systems have become increasingly prevalent across various
industrial sectors [27], acting both as facilitators and as solutions to
complex problems. In this context, state-of-the-art machine learn-
ing techniques, particularly those driven by deep learning, have
enabled the development of highly specialized models capable of
recognizing intricate patterns in defined scenarios. Deep learning
architectures construct hierarchical representations by stacking
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non-linear modules, each of which transforms input data into pro-
gressively more abstract features. This compositional structure
allows the learning of highly complex functions [20].

Among the diverse applications of deep learning is audio classifi-
cation, a task that involves analyzing and categorizing audio signals
[36]. Audio classification spans various domains, including envi-
ronmental sound identification [18], and has also been explored
for defect detection by recognizing distinctive audio signatures
associated with mechanical faults [15].

This is particularly promising forwind turbinemonitoring, where
components such as bearings emit characteristic "beating" or grind-
ing sounds when deteriorating [9, 30, 34]. These sounds can be
captured via acoustic sensors and used to train deep learning mod-
els that distinguish between healthy and faulty states [14]. Com-
pared to traditional vibration-based monitoring, which can be noisy
and less interpretable, audio-based systems offer a complementary
and often earlier indication of component degradation, enabling
continuous, non-intrusive condition monitoring and supporting
predictive maintenance strategies [35].

In this paper, we present a deep learning pipeline designed to
monitor wind turbine operation by analyzing emitted sounds and
detecting mechanical defects, specifically, bearing wear. Our ap-
proach employs an optimized Convolutional Neural Network (CNN)
classifier to automatically learn and identify the acoustic signatures
associated with early-stage faults. To achieve this goal, we created
a dataset by collecting real-world audio recordings from opera-
tional wind turbines in the field. A specialized device was designed
using the Raspberry Pi 5 and microphones to collect and process
audio data. All recordings were annotated by specialists, resulting
in a total of 172 minutes of labeled audio. Out of this, 106 minutes
displayed defective operation, while 66 minutes showed normal
operation. Labeled audio samples were included in this dataset to fa-
cilitate the training and evaluation of supervised models. We evalu-
ated model performance using standard metrics, including accuracy,
F1-score, AUC-ROC, and precision-recall. Our approach achieved
outstanding results: 83% accuracy, 87% F1-score, 95% AUC-ROC,
and 98% on the precision-recall curve. These results demonstrate
that the use of a supervised approach, specifically the selection
of an optimized CNN classifier, was highly effective for detecting
wind turbine faults.

The paper is organized as follows. Section 2 presents the funda-
mental concepts of supervised learning and deep learning relevant
to this work. Section 3 reviews related studies on wind turbine
fault detection. Section 4 details the proposed method, including
data collection, labeling, pre-processing, model design, training,
and the classification pipeline. Section 5 presents and discusses the
experimental results. Finally, Section 6 concludes the paper and
outlines directions for future work.

2 BACKGROUND
This section outlines the fundamental concepts of supervised learn-
ing and deep learning relevant to this work.

2.1 Supervised Learning and Deep Learning
Supervised learning is a fundamental paradigm inmachine learning,
where a model is trained on labeled data to associate inputs with

their corresponding outputs [26]. Deep learning has emerged as a
powerful approach within supervised learning, producing state-of-
the-art results in a variety of domains, including computer vision,
speech recognition, natural language processing, machine transla-
tion, and biomedical data analysis [6].

Convolutional Neural Networks (CNNs) are a prominent class of
deep learning models [5, 21], particularly effective for classification
tasks involving spatial or temporal data [20]. Deep CNNs lever-
age multiple layers of convolutional operations to automatically
learn hierarchical representations of data, enabling highly accurate
classification and detection capabilities [19]. Their ability to cap-
ture local patterns and progressively abstract features makes them
particularly well-suited for detecting subtle signal characteristics
indicative of faults in complex mechanical systems.

One challenge in deploying deep learning models, including
CNNs, in embedded or resource-constrained environments is their
computational and memory demand [23]. This has motivated re-
search into model compression, quantization, and low-precision
representations to make deep learning more efficient and feasible
for real-time or low-power applications.

In this work, we adopt a supervised learning approach using
a CNN architecture to address the binary classification problem
of identifying fault conditions in wind turbine bearings based on
labeled acoustic data. The model was designed to balance predictive
accuracy with computational efficiency to allow potential deploy-
ment in edge devices, while retaining the benefits of a full-precision
CNN during training and inference.

2.2 Evaluation Metrics in Supervised Learning
In supervised learning, the evaluation of model performance is
a fundamental step that determines not only predictive accuracy
but also the reliability and robustness of the system under realistic
conditions. Especially in industrial fault detection, where datasets
are often imbalanced and the cost of misclassification is asymmet-
ric, choosing appropriate evaluation metrics is critical to ensure
a faithful representation of model behavior [12, 17, 33]. Metrics
derived from the confusion matrix have become a standard tool to
characterize performance across multiple perspectives, balancing
precision, sensitivity, and overall predictive consistency.

The most common metric, accuracy, measures the proportion
of correctly classified samples:

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

However, accuracy alone may be misleading in imbalanced datasets,
as a model predicting only the majority class can achieve high
accuracy while failing to detect rare but crucial faults [12].

To address this, additional metrics have been introduced to eval-
uate specific aspects of predictive behavior. Precision focuses on
the reliability of positive predictions,

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (2)

reflecting the system’s ability to avoid false alarms, which in in-
dustrial monitoring directly impacts maintenance efficiency and
operational trust [10]. Conversely, recall (or sensitivity),

Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (3)
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measures the model’s capacity to identify all true fault cases. High
recall is especially valuable in safety-critical contexts, where unde-
tected anomalies can cause severe equipment failures [32, 33].

Balancing these two objectives, the F1-score combines precision
and recall into a single harmonic mean:

F1 = 2 × Precision × Recall
Precision + Recall , (4)

providing a scalar summary that remains interpretable even when
false positives and false negatives carry similar importance [33].

Because accuracy and F1-score can still be biased toward the
majority class, Balanced Accuracy and the Matthews Corre-
lation Coefficient (MCC) have been proposed as more robust
alternatives. Balanced accuracy averages sensitivity and specificity:

Balanced Accuracy =
1
2

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝑇𝑁 + 𝐹𝑃

)
, (5)

while MCC considers all elements of the confusion matrix:

MCC =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )
. (6)

MCC behaves as a correlation coefficient between true and pre-
dicted classifications, offering a balancedmeasure even under strong
class imbalance [4].

Further refinements, such as Informedness andMarkedness,
extend this evaluation framework by quantifying informed decision-
making and prediction reliability. Informedness, defined as

Informedness = Recall + Specificity − 1, (7)

represents the probability that predictions are informed rather than
random [29], whereas Markedness,

Markedness = Precision + NPV − 1, (8)

captures the likelihood that predicted labels are correct, emphasiz-
ing both the precision of positive predictions and the reliability of
normal classifications [29].

Beyond these threshold-dependent measures, the Receiver Op-
erating Characteristic (ROC) curve and the corresponding Area
Under the Curve (AUC) are widely used to evaluate a model’s
discriminative capacity independently of the decision threshold.
The ROC curve plots the True Positive Rate (TPR) against the False
Positive Rate (FPR) for varying thresholds, while the AUC sum-
marizes this relationship into a single scalar value, providing a
threshold-independent indicator of model separability [8].

Together, these metrics form the theoretical foundation upon
which the effectiveness of deep learning models can be assessed.
They complement the architectural and optimization techniques
discussed earlier by providing a multidimensional understanding
of how well a model generalizes, discriminates, and maintains reli-
ability in real-world fault detection scenarios.

3 RELATEDWORK
Memari et al. (2024) review inspection methods for wind turbine
blades (WTBs) and present recent advances that integrate deep
learning for automated defect detection using image-based data.
The study emphasizes the role of drones in data acquisition and
explores multiple sensing modalities, including infrared thermog-
raphy and LiDAR, providing a comprehensive overview of aerial

inspection, structural integrity assessment, and computer vision
techniques. The comparison among neural architectures and fea-
ture extraction methods highlights trade-offs between accuracy,
scalability, and automation. In contrast, our work diverges from
visual-based inspection and instead focuses on audio-based fault
detection, targeting internal mechanical components that are not
directly observable through imaging.

Ferreira da Silva et al. (2025) propose a non-invasive method that
leverages acoustic signals collected within the turbine nacelle to de-
tect mechanical anomalies using artificial intelligence. Their system
employs an unsupervised learning strategy based on autoencoders
trained on healthy operational spectrograms. Faults are detected
when reconstruction quality degrades significantly, after which the
data are passed to supervised classifiers (Conditional Autoencoders
and SVMs) for fault type identification. Although this work also
utilizes acoustic data, our method differs in both its architectural
design and methodological scope. Rather than adopting a multi-
stage hybrid approach, we employ a fully supervised, end-to-end
pipeline that directly maps raw audio-derived representations to
operational state predictions.

Zhang et al. (2024) propose an aeroacoustic noise analysis (AAN)
approach to identify cracking and debonding faults along the trail-
ing edge of wind turbine blades. While their method effectively
detects surface-level defects through the analysis of aerodynamic
noise, it does not address internal mechanical components. Con-
versely, our approach specifically targets bearing degradation by
employing convolutional neural networks to learn discriminative
spectral features from audio recordings.

In summary, prior works have primarily focused on visual inspec-
tion or hybrid acoustic pipelines combining unsupervised and super-
vised methods. As shown in Table 1, our proposed system integrates
data acquisition, pre-processing, and classification within a single
CNN-based framework. This end-to-end design eliminates hand-
crafted feature engineering, simplifies deployment, and achieves
robust performance across multiple metrics, demonstrating its suit-
ability for real-world wind turbine monitoring. Direct numerical
comparisons with prior methods are limited due to differences in
approach (visual vs. acoustic), methodology (hybrid vs. end-to-end),
and target component specificity.

Table 1: Comparison between related works and this study

Work Data Target Main Contribution

Memari et
al. [24]

Image Blades Survey on deep learning
and drone-based inspec-
tion.

Ferreira
da Silva et
al. [9]

Acoustic Internal Me-
chanical

Hybrid acoustic approach
with unsupervised anom-
aly detection.

Zhang et
al. [38]

Acoustic Blades Aeroacoustic noise analy-
sis for crack identification.

This work Acoustic Bearings End-to-end supervised
CNN for internal fault
detection.
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4 PROPOSED METHOD
This section outlines the proposed method employed in this work,
encompassing all stages from data collection to model implementa-
tion for detecting bearing faults in wind turbines.

4.1 Data Acquisition
We conducted our data acquisition process, targeting the collection
of audio samples to support supervised model training and evalua-
tion, using wind turbines with known bearing defects which were
already expected to emit the noises characteristic of the fault in
question. However, the characteristic fault noises are not constant
but appear only periodically. This operational variability allows
us to collect samples of non-defective operation even from known
faulty turbines. Specifically, during periods when the fault noise
is absent, the acoustic signature is similar to that of a turbine in
a perfect bearing condition. This enables us to collect both non-
defective and defective data, which is essential for building a robust
and varied dataset and for building a model that can identify the
differences between these audio files.

To this end, data collection was conducted according to the
architecture shown in Figure 1, which comprises three layers: (1)
physical, (2) gateway, and (3) cloud.

Noise 

Noise 

Noise 

4G connection

Collected data

Wind Turbine 1

Wind Turbine 2

Wind Turbine 3

Single-Turbine Gateway 1

Single-Turbine Gateway 2 

Single-Turbine Gateway 3

Cloud Storage

Multi-Turbine Gateway

PHYSICAL LAYER GATEWAY LAYER CLOUD LAYER

Figure 1: Data collection architecture

The first layer represents the three defective physical wind tur-
bines, which continuously emit both normal and faulty acoustic
signals. The second layer consists of autonomous gateways respon-
sible for collecting the acoustic signals emitted by the wind turbines
in the field. Each gateway is built using a Raspberry Pi 5 and spe-
cialized microphones, powered by solar panels, and equipped with
a 4G module for data transmission, as well as a micro SD card for
local data storage. It is essential to note that there are two types
of gateways: single-turbine gateways and multi-turbine gateways.
The first method collects acoustic signals from a single wind turbine,
while the second gathers signals from all three turbines simulta-
neously. This strategy enhances data variability and improves the
dataset for model training. Finally, the third layer is responsible for
transmitting the collected data via a 4G connection to the cloud,
enabling storage and further processing of the data as needed.

To support the development and evaluation of the classification
models, a structured dataset was compiled from the WAV audio

samples collected. Each entry contains metadata, such as file name,
duration, sampling rate, and an associated class label, which is ini-
tially unset due to the absence of manual annotation during the
early stages. The dataset comprises approximately 115 GB of audio,
segmented into 30-second recordings, offering a substantial and
representative sample of real-world operational and faulty condi-
tions in wind turbines. The duration of 30 seconds was adopted
as the standard sample length, as it represents a balanced trade-
off between annotation efficiency and informational completeness.
This duration is short enough to allow practical manual labeling
while still being sufficiently long to capture the characteristic noise
patterns associated with bearing defects. Moreover, shorter audio
segments facilitate data transmission from remote collection devices
by reducing file size and bandwidth requirements, ensuring effi-
cient and reliable transfer of large-scale recordings for centralized
processing. This dataset serves as the foundation for the supervised
training and validation of fault detection models.

4.2 Data Labeling
To ensure the reliability of the labeled dataset used for supervised
training, a standardized manual labeling protocol was established.
This process involved three main stages: understanding the fault
characteristics in data, performing exploratory analysis of the col-
lected audio, and defining objective labeling criteria.

This standardization was critical for maintaining consistency
across samples, allowing the labeling task to be distributed among
multiple annotators without compromising quality. The resulting
dataset, containing labeled instances of both normal and faulty
audio segments, provided a solid foundation for training and evalu-
ating machine learning models for fault detection.

From the total recorded audio corpus (approximately 381.8 hours),
346 audio samples were randomly selected, each lasting 30 seconds,
amounting to a total of 2.88 hours. These samples were systemat-
ically organized into a structured dataset for manual annotation
by 5 expert evaluators, following the established protocol. Only a
subset of the available recordings was used, given the considerable
effort required for manual labeling. Additionally, a portion of the
collected data was discarded after being deemed contaminated by
specialists, as it contained excessive noise.

Label Quantity Duration (h)
Normal 133 1.11
Defective 213 1.77

Table 2: Distribution of audio samples

The annotation process required approximately three hours in
total, accounting for both the sample size and the time-intensive
nature of manually listening to and analyzing each audio recording.
Following this methodological approach, the 346 selected audio
samples were systematically classified into two categories: normal
(non-defective) and defective. After expert evaluation, the anno-
tated dataset comprised 133 audio samples (1.11 hours) classified
as normal and 213 as defective (1.77 hours), as shown in Table 2.

Although the total volume of audio collected exceeded 381 hours,
only a subset of approximately 2.88 hours was manually annotated
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and used in the model’s initial training and validation. This decision
was motivated by the high cost of expert annotation, since detecting
the subtle acoustic signatures of faults requires careful listening
and technical judgment by experts. In addition, the aim of this
stage of the work was to validate the viability of the approach in
a controlled scenario with high-quality data before scaling up to
a more extensive annotation effort. Therefore, the initial sample,
although small, was sufficient to provide robust empirical evidence
of the efficacy of the proposed method, and an expansion of the
annotated base is considered a natural future step to increase the
generalization of the model.

The significant class imbalance present in the dataset is a direct
consequence of the data acquisition methodology. The dataset was
populated from turbines with known defects. Consequently, while
occasional normal operation samples are present, the data collection
process inherently favors the procurement of defective samples,
resulting in a skewed distribution.

4.3 Pre-processing
Audio samples underwent standardized pre-processing beforemodel
training. Normalization procedures ensured uniform duration, sam-
pling rate, and mono-channel configuration across all recordings.
Each segment was transformed into a mel-spectrogram representa-
tion (Figure 2) with 64 mel bands and a 1024-sample FFT window.
This time-frequency representation provides a two-dimensional
input suitable for convolutional neural network processing while
preserving relevant acoustic features for fault detection.

Figure 2: Defect noise

4.4 Model Building
With a solid dataset structured and labeled, we began the process
of building and implementing a deep learning model that would be
able to correctly identify the patterns that occur in turbine failures.
Following an in-depth analysis of our requirements, the classifi-
cation architecture emerged as the most suitable solution for our
challenge. We opted for this supervised learning model because
of the well-defined nature of the defect we aim to identify, which
allows us to focus the model’s intelligence on a single, specific task:
distinguishing between a normal and a faulty conditions. By simpli-
fying the problem to a choice between two classes, we ensure that
the solution is efficient, accurate, and capable of providing binary
and conclusive answers, which are crucial for effective decision-
making. To achieve this, we implemented a Convolutional Neural
Network (CNN) with a binary output. This architecture provides a
straightforward yet powerful solution for distinguishing between
normal operation and failure states based on audio spectrograms.
The core design of our CNN was adapted from the architecture

described by Ketan D. (2021)1 in his work on audio classification,
tailoring it to our specific needs.

Themodel is a sequential architecture, i.e., the data flows through
a series of layers in a specific order. The input is a 2D represen-
tation of the audio (mel-spectrogram), that passes through 4 core
convolutional blocks [1], each designed to extract increasingly com-
plex features from the input audio data. Each block consists of 3
main components: the 2d convolutional layer itself (conv2d), which
applies a filter over the input to produce a feature map, the recti-
fied linear unit (ReLU) [25], which is an activation function that
introduces non-linearity into the network, allowing it to learn more
complex patterns, and the batch normalization layer (BatchNorm2d)
[16] which normalizes the activations of the previous layer, helping
to stabilize and speed up the training process. It is important to note
that all convolutional layers, shown in Table 3, use Kaiming Normal
initialization [13] for their weights and initialize their biases to
zero.

Layer Description

conv1 The first convolutional layer. It takes in 1 input channel and
outputs 8 channels.
Kernel: 5×5, Stride: 2×2

conv2 The second layer takes the 8 channels from the previous layer
and outputs 16 channels.
Kernel: 3×3, Stride: 2×2

conv3 The third layer takes the 16 channels and outputs 32 channels.
Kernel: 3×3, Stride: 2×2

conv4 The final convolutional layer takes the 32 channels and outputs
64 channels.
Kernel: 3×3, Stride: 2×2
Table 3: Description of convolutional layers

In addition, it is important to note that after the convolutional
blocks, there are final classification layers. The global average pool-
ing layer (GAP) [2], takes the average value of each feature map
and reduces its dimensions to a single value. In this case, it converts
the output from a 2D feature map to a size of 1x1 for each channel.
This is an efficient way to flatten the feature maps while preserving
spatial information. After that, the output from GAP passes through
a flattening process, where the tensor is reshaped into a 2D tensor,
preparing it for the fully connected layer.

Then, data is conducted to a dropout layer [3] that is applied
with a probability of 0.5. This means that during training, 50% of the
input features will be randomly set to zero. This is a regularization
technique that helps prevent the model from overfitting to the
training data.

The final layer is a linear (fully connected) layer. It takes the 64
features from the previous layers and maps them to a final output
of 2 features. These two output features represent the model’s
prediction for the audio sample, likely corresponding to two distinct
classes (normal and abnormal).

1https://medium.com/data-science/audio-deep-learning-made-simple-sound-
classification-step-by-step-cebc936bbe5
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4.5 Model Training
As previously discussed, the decision to rely on a fully supervised
learning approach, supported by manually labeled data, was moti-
vated by the need for a reliable and validated ground truth specific
to the problem domain. Having established this methodological
direction, we proceeded to implement a systematic and rigorous
training process, aimed at ensuring the highest possible quality of
the model learning.

As shown in the section 4.2, approximately 350 audio samples
were carefully annotated by domain experts. This process involved
a thorough auditory and spectral analysis of each recording to accu-
rately identify and classify the subtle acoustic signatures associated
with bearing defects. From this curated dataset, approximately 100
samples were selected for training purposes. This specific number
was determined empirically, as preliminary experiments indicated
that increasing the size of the training set beyond this point yielded
similar returns, with model performance metrics converging and
showing no statistically significant improvement. Furthermore, con-
straining the training set size served as a regularizing measure,
mitigating the risk of overfitting to spurious correlations or dataset-
specific noise that a larger, highly imbalanced set might introduce.
At the same time, the remainder served as an independent valida-
tion set, enabling us to evaluate the model’s generalization capacity
on previously unseen data.

Although the resulting dataset was modest in size, the high
degree of precision and consistency in its labeling proved to be a
crucial factor in the model’s effectiveness. In particular, the curated
dataset enabled the detection algorithm to learn the nuanced faint
acoustic patterns that characterize real defect conditions, while
avoiding the pitfalls of overfitting to irrelevant noise or artifacts.

To mitigate the risk of overfitting, which is an inherent challenge
when training on relatively small datasets, the training procedure
incorporated an early stopping mechanism. This mechanism con-
tinuously monitored the validation loss over the course of training
and halted the learning process if no improvement in validation
performance was observed over a predetermined number of epochs.
This safeguard ensured that the model’s learning remained general-
izable, preventing it from memorizing idiosyncrasies of the training
data at the expense of performance on new data.

Furthermore, the model was trained with 15 complete epochs
on the training set, using the CrossEntropyLoss function [22] to
handle the binary classification task. Optimization was carried
out using the Adam algorithm, with an initial learning rate set at
0.001 and L2 regularization (weight decay) with a factor of 1e-4,
in order to mitigate the risk of overfitting. To improve learning
stability, a dynamic learning rate scheduler (OneCycleLR) was used,
with a linear annealing strategy across epochs. This combination
of loss function, adaptive optimizer, explicit regularization and
scheduler made it possible to achieve a good convergence rate and
robust performance even in a limited number of epochs and with a
relatively small data set.

4.6 Classification Pipeline
With the model trained and validated, a classification pipeline was
developed to process audio data periodically and generate compre-
hensive fault reports. This pipeline is engineered for robustness,

utilizing two parallel instances of the trained model to classify each
audio file. For each file, a total of 30 classifications are made by
each model instance. This prediction count threshold was deter-
mined empirically through extensive experimentation to mitigate
statistical noise and enhance prediction reliability.

To ensure the integrity of the results andminimize false positives,
a set of minimum confidence thresholds was established based on
the consistency between the predictions of the two model instances.
For consistent results, where both instances agree on the classifi-
cation, we require a minimum average confidence of 55%. In cases
of inconsistent results, where the instances diverge, a higher mini-
mum average confidence of 65% is required to report a classification.
In cases where these confidence levels are not met, the audio is
classified as inconclusive. This data-driven approach to parameter
tuning, which sought to optimize detection efficacy while minimiz-
ing computational overhead and latency, was essential for creating
a system that is both robust and efficient for practical deployment
in operational settings.

5 RESULTS AND DISCUSSION
With themodel architecture and curated dataset established, we pro-
ceeded to evaluate the effectiveness of the proposed wind turbine
bearing monitoring system. This section presents the experimental
results and discusses the model’s capability to distinguish between
normal and defective operational states. The analysis is framed
within the broader context of wind turbine condition monitoring,
emphasizing the implications of the proposed approach for predic-
tive maintenance and asset reliability.

To ensure a comprehensive understanding of the data and to
conduct the experiments systematically, the evaluation process was
divided into two distinct stages. The first stage consisted of an
initial assessment using a single instance of the model during the
training phase, with a reduced dataset, aimed solely at verifying the
model’s ability to learn and capture the underlying patterns. The
second stage involved a full evaluation of the complete prediction
pipeline, applying the model to the entire dataset and computing
all the performance metrics previously described.

Even at this preliminary stage, the model demonstrated strong
predictive performance, achieving an accuracy of 83.33%, an F1-
score of 87.94%, an AUC-ROC of 95% (Figure 3), and an area under
the Precision–Recall Curve of 98% (Figure 4). These results highlight
the model’s robustness and its capacity to maintain high discrimi-
native power, even under moderate levels of noise and variability
in the acoustic inputs.

The initial evaluation of the classification model demonstrated
promising results during the experimental validation phase. The
model achieved 11 true positives (TP) and 4 true negatives (TN),
with only 1 false positive (FP) and 2 false negatives (FN), reflecting
relatively low error rates. These outcomes indicate an effective
ability to discriminate between the two target classes in a con-
trolled experimental setting, providing confidence in the model’s
fundamental predictive capability.

The complete classification pipeline was implemented and evalu-
ated in its final deployment configuration (second analytical layer)
using the full dataset. Performance analysis yielded 133 true posi-
tives (TP) and 61 true negatives (TN), with 30 false positives (FP)
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Figure 3: AUC - ROC

Figure 4: Precision-recall curve

and 8 false negatives (FN). These results, presented in the confusion
matrix (Figure 5), demonstrate effective discriminative capability
and balanced detection across both classes. The notably low false
negative rate indicates particularly robust sensitivity, which is ad-
vantageous for applications where missing positive cases carries
greater consequences than false alarms.

In this scenario, 6 audio samples (2.5% of the dataset) were clas-
sified as inconclusive, primarily due to low signal-to-noise ratios or

0 1 inconclusive
Predicted Value

0
1

Re
al

 V
al

ue

61
(64.9%)

30
(31.9%)

3
(3.2%)

8
(5.6%)

133
(92.4%)

3
(2.1%)

Confusion Matrix

20

40

60

80

100

120

Figure 5: Confusion matrix from complete pipeline

ambiguous acoustic patterns. These samples were excluded from
traditional binary metric calculations.

Based on the validated data, the final performance metrics of the
deployed pipeline were as follows, shown in Table 4

Metric Result
Accuracy 83.62%
Precision 81.59%
Recall 94.32%
F1-score 87.40%
Specificity 67%

Balanced Accuracy 80.70%
MCC 65.50%

Informedness 61.32%
Markedness 70%
Table 4: Results

The final evaluation of the classification system yielded an accu-
racy of approximately 83.6%, indicating that the majority of predic-
tions aligned with the ground truth. While accuracy offers an initial
overview of model performance, its interpretation in fault detection
scenarios must be nuanced, particularly given class imbalance.

The precision score of approximately 81.6% reveals that the vast
majority of positive classifications were indeed correct. This implies
a low rate of false alarms, which is a critical property for deploy-
ment in industrial environments, where unnecessary maintenance
actions can lead to significant operational costs. In parallel, the
recall score reached a notably high value of 94.32%, emphasizing
the effectiveness of the solution in capturing true fault occurrences.

The F1-score reached 87.40%, demonstrating a favorable balance
between precision and recall. In binary fault detection context,
the F1-score quantifies the trade-off between correctly identifying
actual fault conditions (recall) and avoiding false alarms by misclas-
sifying normal operations as faults (precision). This high F1-score
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indicates that the model performs well on both dimensions simul-
taneously, ensuring reliable classification performance by neither
overlooking true faults nor generating excessive false positives.

In complement to recall, the specificity score was computed and
yielded a value of 67%, indicating its ability to correctly identify
non-fault conditions. While lower than sensitivity, this result re-
mains acceptable in fault detection applications, where prioritizing
the identification of true faults often justifies a moderate trade-off
in false alarms. The balanced accuracy, which averages sensitiv-
ity and specificity, reached 80.70%. This metric provides a fairer
assessment of overall discriminative capability by accounting for
performance on both classes equally, making it particularly valuable
for imbalanced classification tasks.

To account for all confusion matrix components, the Matthews
Correlation Coefficient (MCC) was calculated, resulting in a value
of 65.5%. The observed value indicates a moderate-to-strong posi-
tive correlation between predicted and true labels, reinforcing the
model’s suitability for deployment in a real-world detection system.

The informedness and markedness metrics provide complemen-
tary perspectives on decision quality. Informedness (61.32%) reflects
the probability that predictions exceed chance performance, inte-
grating sensitivity and specificity into a prevalence-independent
score. Markedness (70%) quantifies prediction reliability by combin-
ing precision and negative predictive value (NPV). Together, these
metrics validate the system’s informativeness and reliability for
operational fault diagnosis.

These results confirm the model’s effectiveness in detecting
bearing-related faults, while maintaining a relatively low false pos-
itive rate, an important aspect for real-world deployment, as it
reduces unnecessary inspections and operational costs. The high
recall ensures that critical faults are not missed, while the high
F1-score reflects a solid balance between detection sensitivity and
prediction precision.

Inconclusive classifications accounted for only a small portion
of the dataset and did not significantly affect the overall system
performance. Most conclusive predictions achieved high confidence
scores (above 0.65), supporting the model’s reliability under real
operational conditions.

6 THREATS TO VALIDITY
This section discusses potential threats to the validity of this study’s
results and conclusions, categorized following established research
guidelines.

Internal Validity: The primary internal threat stems from the
significant class imbalance in the dataset, which increases the risk
of models learning biased patterns rather than genuine defect sig-
natures. While regularization techniques (dropout, early stopping,
weight decay) were employed to mitigate overfitting, the limited
proportion of labeled data (2.88 hours out of 381 collected) remains
a constraint. Environmental variations were addressed through
normalization, though residual confounding factors may persist.

External Validity: The generalizability of findings is limited
by dataset characteristics, including collection from a limited num-
ber of similar turbines and reliance solely on acoustic data. Future
integration of multi-modal sensing (vibration, temperature) could

enhance applicability across diverse operational scenarios and tur-
bine types.

Construct Validity: The binary fault classification (normal or
defective) may not adequately capture gradual degradation pro-
cesses. Additionally, the empirically determined confidence thresh-
olds (55%, 65%) and the focus on fault detection without severity
estimation represent construct limitations for practical maintenance
applications.

Conclusion Validity: The modest dataset size and inherent
class imbalance limit the statistical robustness of conclusions. Al-
though multiple complementary metrics (F1-score, MCC, Informed-
ness) were used, results should be interpreted as preliminary feasi-
bility indicators rather than definitive benchmarks, necessitating
validation on larger, more balanced datasets.

7 CONCLUSION
The results from our evaluation demonstrate that the proposed
model is highly effective at distinguishing between audio signals
with and without fault-indicating noises. The model achieved a
robust performance with an accuracy of 83%, an AUC ROC of 95%,
an F1-score of 87%, and a precision-recall curve of 98%. While some
classifications were inconclusive, our analysis shows that these
instances do not compromise the overall integrity and long-term
application of the system. The high confidence and accuracy of the
conclusive classifications outweigh the instances deemed inconclu-
sive, ensuring the system remains a reliable asset for fault detection.
Furthermore, the model proved to be exceptionally robust when
tested with data from enriched audio sources, demonstrating its
resilience to variations in microphones, background noise, and ad-
verse environmental scenarios. In summary, the developed system
provides a mature and functional solution for wind turbine bearing
monitoring. The combination of a robust model and the use of a
representative dataset makes it a viable and effective tool for en-
hancing predictive maintenance and improving asset reliability. As
a direction for future work, it is worth highlighting the potential
of further exploring semi-supervised learning approaches in this
context. Such methods would enable the exploitation of large vol-
umes of unlabeled data, reducing the dependency on exhaustive
manual labeling. To complement this and further reinforce the ro-
bustness of the findings, a comprehensive k-fold cross-validation
study should be undertaken. This would provide a more reliable
estimate of model performance and generalization by mitigating
the variance associated with a single data split and reducing the
risk of overfitting. Together, these strategies could lead to models
with improved generalization, stability, and specialization across
diverse operational scenarios.
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