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ABSTRACT
As accessibility remains a persistent challenge in mobile appli-
cations, recent advances in Large Language Models (LLMs) offer
promising support for addressing these issues in the development
process. This study investigates the potential of ChatGPT-4 to gen-
erate accessible Android user interfaces directly from screen mock-
ups. Using a dataset of 60 screens in 8 Figma-based UI templates,
we prompted ChatGPT to produce Jetpack Compose code solely
from screen images. We then evaluated the generated code using
Google’s Accessibility Scanner, identifying a total of 302 accessibil-
ity violations. Through iterative prompting guided by the scanner’s
feedback, we achieved a reduction of more than 50% in the reported
issues. However, the process also introduced new violations in some
cases, highlighting important limitations in the consistency and
reliability of the model. Our findings suggest that while LLMs like
ChatGPT can support accessibility improvements in mobile User In-
terface (UI) development, human oversight remains essential. This
study contributes to ongoing discussions on the role of AI in inclu-
sive software design and the future of image-to-code generation
pipelines.
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1 INTRODUCTION
Advances in Artificial Intelligence (AI) have transformed how soci-
ety interacts with technology. From speech interpretation to video
generation, AI systems can learn from large datasets and emulate
human decision making [10, 16, 28, 42]. In software development
and multimedia creation, AI-powered tools are increasingly used
to improve productivity by generating assets, code, hypermedia
documents, and metadata [12, 14, 26, 42].

As AI reshapes development processes, its role in promoting
accessibility is gaining attention. Digital accessibility aims to elim-
inate barriers and ensure equal access for all users, regardless of
physical, perceptual, or social conditions [7]. According to the
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World Health Organization (WHO), 1.3 billion people live with
disabilities and 2.2 billion experience visual impairments [47, 48].
Guidelines such as W3C’s WCAG [50] and Google’s Android Ac-
cessibility Guide [17] offer best practices to help developers design
inclusive applications, including support for assistive technologies
such as TalkBack1.

Despite the availability of established accessibility guidelines
for mobile and web development, ensuring that mobile and Web
applications are accessible remains an ongoing challenge [15, 30, 32,
36, 44]. Accessibility is often overlooked during the development
process, leading to widespread usability barriers for people with
disabilities [4, 8, 27, 52]. These shortcomings highlight key issues:
lack of awareness, limited tools, and poor integration of accessibility
practices throughout the development lifecycle.

Modern User Interface (UI) frameworks, such as Jetpack Com-
pose2, aim to streamline mobile development through a declara-
tive approach and built-in tools for accessibility, including seman-
tic APIs and compatibility with TalkBack [19]. In parallel, Large
Language Models (LLMs), such as OpenAI’s GPT3, have shown
the potential to process natural language and generate structured
code [29, 37, 39]. Given their ability to process multimodal in-
put [2, 33, 35] and suggest code snippets [13], thesemodels present a
promising opportunity to support developers in creating accessible
user interfaces from visual design artifacts, such as UI mockups.

However, despite this potential, the effectiveness of LLMs in
generating accessible mobile interfaces directly from image-based
input remains largely unexplored. To the best of our knowledge,
no study has so far evaluated the accessibility of LLM-generated
mobile application interfaces from image input. To address this gap
in mobile software development, the main objective of this study is
to evaluate the ability of ChatGPT-4 to generate accessible Android
UI code in Jetpack Compose from image input.

The model was prompted to create screens based on eight Figma
templates, and the generated output had its accessibility assessed
using Google’s Accessibility Scanner. The initial outputs contained
302 accessibility issues, including 172 low contrast texts and 71 item
description errors. We then asked ChatGPT to fix the identified
issues and re-ran the scanner, finding that the total number of issues
was reduced by more than half. To verify the reliability of these

1https://support.google.com/accessibility/android/answer/6283677
2https://developer.android.com/compose
3https://openai.com/index/gpt-4-research/
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results, we then selected the nine screens with the most issues and
re-ran the prompt twice. None of the retries produced identical
results, but only one showed significant variation over the original.

The remainder of this paper is structured as follows: Section 2
offers background information on LLMs, accessibility in user in-
terfaces, Jetpack Compose, and relevant related work. Section 3
details our methodology, describing the approach used to evaluate
the accessibility of code generated from Figma templates. Section 4
presents the results obtained from applying this methodology. Sec-
tion 5 discusses the results in relation to our research questions,
and Section 6 concludes the paper with final remarks and directions
for future work.

2 BACKGROUND
2.1 Mobile Software Development
Native mobile development involves building apps for a specific
operating system using its supported languages. Kotlin or Java
for Android and Swift or Objective-C for iOS [6]. Google’s Jetpack
Compose has recently become the standard for creatingAndroid UIs.
It introduces a declarative approach using composable functions
written in Kotlin, enabling reactive updates based on app state
changes. This contrasts with the earlier XML-based method, which
required manual management of the state of the UI [18].

Compose improves accessibility by embedding accessibility at-
tributes directly in its components, unlike XML where developers
needed to manually configure them following Android’s guide-
lines [17]. It also provides native support for screen readers, key-
board navigation, and other assistive tools [19]. Lassfolk highlights
how semantic modifiers improve compatibility with TalkBack and
similar technologies. However, accessibility issues persist in mod-
ern Android apps [8, 30, 32], even after the official release of Jetpack
Compose4.

2.2 Mobile Accessibility
Digital accessibility aims to eliminate barriers so that all users,
including those with disabilities, can interact effectively with digi-
tal content [7]. The W3C’s Web Content Accessibility Guidelines
(WCAG) define international standards to support users with vari-
ous disabilities [50].

Mobile accessibility adapts these principles to devices such as
phones, tablets, and wearables, addressing challenges such as small
screens, touch interaction, and use in varying environments [49].
Tools such as Google’s Accessibility Scanner help identify interface
issues, although they are limited in scope and not fully aligned with
WCAG [1, 20].

Studies have explored the use of such tools to provide a more
objective analysis of accessibility issues in mobile applications [5,
8, 30, 36, 38]. Andrade et al. evaluated eight popular Android apps
in Portuguese, English, and Spanish, detecting more than 1,100
touch-target size issues and nearly 600 contrast failures. For exam-
ple, in their study, the Spanish mode alone revealed 828 accessibility
errors.

In addition to these tools, Chen et al. analyzed 2,270 Android
apps using an automated exploration tool and documented more
4https://android-developers.googleblog.com/2021/07/jetpack-compose-
announcement.html

than 86,000 accessibility issues. Yan and Ramachandran found that
nearly all 479 Android apps analyzed on Google Play had accessi-
bility issues and more than 94% contained direct violations of ac-
cessibility guidelines. Furthermore, Krainz et al. found widespread
inaccessibility in applications on the Google Play Store, including
major platforms such as WhatsApp and Amazon.

Additional research [4, 21, 25], based on surveys with mobile de-
velopers, suggests that these accessibility shortcomings stem from
a general lack of familiarity with accessibility standards and the
rare inclusion of such concerns during app development. The re-
spondents also highlighted that common development tools tend to
neglect accessibility aspects, leading to improper implementation.

UI design also influences accessibility outcomes. For example, in
[31], the authors identifiedmore than 700 issues in mobile templates
in Figma, underscoring how design stage decisions can propagate
into the usability of the final product.

2.3 Generative Artificial Intelligence
Modern generative AI is based on the Transformer architecture,
introduced by Google in 2017 [37]. This model uses attention mech-
anisms to focus on relevant parts of the input, improving contextual
understanding and output quality [16, 43]. It underpins LLMs such
as GPT, which are widely used in natural language processing [11].

LLMs are trained on massive text datasets using autoregressive
prediction, where the model learns to predict the next word based
on the prior context [53]. Due to their dependence on the context
of input, the structure and clarity of user prompts significantly
affect the quality of the output [54]. GPT (Generative Pre-trained
Transformer), developed by OpenAI, follows this approach and
powers tools like ChatGPT. Although it can produce fluent and
contextually appropriate responses, it can also generate incorrect
or incoherent output, called hallucinations [3, 37].

Beyond text generation, LLMs have shown potential in practical
domains such as language learning [40], automated UI testing [51],
and research assistance [37]. In particular, they have also been ex-
plored to improve digital accessibility. Othman et al. found that
ChatGPT could resolve up to 94% accessibility issues on websites.
However, the study stresses the importance of combining automa-
tion with manual validation for reliable results.

Recent research has assessed how LLMs generate accessible mo-
bile UIs. For example, Rabelo et al. found that even when prompts
explicitly requested accessible interfaces, the resulting Jetpack Com-
pose and XML code often contained an increased number of ac-
cessibility errors. Similarly, Suh et al. showed that more detailed
prompts improved accessibility outcomes when generating web
content, but emphasized the need for iterative feedback to ensure
robust results.

2.4 Related Work
To the best of our knowledge, no prior work has assessed the accessi-
bility of mobile app interfaces generated by LLMs from image input.
Although LLMs have been widely explored for code generation and
developer support, their ability to produce accessible UIs, especially
from visual design templates, remains largely unexamined. This is
a critical gap, given the increasing use of design-to-code workflows
and the importance of inclusive design in modern app development.
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Recent studies [9, 35, 46] have investigated how visual input,
such as screenshots or mockups, can guide LLM-based develop-
ment. For example, Chen et al. propose a self-correcting framework
built on GPT-4 that incorporates UI mockups and design metadata
to improve front-end code generation. By decomposing complex
interfaces, the system achieves a more than 30% higher accuracy
compared to general-purpose LLMs without domain-specific tun-
ing.

Park et al. leverage multimodal LLMs to extract semantic infor-
mation from UI images, allowing designers to retrieve examples
aligned with both functional and aesthetic goals. Their results show
that GPT-4 outperforms baselines in screen category prediction,
reaching a top-1 accuracy of 59.21%, and producing richer UI de-
scriptions than prior datasets.

Focusing on testing, Wang et al. use LLMs to analyze UI screen-
shots to solve rendering issues such as missing labels, dark mode
violations, and incomplete map regions. Their method simulates
manual QAworkflows and reduces reliance on hand-written checks,
while improving coverage and accuracy. They highlight the impor-
tance of prompt engineering and curated error datasets in enabling
effective model behavior.

Although these works demonstrate the potential of LLMs to in-
terpret visual UI artifacts and support various development tasks,
they do not address the accessibility of the generated interfaces.
Whether such models can create UIs that adhere to accessibility
guidelines and promote inclusive interaction remains an open ques-
tion.

3 METHODOLOGY
Writing code from UI images is already a common task in software
development. The use of LLMs can streamline this process by reduc-
ing manual effort, but it remains essential to assess their effective-
ness in generating accessible code from visual inputs. Therefore, the
main objective of this study is to evaluate the ability of Large Lan-
guage Models to generate an accessible Android UI using Jetpack
Compose based on visual design inputs, while also evaluating
their ability to improve accessibility through iterative prompts. To
address this objective, three research questions were created:

RQ1 - To what extent are LLMs capable of generating acces-
sible Jetpack Compose UI from image inputs?
RQ2 - How effectively can LLMs suggest solutions to accessi-
bility issues in Android applications developed with Jetpack
Compose?
RQ3 - What are the most common categories of accessibility
errors found in UI screens generated by LLMs?

Therefore, the methodology of this paper was organized into
nine stages, as presented in Figure 1. This process was designed to
address the research questions.

3.1 LLM Selection
The decision to use ChatGPT-4 in this study is based on its advanced
natural language processing capabilities, its ability to understand
complex instructions, and its adaptability to different contexts. As

Figure 1: Methodology workflow

a more recent iteration of the ChatGPT model family, it offers im-
proved coherence, accuracy, and a better understanding of technical
requirements [33].

3.2 Figma Template Selection
The selection of Figma templates was based on a previous study
[31], in which the authors initially identified 12 mobile applica-
tion templates. After applying selection criteria such as popularity,
structured navigation, and a minimum of four screens, they nar-
rowed the set down to 10 templates. However, at the time of our
study, two of these templates were no longer available in the Figma
library. As a result, we used the remaining 8 templates, which are
listed in Table 1. The purpose of using the same set of templates
was to enable a direct comparison between our results and those
of the original study. This allows us to evaluate how the LLM’s
performance aligns with or diverges from previously established
baselines.

Table 1: Selected Figma templates.

Template Name Category
Animal Wiki Mobile App Education
BCA Mobile Finance
Bestbuy App Design Shopping
Food Ordering App Food and Drink
Kapuha Music - Mobile App Music and Audio
Music App Prototype Music and Audio
RSPCA Mobile App Medical
ToDo Mobile App Productivity

3.3 Prompt Engineering
Figure 2 presents an example of the final prompt used in this experi-
ment as the result of an iterative prompt engineering process aimed
at ensuring that the LLM could generate the most functional version
of the UI [54]. To assess the prompt’s effectiveness, each output
was tested by compiling the generated code in Android Studio and
verifying the overall UI structure. Early versions of the prompt pro-
duced code that either failed to compile or resulted in incomplete
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UI implementations (e.g., non-functional buttons or missing scrol-
lable content). Through multiple refinement sessions, the prompt
evolved to include specific instructions, such as strict use of Jetpack
Compose, limited visual assets, and a defined structure for compos-
able functions. This process guided the model toward generating
stand-alone code that required minimal to no further intervention.

Despite the overall improvement in the output due to the refined
prompt, the model still displayed limitations in replicating the orig-
inal UI design with the same precision as a human developer. In
addition, some hallucinations occasionally led to non-compilable
code, which had to be manually commented out to avoid further
intervention and preserve the integrity of the evaluation process.

Figure 2: Prompt example for generating screenswith Jetpack
Compose.

3.4 Execution
Each generated screen was exported to Android Studio. We created
a Compose Navigation Graph to organize them within a single ap-
plication flow. To ensure test integrity and avoid introducing acces-
sibility errors through code interference, no visual assets from tem-
plates were imported. Instead, a high-contrast drawable was used
as a placeholder and a default icon was defined. Furthermore, to
avoid context contamination from previous iterations, each prompt
was submitted in a new chat session. Despite these precautions, the
LLM occasionally ignored the prompt instructions and attempted
to import custom assets, which had to be commented out. Some
syntax errors introduced by the model also broke the UI structure
and required manual correction.

3.4.1 Accessibility Test. To identify accessibility issues, we used
Google’s Accessibility Scanner, a tool that provides a visual and
textual report containing suggestions on how to improve the ac-
cessibility of the app by scanning UI elements on the screen based
on content labels, touch target size, clickable items, text and im-
age contrast, as shown in Figure 3. Based on this report, we then
prompted the LLM to refactor the code and create an improved
version of the same screen. This iterative process of displaying the
screen, scanning it, and prompting a refactoring was repeated for
each template.

Figure 3: Example of accessibility reports for BCA and Ka-
puha Music templates with accessibility issues highlighted.

3.4.2 Hallucination Check. After generating and evaluating the
accessibility of all screens, we selected the ones with more than 10
accessibility issues (total) to ensure the reliability of the results by
running a hallucination check. In this stage, the 9 selected screens
were generated again by re-running the original prompt two more
times for each screen. LLMs are non-deterministic models, which
means that they rely on probability and can produce different re-
sponses to the same input by exploring multiple possibilities in
each execution [43]. This behavior can also lead them to gener-
ate output that appears valid, but is incorrect or hallucinated [3].
The objective of this step was to evaluate whether the issues were
inherent in the templates or were hallucinated by the LLM, since
running the prompt multiple times helps reveal inconsistencies and
makes it easier to assess which outputs are more trustworthy by
comparing the results. Once the new version of the screens was
ready for testing, we ran the scanner one more time to compare
the results and identify the root of the lack of accessibility.

4 RESULTS
In this study using ChatGPT-4, each of the 60 screens from the 8
templates was generated in both an initial version and a refactored
version for accessibility. Furthermore, 9 additional screens were
prompted two more times, and the corresponding refactored ver-
sions were created to check for hallucinations, resulting in a total of
156 screens. As shown in Table 2, a total of 302 accessibility errors
were identified among the 120 initial screens before refactoring,
with an average of 5.02 errors per screen. After prompting the LLM
to improve accessibility, 138 issues were detected in the refactored
versions, averaging 2.3 errors per screen. The additional 36 screens
used for hallucination checks were not included in this analysis.
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Table 2: Accessibility issues per initial and refactored screens
versions.

Screen Version Errors Mean Standard deviation

Initial Version 302 5.02 4.07
Refactored Version 138 2.30 2.81

To analyze the difference between the two approaches, we com-
pared the 60 screens generated with the initial prompt and their
corresponding refactored versions. Applying a paired Student’s
t-test to these comparisons, we obtained the following results:
𝑡 = 6.113, 𝑝 = 0.00000008. The result (𝑝 < 0.05) indicates that
the differences are statistically significant.

Figure 4 summarizes the distribution of accessibility errors by
category in each screen template, combining the results before and
after refactoring. The most frequent issue was Text Contrast, with
a total of 222 instances observed in all templates. Item Description
errors were also common, totaling 108 occurrences, followed by
Image Contrast with 46 instances. On the other hand, Unexposed
Text and Touch Target were among the least frequent issues, with
only 12 and 3 occurrences, respectively.

Figure 4: Accessibility errors by error category and template
in all 120 screens.

Table 3 presents the number of accessibility issues identified
in each template, both before and after the LLM was prompted to
refactor the screens based on the accessibility scanner report. The
template with the most errors initially was the BCA app, with 123
issues in total and a mean of 5.85 errors per screen. The most fre-
quent issue was Text Contrast, which accounted for more than 50%
of its total errors. After accessibility refactoring, the total number
of errors in the BCA app decreased to 54, with Text Contrast issues
representing less than 30% of the total. However, the number of
Item Type Label issues rose from 0 to 11, indicating that the LLM
introduced these errors during the refactoring process.

The introduction of new types of errors was not limited to the
BCA scenario, as was observed in 5 of the 8 templates, accounting
for a total of 40 additional errors across them. After requesting a re-
generation of the code for accessibility improvements, 4 templates
presented new Item Type Label issues, 3 presented new Unexposed
Text issues, and 1 presented new Item Label issues. Table 3 shows
that the Best Buy template initially had no Item Type Label occur-
rences, but showed 7 such violations after refactoring. Similarly, the

Kapuha Music template, which originally had no Unexposed Text
issues, exhibited 3 after the update. Figure 5 shows the distribution
of accessibility errors per screen for each template, comparing ini-
tial and refactored versions. Most templates, such as Animal Wiki,
BCA, and RSPCA, show a reduction in both the median number
of errors and the overall variability after refactoring. However, Ka-
puha Music stands out with an increase in errors, suggesting that
the request for improvement sometimes introduced new issues.

Figure 5: Distribution of errors per screen in each template.

Figure 6 presents an overview of the number of accessibility er-
rors per screen in all templates, comparing the initial and refactored
versions. Each subplot corresponds to a template and shows the
error counts for its individual screens. Among the 60 initial screens,
9 had the highest number of accessibility errors, together account-
ing for almost 40% of the 302 reported issues. After the prompted
refactoring, 5 of these 9 screens showed an improvement of at least
50%. Separately, some other screens introduced new errors after the
refactoring. For example, the To Do Screen in the To Do template
and the Walk Record Screen in RSPCA had more issues after being
refactored.

To analyze the likelihood of hallucinations in the generated
screens, we selected all screens with an initial error count greater
than or equal to 10, resulting in the 9 listed in Table 4. Each screen
was generated twice, producing versions V2 and V3 for comparison.
The table presents the error count for each version along with its
standard deviation. The Profile Screen from the BCA template had
18 errors in the initial version, making it the screen with the highest
number of issues among all 120. It also showed the highest standard
deviation (6.34), suggesting that most of its initially reported errors
were probably hallucinated. Although none of the other screens
exhibited such high variability, the Transaction Screen, also from
the BCA template, showed the second highest deviation at 3.26.
All remaining screens had standard deviations below 3, but still
indicated signs of hallucination.

5 DISCUSSION
5.1 RQ1 - To what extent are LLMs capable of

generating accessible Jetpack Compose UI
from image inputs?

Main Result: All screens generated from the Figma UI tem-
plates exhibited accessibility issues, mainly related to Text
Contrast and Item Descriptions.
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Table 3: Accessibility issues per template without prompting and prompting for accessibility.

Template Prompt Text
Contrast

Touch
Target

Item
Description

Image
Contrast

Item Type
Label

Item
Label

Unexposed
Text Total Mean

Animal Wiki Initial 23 1 2 2 0 0 0 28 7.00
Refactored 10 1 1 0 0 0 0 12 3.00

BCA Initial 63 0 30 18 0 11 1 123 5.85
Refactored 16 0 15 6 11 1 5 54 2.57

Best Buy Initial 6 0 13 1 0 0 0 20 5.00
Refactored 1 0 8 0 7 0 3 19 4.75

Food Ordering Initial 17 0 7 0 0 0 0 24 6.00
Refactored 4 0 0 0 0 0 0 4 1.00

Kapuha Music Initial 12 0 4 0 0 5 0 21 10.50
Refactored 6 0 4 0 0 0 3 13 6.5

Music Prototype Initial 0 0 3 0 0 0 0 3 1.50
Refactored 0 0 1 0 0 0 0 1 0.50

RSPCA Initial 44 1 11 18 1 0 0 75 3.94
Refactored 10 0 7 1 4 4 0 26 1.36

To Do Initial 7 0 1 0 0 0 0 8 2.00
Refactored 3 0 1 0 5 0 0 9 2.25

Figure 6: Accessibility errors across templates for each screen.
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Table 4: Error comparison with standard deviation as a mea-
sure of hallucination

Template Screen V1 V2 V3 Std

BCA Profile 18 3 7 6.34
BCA Home 16 11 14 2.05
BCA Transaction 14 10 18 3.26
Animal Wiki Dashboard 13 16 14 1.24
RSPCA Vet 13 12 15 1.24
BCA Receiver 12 11 13 0.81
BCA Set Limit 11 16 10 2.62
Kapuha Music Home 11 14 17 2.44
Kapuha Music Start 10 8 11 1.24

The results of this study show that LLMs are capable of generat-
ing Jetpack Compose screens based on image input. However, when
accessibility was tested, there were 302 violations on 60 screens of
8 templates, with an average of 5.02 issues per screen.

In contrast, the study by Muniz et al. found 738 issues on 97
screens, averaging 7.61 issues per screen. Although both studies are
using roughly the same templates, the screens generated by LLMs
with Jetpack Compose showed a lower average number of errors.
However, this comparison is not as direct as it seems, as other fac-
tors, such as the number of screens, evaluation tools, programming
language, and screen complexity, can also affect the results. For
example, in Text Contrast issues, the most frequent type of acces-
sibility issue in our results, the study by Muniz et al. performed
better, with an average of 2.34 issues per screen compared to our
2.87. Furthermore, in the hallucination check, which involved nine
selected screens, half of the generated versions contained fewer
accessibility issues than the originals. This suggests that while the
overall results are promising, LLMs can still deviate from the input
image and introduce new errors during generation.

Another study that presented similar results was that of Suh
et al.. In their work, LLMs were prompted to generate user inter-
faces based on textual descriptions extracted from original Web
pages, which were then evaluated for accessibility. Their results
align with ours, as color contrast issues were reported as the most
common accessibility problem. However, a key difference in our
studies is that, compared to human-written code, their findings
show that ChatGPT-4 generated code with nearly 49% fewer con-
trast issues. Furthermore, they observed that LLM-generated code
occasionally introduced new accessibility issues not present in the
original designs, a pattern also reflected in our results.

5.2 RQ2 - How effectively can LLMs suggest
solutions to accessibility issues in Android
applications developed with Jetpack
Compose?

Main Result: Results showed that, when prompted with the
Accessibility Scanner’s report, the LLM was able to resolve
50% of the identified accessibility issues.
The analysis of the results demonstrates that LLMs can be a

valuable tool in resolving accessibility issues when guided correctly.

In our study, providing the model with a detailed report of the
Accessibility Scanner as input led to a significant improvement of
approximately 54%, reducing the initial 302 errors to just 138. This
highlights the potential of targeted prompting. The importance
of this specific, feedback-driven approach is underscored in con-
trast to the findings of Rabelo et al.. Their research showed that
using a generic prompt was not only ineffective, but often coun-
terproductive, frequently increasing the number of accessibility
errors.

These results are consistent with the findings of Othman et al.,
who evaluated ChatGPT’s ability to automatically fix web accessi-
bility issues. In their study, ChatGPT corrected 37 of 39 violations
identified on two real websites, achieving a success rate of 94%.
Although the studies diverge in context as theirs was based on
HTML web content, both studies show that LLMs perform well
when given structured feedback, being able to resolve accessibility
related issues.

However, despite showing a positive performance in solving
accessibility issues in both scenarios, the results also show that
only 164 of the 302 reported errors were corrected, giving a success
rate of just barely more than 50%. This reinforces the idea that LLMs
are tools meant to assist developers in achieving this objective, but
still require manual evaluation to ensure quality.

Furthermore, when asked to correct the errors reported by the
scanner, the LLM introduced 40 additional violations in three dif-
ferent categories. These findings show that, while the model is
unable to resolve 100% of the reported issues, it is also prone to
introduce new violations in the process. This suggests that, in order
to effectively address known issues, developers should consistently
evaluate the model’s output and work iteratively to ensure that the
expected results are achieved.

5.3 RQ3 - What are the most common
categories of accessibility errors found in UI
screens generated by LLMs?

Main Result: The most frequent accessibility issues in LLM-
generated UIs were related to Text Contrast, Item Descrip-
tions, and Image Contrast, with Text Contrast being the most
frequent overall.
The most frequent error category was Text Contrast, with 222

occurrences across all template iterations, accounting for 73.5% of
all issues. Other significant occurrences were for Item Description
(108) and Image Contrast (46) categories. On the other hand, Un-
exposed Text (12) and Touch Target (3) were the less frequently
reported categories.

These findings align with similar studies [4, 30, 36, 44], such as
Alshayban et al., which conducted a study on accessibility issues in
more than 1,000 Android applications. Their results also highlight
Text Contrast as the most prevalent issue, with 22.81% occurrences,
followed by Touch Target Size (19.78%) and Image Contrast (12.85%).

These similarities may suggest that the LLM is not necessar-
ily introducing new types of error but rather replicating patterns
it has learned from training data. Given that real-world applica-
tions still present high accessibility issues rates, as reported by
studies [4, 23, 36] it is possible to assume that the model has been
exposed to examples with such flaws. As a result, the recurrence of
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inaccessibility in LLM-generated UIs might reflect common prac-
tices found in the source material it was trained on, reinforcing the
need to explicitly instruct the LLM with well-structured prompts
to guide it toward implementing good practices.

5.4 Implications and Takeaways
The findings of this study suggest that LLMs can offer real support
in the development of user interfaces accessible from image input
using Jetpack Compose for Android applications, especially when
paired with feedback from evaluation tools. Although none of the
generated screens was fully accessible on the first attempt, the
model was able to reduce the number of issues by more than 50%
after being prompted with the scanner report. That alone points to
its potential as an assistive tool in UI development workflows.

At the same time, the results also highlight that these models are
far from reliable when used in isolation. In several cases, ChatGPT
failed to fix all reported issues and even introduced new ones. This
reinforces the importance of human review and iterative testing,
especially when the goal is to meet accessibility standards. Devel-
opers should approach LLMs not as end-to-end solutions but as
starting points that still require critical oversight. Some of the re-
ported errors, such as Text Contrast and missing Item Descriptions,
are also common in manual developed apps [4, 30, 44], suggesting
that LLMs may be replicating existing development patterns. This
raises questions about the training data these models were exposed
to and how that influences the accessibility of their output.

Together, the results of this study reinforce that LLMs can con-
tribute meaningfully to accessibility-focused development work-
flows, but only when used with intention and care. The quality
of the prompt played a crucial role in guiding the model toward
usable outputs, which highlights the importance of prompt engi-
neering as part of the process. At the same time, developers must
be familiar with accessibility standards to evaluate and refine the
prompt and generated code effectively. It is also important to note
that some accessibility issues observed in the outputs were already
present in the input images [31], suggesting that the quality of the
original design directly impacts the result. For that reason, when
using image-exported UI designs to generate accessible app screens
with LLMs, developers should critically review their image inputs
to ensure their accessibility in order to achieve the best results.

5.5 Threats to Validity
In terms of construct validity, accessibility evaluation was based
on Google’s Accessibility Scanner. Although useful for detecting
issues such as missing labels, touch targets, and contrast problems,
it covers only a limited range of accessibility barriers and does not
assess their severity. Involving users with disabilities would have
provided an essential context for understanding the real impact of
these issues.

Another limitation is that screen generation used a zero-shot
prompt, focusing only on instructions to the LLM. Other prompt
strategies were not tested, so different approaches could have re-
duced the number of detected errors.

For internal validity, the prompt was designed to minimize hu-
man edits, but some manual adjustments were needed to compile
the code. Although accessibility logic was unchanged, these edits

may have influenced the results. The hallucination check showed
that the model can produce varying outputs for the same input,
causing differences in error counts. Each prompt was re-run only
twice, so more repetitions could have provided more reliable data.

Regarding external validity, the results are limited to the scope of
this study: 8 Figma templates and 60 screens designed for Android
and Jetpack Compose. These do not cover the full diversity of mobile
UIs, especially customized applications or other technologies. The
exclusive use of English prompts also limits generalizability, as LLM
performance can vary by language [22, 36, 45]. Therefore, the types
and frequency of generated errors may not apply directly to other
platforms or languages.

6 FINAL CONSIDERATIONS
This study examined the ability of LLMs to generate accessible
Jetpack Compose screens from Figma-based UI templates. The re-
sults suggest that, although LLMs can generate code from designed
UIs, they often reproduce existing accessibility issues present in the
original designs and may even introduce new errors. However, with
a designed prompt and feedback from tools such as the Accessibility
Scanner, the model showed the ability to resolve more than half of
the accessibility issues.

These results support the idea that LLMs can help developers
during the development of user interfaces. However, to develop
accessible applications, human review and adjustments are re-
quired to ensure that accessibility guidelines are followed.

Future studies should investigate whether LLMs can generate
fully accessible screens using accessible real-world applications
as input and compare the results. This includes evaluating how
well LLMs can fix accessibility issues of varying severity. These
evaluations should not be limited to issues flagged by automated
accessibility scanners but should also include problems identified
by real users with disabilities. Furthermore, the impact of prompt
language warrants future investigation, especially regarding its
performance and consistency across multiple languages. Moreover,
evaluating the use of Jetpack Compose Multiplatform could help
measure the model’s ability to produce accessible UIs across dif-
ferent platforms, including web, desktop, and iOS, from a single
codebase.
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