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ABSTRACT
This work proposes a method for voice reconstruction in individu-
als who have undergone laryngectomy, integrating advanced audio
processing and machine learning techniques. The approach aims
to restore features such as timbre, intonation, and prosody, which
are often lost when using an electronic larynx, whose sound is
constrained by a constant fundamental frequency (F0). To address
the lack of public datasets containing voices of tracheostomized
patients, a synthetic dataset was created to simulate the acous-
tic properties of these devices. The developed pipeline comprises
three stages: (i) speech analysis, involving the extraction of lin-
guistic content and style; (ii) mapping, combining this information
with the mel-spectrogram through techniques such as conditional
modulation and diffusion networks, with a particular focus on
Flow Matching; and (iii) reconstruction and synthesis, using high-
fidelity vocoders. Experiments compared two preprocessing meth-
ods—timbre shifter and F0 fixation—evaluated in four training and
testing combinations. Results show that the F0 → F0 configuration
outperformed the alternative in three out of the four analyzed met-
rics (MCD of 444.04, LSD of 0.47, and PSNR of 42.27), suggesting that
F0 fixation favors voice reconstruction that more closely matches
the original signal. These findings highlight the potential of the
proposed approach to improve the naturalness and intelligibility of
synthesized speech for laryngectomized patients.
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1 INTRODUÇÃO
A reconstrução da voz envolve a replicação das características sono-
ras de um indivíduo, como timbre, estilo, tonalidade, entonação
e inflexões, em áudios distintos. Embora essa técnica possa ser
utilizada de maneira ilícita, como em casos de falsificação de iden-
tidade, ela também possui um grande potencial para beneficiar
pessoas que perderam a capacidade de falar. Um dos principais
grupos que se beneficiam dessa tecnologia são os pacientes que pas-
saram por laringectomia, uma cirurgia que resulta na remoção da
laringe. Como consequência, esses indivíduos perdem a estrutura
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necessária para produzir a voz naturalmente e precisam recorrer a
dispositivos auxiliares para se comunicar. Entre 2011 e 2020, foram
registradas 172.456 traqueostomias em pacientes hospitalizados
pelo Sistema Único de Saúde (SUS), representando cerca de 0,15%
de todas as internações nesse período [19].

Um exemplo desse dispositivo é a laringe eletrônica, que tenta
simular as funções da laringe humana por meio de vibrações ger-
adas pelo aparelho, que se movem com os músculos do pescoço.
Contudo, o som produzido por esse dispositivo tende a ser robótico
e metálico, uma característica resultante da frequência fundamental
(F0) constante gerada pelo aparelho, impedindo a variação natural
da voz, deixando-a artificial e monótona. A aplicação de técnicas de
processamento de áudio e aprendizado de máquina pode, portanto,
representar um avanço significativo na restauração da voz original
desses pacientes, proporcionando uma forma mais natural e fiel de
comunicação.

A recuperação da voz, para ser eficaz, segue um pipeline de
conversão dividido em três estágios principais: Análise da Fala
(Speech Analysis), Mapeamento (Mapping) e Reconstrução e Síntese
(Reconstruction & Synthesis) [4].

No estágio de Análise da Fala, o objetivo é extrair o conteúdo
linguístico, ou seja, identificar o que está sendo dito. Esse processo
envolve a extração dos tokens da fala diretamente do áudio. Para
isso, são utilizadas redes neurais específicas, como o WAV2VEC2
[3] ou WavLLM [7], eficazes para essa tarefa. Além disso, essa fase
também abrange a extração do pitch e da prosódia, frequentemente
referida como extração de estilo. A pergunta aqui é: como a fala
soa? Isso inclui o tom, a entonação e o ritmo da fala, e pode ser
realizado utilizando métodos como o CREPE [14], ou ainda redes
neurais como StyleGAN [13] ou CAMplus [21].

No estágio de Mapeamento, é feita a combinação da extração
do conteúdo linguístico com o estilo de fala, juntamente com a
adição de um mel-espectrograma, que servirá como entrada para
a rede neural. A junção dessas informações pode ser realizada por
meio de técnicas como Concatenação e Camada Linear, Modulação
FiLM (Feature-wise Linear Modulation) [20] ou Adaptive Instance
Normalization (AdaIN) [12]. A saída da rede nesse estágio é o mel-
espectrograma. Para realizar essa codificação, utiliza-se uma rede
neural que recebe como entrada o conteúdo linguístico, o estilo
extraído e o mel-espectrograma concatenados. A partir dessa codifi-
cação, utiliza-se uma rede de difusão para a reconstrução do áudio.
Entre os modelos utilizados para essa tarefa, estão redes generati-
vas como GANs, Variational Autoencoders (VAEs) [4], mas o mais
recente, usando o uso do Flow Matching condicional [17] vem se
mostrado bem promissor.

403



WebMedia’2025, Rio de Janeiro, Brazil Mario Pinto Freitas Filho, João Dallyson Sousa de Almeida, Geraldo Braz Junior

Figure 1: Pipeline de Conversão de Voz

No estágio final de Reconstrução e Síntese, após a obtenção do
mel-espectrograma reconstruído, é utilizado um vocoder para con-
verter essa representação em um sinal de áudio. Vocoders modernos,
como o HiFi-GAN [15], são treinados para gerar ondas sonoras de
alta fidelidade, com qualidade realista. Essa conversão é essencial
para garantir que a fala sintetizada tenha uma qualidade natural e
inteligível, essencial para a eficácia do processo de recuperação da
voz.

Como não foi encontrada na literatura nenhuma base de da-
dos com áudios de pessoas traqueostomizadas, desenvolvemos um
dataset sintético inédito para suprir essa lacuna. Esses áudios foram
gerados de forma a simular as características sonoras da laringe
eletrônica.

A principal contribuição deste estudo é a composição de um
método que integra avanços recentes em processamento de áudio e
aprendizado de máquina para a reconstrução de voz de indivíduos
submetidos à laringectomia. O método combina técnicas de análise
de fala, mapeamento de estilo e prosódia, e reconstrução de áudio
com redes neurais de difusão — em especial o Flow Matching condi-
cional para gerar uma voz sintetizada com maior proximidade à
voz original. Além disso, conduzimos uma avaliação da qualidade
da fala reconstruída, utilizando vocoders modernos para garantir a
fidelidade e a naturalidade do áudio final.

A estrutura deste trabalho está organizada conforme descrito
a seguir: a Seção 1 aborda a motivação e os objetivos do estudo.
Na Seção 2, é apresentado o referencial teórico que fundamenta o
método adotado. A Seção 4 descreve em detalhes a base de documen-
tos utilizada e o método empregado. Os resultados da sumarização
extrativa automática são discutidos na Seção 5. Por fim, a Seção 6
expõe as conclusões do estudo.

2 REFERENCIAL TEÓRICO
2.1 Características da Voz
A voz humana possui características acústicas essenciais como fre-
quência fundamental (F0), intensidade (volume) e timbre, que são
influenciadas pela anatomia do trato vocal, pulmões e pregas vo-
cais. Além dessas propriedades, há diferentes qualidades vocais,
incluindo voz modal (normal), creaky (rangida), breathy (sussur-
rada), tense (tensa) e lax (relaxada), que influenciam a percepção da
fala. As variações nessas características permitem que cada pessoa
tenha uma identidade vocal única e possibilitam a expressão de

emoções e intenções. A prosódia, com elementos como ritmo, enton-
ação e acento, complementa a voz ao atribuir significado emocional
e linguístico às frases, contribuindo para a comunicação eficaz e
compreensível [8].

2.1.1 Frequência Fundamental. A frequência fundamental de um
sinal de fala, frequentemente denotada por F0, refere-se à frequência
aproximada da estrutura (quase) periódica dos sinais de fala sonora.
A oscilação se origina das pregas vocais, que oscilam no fluxo de ar
quando adequadamente tensionadas. A frequência fundamental é
definida como o númeromédio de oscilações por segundo e expressa
em Hertz. Como a oscilação se origina de uma estrutura orgânica,
ela não é exatamente periódica, mas contém flutuações significati-
vas. Em particular, a quantidade de variação no comprimento do
período e na amplitude são conhecidas respectivamente como jitter
e shimmer . Além disso, o F0 normalmente não é estacionário, mas
muda constantemente em uma frase [5].

2.2 Espectrograma
O espectro de Fourier de um sinal revela seu conteúdo de frequência,
isso torna um espectro um domínio intuitivo e agradável para se
trabalhar, pois podemos examinar os sinais visualmente. Na prática,
trabalhamos como sinais discretos de modo que a transformação
tempo-frequência corresponde à Transformada Discreta de Fourier.
Ela mapeia um comprimento N sinal 𝑋𝑛 em uma representação
de domínio de frequência de valor complexo 𝑋𝑘 de N coeficientes
como [5]:

𝑋𝑘 =
𝑁−1∑︁
𝑛=0

𝑥𝑛𝑒
𝑖2𝜋 𝑘𝑛

𝑁 (1)

Para entradas de valor real, os componentes de frequência posi-
tiva e negativa são conjugados complexos uns dos outros, de modo
que retemos unidades únicas de informação. No entanto, como os
espectros são vetores de valores complexos, é difícil visualizá-los
como tal, pois sinais de fala são sinais não estacionários. Se transfor-
marmos uma frase falada para o domínio da frequência, obteremos
um espectro que é a média de todos os fonemas da frase, enquanto
gostaríamos de ver o espectro de cada fonema individual [5].

Para isso, ao dividir o sinal em fragmentos menores, podemos
nos concentrar nas propriedades do sinal em um determinado mo-
mento. Ao aplicar a janela e a Transformada Discreta de Fourier
(DFT) em cada janela, obtemos a Transformada de Fourier de curto
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prazo (STFT) do sinal, para um sinal de entrada 𝑥𝑛 e janela wn’ a
transformação é definida como [5]:

𝑆𝑇𝐹𝑇 (𝑥𝑛) (ℎ, 𝑘) = 𝑋 (ℎ, 𝑘) =
𝑁−1∑︁
𝑛=0

𝑥𝑛𝑒
𝑖2𝜋 𝑘𝑛

𝑁 (2)

A STFT é uma das ferramentas mais utilizadas em análise e
processamento de fala. Ela descreve a evolução dos componentes
de frequência ao longo do tempo. Outro paralelo com um espectro é
que a saída da STFT é de valor complexo, embora, onde o espectro é
um vetor, a saída da STFT seja uma matriz. Como consequência, não
podemos visualizar diretamente a saída de valor complexo. Em vez
disso, as STFTs são geralmente visualizadas usando seus espectros
logarítmicos, 20𝑙𝑜𝑔10 (𝑋 (ℎ, 𝑘)) Esses log-espectros bidimensionais
podem então ser visualizados com um mapa de calor conhecido
como espectrograma[5].

2.3 Extração do conteúdo Semântico
A extração do conteúdo linguístico no processamento de áudio
acontece no espectrograma. O sinal de fala é representado por car-
acterísticas de envelope espectral y(t). como o spectro log-mel.
dentro de cada y(t) é passado essa fatia para uma rede neural
como WavLLM[7] que ira extrair as características do y(t), 𝑡 ∈
[. . . , 𝑡0 − 2, 𝑡0 − 1, 𝑡0]. O resultado desse processo é uma represen-
tação linguística de todo o espectrograma, denotada como c(𝑡0).
Esse vetor gerado é então projetado linearmente, servindo como
um token, que representa a informação linguística extraída do sinal
de fala para posterior processamento.

2.4 Extração de Estilo
Diferentemente da extração do conteúdo linguístico, que ocorre no
mel-espectrograma, a extração de estilo acontece diretamente no
áudio, pois visa capturar características relacionadas à forma como
o fonema é articulado, como entonação, prosódia, inflexões e out-
ras propriedades fonéticas. Essas características estão diretamente
ligadas ao modo como a fala é produzida, ou seja, a maneira única
de cada pessoa pronunciar palavras e frases. A extração de estilo
é realizada por redes treinadas especificamente para reconhecer a
voz de indivíduos, extraindo suas características únicas diretamente
do áudio.

Uma das redes usadas para essa tarefa é o CAMplus [21], com-
posta por duas partes principais. A primeira parte é o front-end, que
utiliza convoluções 2D com conexões residuais, sendo responsável
por extrair características detalhadas no domínio tempo-frequência.
A segunda parte é baseada no D-TDNN (Deep Time Delay Neu-
ral Network) com Context-Aware Masking, uma versão densa da
TDNN, chamada D-TDNN. Cada camada do D-TDNN contém um
módulo CAM (Context-Aware Masking).

O CAM é um mecanismo de atenção que foca nas partes mais
relevantes do áudio para identificar o locutor, ignorando ruídos e
variações irrelevantes. A versão CAM++ aprimora o CAM original,
funcionando como um mecanismo de atenção, mas com um foco es-
pecífico em “mascarar” as partes irrelevantes do sinal e destacar as
características essenciais para identificar o locutor. O CAM aplica
uma máscara de atenção sobre os mapas de características ger-
ados pelas camadas D-TDNN, otimizando a extração de estilo e

permitindo uma identificação mais precisa da voz de diferentes
indivíduos.

2.5 Condicional Flow Matching
Seja 𝑥1 uma variável aleatória distribuída de acordo com uma
distribuição de dados desconhecida 𝑞(𝑥1). Assumimos que temos
acesso apenas a amostras dessa distribuição𝑞(𝑥1), mas não à função
de densidade em si. Além disso, consideramos um caminho de prob-
abilidade 𝑝𝑡 tal que 𝑝0 = 𝑝 é uma distribuição simples, por exemplo,
a distribuição normal padrão, 𝑝 (𝑥) = 𝑁 (𝑥 |0, 𝐼 ), e que 𝑝1 é aproxi-
madamente igual, em distribuição, a 𝑞(𝑥). Posteriormente, discu-
tiremos como construir tal caminho. O objetivo do Flow Matching
é alinhar este caminho de probabilidade alvo, permitindo-nos fluir
𝑝0 para 𝑝1 [17].

O Conditional Flow Matching (CFM) é uma versão prática do Flow
Matching (FM). Em vez de trabalhar com probabilidades marginais
e campos vetoriais marginais, que são difíceis de calcular, o CFM
foca em probabilidades condicionais e campos vetoriais de proba-
bilidades [17].

Para cada amostra dos dados reais 𝑥1 ∼ 𝑞(𝑥1), onde 𝑥1 é um valor
no conjunto de dados e 𝑞(𝑥1) é a densidade probabilística desse
valor, o CFM define uma trajetória de probabilidade que começa no
ruído 𝑝0 (𝑥 | 𝑥1) = 𝑝 (𝑥) e termina em torno de 𝑥1. Essa trajetória
visa aproximar a distribuição do dado real a partir de um processo
de geração gradual [17].

Ao invés de integrar sobre toda a distribuição marginal 𝑞(𝑥), o
CFM simplifica o processo ao amostrar um dado 𝑥1 diretamente
e calcular a perda associada a essa amostra. Isso torna o cálculo
mais viável do ponto de vista computacional, pois evita o custo
de calcular a distribuição marginal completa, tornando o processo
mais eficiente para tarefas de aprendizado e reconstrução de dados
[17].

2.5.1 Transporte Ótimo (OT). O Transporte Ótimo (OT) é um con-
ceito da teoria das probabilidades e matemática que trata de como
“mover” uma distribuição de probabilidade de uma forma para outra,
minimizando o custo desse movimento.

Agora, no contexto do Flow Matching, estamos usando o con-
ceito de OT para transformar uma distribuição simples (como o
ruído) em uma distribuição mais complexa, como uma imagem. Os
Campos Vetoriais Condicionais de OT fazem parte desse processo
de transformação.

Um campo vetorial condicional é simplesmente um campo que
depende de um dado específico. Ou seja, a direção e a magnitude
do movimento de cada ponto de dados (neste caso, as amostras) ao
longo do processo de transformação são determinadas com base
nas informações do dado de entrada (como uma imagem ou um
vetor de características).

2.6 Vocoder
O termo vocoder vem das palavras voz e codificador, e refere-se ao
processo de aplicação de uma característica semelhante à fala a um
som. A ideia básica do vocoder é que qualquer som que tenha uma
estrutura formante será percebido como um som de fala. Assim, se
modificarmos um som de forma que ele tenha picos no espectro
semelhantes a um som de fala, ele será percebido como um som de
fala. Muitas das características originais do som serão preservadas,
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mas ele terá a interpretação adicional de um som de fala. É como
se o som original se tornasse o tom portador do sinal de fala [5].

Os formantes são picos no envelope espectral do sinal. Ou seja,
se observarmos a forma bruta (ou macro) do espectro de magnitude
de um sinal de fala, ele apresentará um pequeno número de picos,
especialmente na região entre 300 e 3500 Hz. A localização (e a
amplitude) desses picos corresponde a vogais específicas ou, inver-
samente, cada vogal possui uma constelação única e identificadora
de picos formantes [5].

Vocodersmodernos utilizam redes adversárias generativas (GANs)
ou autoencoder para a síntese de voz, convertendomel-espectrogramas
em ondas sonoras brutas de alta qualidade. Esses vocoders são prin-
cipalmente empregados na construção da fala a partir de texto, um
processo conhecido como TTS (Text-to-Speech). Nesse contexto, o
modelo gera ummel-espectrograma a partir de um texto de entrada,
e o vocoder transforma esse espectrograma em um sinal de áudio.
O vocoder é treinado para reproduzir as propriedades do falante,
garantindo que a voz sintetizada tenha as características desejadas,
como entonação, timbre e estilo de fala.

O HiFi-GAN [15] é um exemplo notável desse tipo de vocoder,
utilizando redes adversárias para gerar ondas sonoras realistas,
oferecendo uma conversão de alta fidelidade que preserva as nu-
ances da voz, essencial para sistemas de síntese de fala natural e
com boa qualidade perceptual. A combinação de redes adversárias e
vocoders permite uma síntese de voz mais fluida e expressiva, sendo
um avanço significativo em comparação com métodos anteriores.

3 TRABALHO RELACIONADOS
Na literatura, são poucos os trabalhos que abordam especificamente
a recuperação de voz em pessoas que utilizam a laringe eletrônica.
Um desses trabalhos é o de [22], que, na ausência de um dataset
específico, optou por criar um dataset sintético. Esse dataset foi
desenvolvido a partir da premissa de que o som produzido pela
laringe eletrônica possui um F0 constante, ou seja, uma frequência
fundamental que permanece inalterada, resultando em oscilações
uniformes ao longo do tempo.

Com base nessa característica, [22] utilizou um dataset de áudios
e realizou um pré-processamento para tornar todos os F0 constantes,
simulando, assim, o som gerado pela laringe eletrônica. Esse proced-
imento permitiu que os áudios gerados se assemelhassem bastante
àqueles produzidos por pessoas que utilizam esse dispositivo. A
partir dessa base de dados, foi possível realizar a transferência de
áudio, ou seja, converter a voz com F0 constante para a voz original
do falante, restaurando, assim, aspectos mais naturais e individuais
da fala. Essa abordagem abriu portas para métodos mais avançados
de recuperação de voz, contribuindo para pesquisas nesse campo.

3.1 SEED-VC
A arquitetura Seed-VC foi concebida para superar os principais
desafios do voice conversion em cenários zero-shot, especialmente
problemas como vazamento de timbre (timbre leakage), represen-
tação insuficiente do timbre e a discrepância entre os processos de
treinamento e inferência. O cerne da Seed-VC é um framework que
combina um transformador baseado em difusão (diffusion trans-
former) com estratégias de manipulação do timbre durante o treina-
mento.

No início do pipeline, é utilizada uma abordagem de flow match-
ing, em que o treinamento é orientado para alinhar as distribuições
de características acústicas entre o áudio de origem e o de destino.
Isso é feito por meio de um campo vetorial dependente do tempo,
aprendido pela rede, que gradualmente transforma as caracterís-
ticas da origem nas do destino, promovendo um caminho suave
entre essas distribuições.

O principal componente da Seed-VC é o diffusion transformer,
um modelo transformador com múltiplas camadas e atenção multi-
cabeças, otimizado para o processo de denoising do esquema de
difusão. Esse transformador incorpora avanços como skip connec-
tions ao estilo U-Net (sem downsampling da sequência temporal) e
embeddings posicionais rotatórios para melhorar a generalização.
Além disso, a informação do tempo é inserida tanto como token
de prefixo quanto como elemento de normalização adaptativa nas
camadas do transformador, permitindo à rede modelar adequada-
mente a evolução temporal do processo de difusão.

Um diferencial central da Seed-VC é o uso de um timbre shifter
externo durante o treinamento. Esse módulo que pode ser imple-
mentado por modelos de voice conversion em regime zero-shot,
como o OpenVoice ou o AutoVC, modifica o timbre do áudio de
origem, de modo que o extrator de conteúdo semântico opere sobre
um sinal livre do timbre original do locutor. Essa estratégia mini-
miza o vazamento de timbre e torna as condições de treinamento
mais próximas às de inferência, nas quais o conteúdo e o timbre
são, de fato, provenientes de fontes distintas.

4 MATERIAIS E MÉTODO
Neste trabalho, usaremos como extrator de conteúdo linguístico
o XLSR [2], para a extração do estilo sera o CAM++ [21], como
arquitetura principal que receberá todas essas informações temos o
SEED-VC [18]. O seed vc é usado em conjunto com o condicional
flow matching para a reconstrução do mel espectrograma.

4.1 Arquitetura do Modelo
Um dos objetivos dessa arquitetura é possibilitar o funcionamento
em regime one-shot, ou seja, realizar a conversão de voz a partir de
somente uma amostra de áudio na etapa de inferência. No contexto
de voice conversion, essa abordagem envolve a distinção entre duas
arquiteturas principais: uma projetada para o treinamento e outra
voltada para a inferência.

A arquitetura de treinamento tem como objetivo ensinar o mod-
elo a reconstruir o mel-espectrograma do áudio-alvo. Para isso, é
necessário apenas um único áudio de entrada, a partir do qual são
extraídas as informações de estilo e conteúdo linguístico. O mod-
elo é treinado para gerar o mel-espectrograma correspondente ao
conteúdo da fala, condicionado a esses embeddings.

Por outro lado, a arquitetura de inferência requer dois áudios
distintos: o áudio-fonte, de onde se extrai o conteúdo semântico da
fala, e o áudio-alvo, utilizado para obter o estilo vocal desejado. Após
a geração domel-espectrograma com base nesses condicionamentos,
o resultado é passado por um vocoder, que realiza a conversão do
espectrograma gerado em forma de onda, produzindo assim o áudio
final convertido com o estilo do falante-alvo.

O fluxo de treinamento tem início com o processamento do áudio-
fonte, a partir do qual são extraídas duas informações fundamentais:
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Figure 2: Estrutura dométodo. Essamesma estrutura também
é usada na inferência. O método tem 2 blocos principais para
a extração tanto do estilo quanto do conteúdo linguístico. O
bloco "extração de embeddings alvo" acontece a extração de
estilo e extração do conteúdo linguístico, visto com detalhe
na figura 4. Isso acontece porque queremos que o áudio fi-
nal tenhas as caracterizas estelicas da voz do áudio alvo com
o conteúdo linguístico do áudio fonte, logo, a "extração de
embeddings fonte" se concentra em extrair o conteúdo lin-
guístico do audio fonte como mostrado na figura 5

Figure 3: Estrutura usada durante o treinamento do método

o estilo do falante, pormeio de um extrator de estilo baseado em [21],
que gera um embedding representando características vocais; e o
conteúdo linguístico, obtido como um embedding semântico. Além
disso, o áudio é convertido para o domínio do mel-espectrograma
por meio de uma transformação via STFT. Em seguida, o sinal é sub-
metido ao timbre shifter, responsável por remover as características
do timbre original da voz, mantendo apenas o conteúdo.

Os embeddings de estilo e de conteúdo linguístico são então
concatenados com a codificação do passo temporal e utilizados
como entrada para o modelo, como mostrado na Figura 4.

A partir do áudio modificado (sem timbre), é novamente ex-
traído o embedding de conteúdo linguístico, o qual será utilizado
na função de condicionamento no bloco cond. Essa função é com-
posta predominantemente pelos embeddings do áudio alterado,

Figure 4: Estrutura Interna do bloco Extração de embeddings
alvo obs: Esse mesmo bloco é usado na inferência como o
bloco de nome "Extração de Embedding Alvo"

mas com uma parte inicial — definida por prompt len — substi-
tuída pelos embeddings correspondentes do áudio original. Essa
substituição tem como objetivo guiar o modelo na reconstrução do
mel-espectrograma do áudio original, assegurando que o conteúdo
semântico da fala seja preservado.

O valor de prompt len é amostrado individualmente para cada
instância do batch, variando entre 1 e a largura temporal do mel-
espectrograma. Ele define quantos tokens do início do cond serão
provenientes da fala original. Além disso, em 10% dos casos, prompt
len é igual a zero, simulando um cenário de geração completamente
não-condicionada.

Figure 5: Estrutura Interna do bloco extração de embeddings
fonte obs: Esse mesmo bloco é usado na inferência com o
nome de "Extração de Embedding Fonte", sendo o áudio fonte
o áudio alvo e o áudio alterado o áudio fonte

Com as informações do áudio fonte concatenadas, os embeddings
do áudio alterado configurados e o mel espectrograma extraído,
podemos alimentar a arquitetura U-DiT, que será responsável pela
reconstrução do mel espectrograma a partir desses dados. A ground
truth utilizada nesse processo é o mel espectrograma do áudio fonte.
Como o U-DiT é baseado em Conditional Flow Matching, ele requer
a definição de time steps para realizar a reconstrução progressiva,
partindo de uma distribuição Gaussiana até alcançar a estrutura
final do mel espectrograma.

A camada do U-DiT é composta por 13 blocos DiTs, usando
conexões que lembram a U-net

No blocoDiT, o passo atual da reconstrução é processado por uma
MLP [10], cuja saída é utilizada nas camadas de scale e shift para
condicionar cada etapa ao time step correspondente do processo
de reconstrução do mel espectrograma.

A entrada do bloco DiT passa inicialmente por uma camada
de normalização, que é então condicionada ao passo atual. Em
seguida, essa saída é processada por um módulo de Multi-Head
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Figure 6: Estrutura do U-DiT com 13 blocos

Figure 7: Estrutura Interna do DiT Block

Self-Attention (MHSA) [6], cuja saída também é condicionada ao
mesmo passo de reconstrução. Essa saída condicionada é então
concatenada com a entrada original (os embeddings) e novamente
normalizada com base no time step atual.

Após isso, os dados passam por uma camada Feed-Forward Net-
work (FFN), seguida por outra etapa de condicionamento via scale
e shift, e por fim são novamente concatenados com a última con-
catenação feita, preservando as informações acumuladas ao longo
do bloco.

Na fase de inferência, são necessários dois áudios distintos: o
áudio-fonte, do qual se extrai o conteúdo linguístico (ou seja, o que
está sendo dito), e o áudio-alvo, que fornece o estilo vocal (ou seja,
como está sendo dito). A arquitetura utilizada nesta etapa mantém
a mesma estrutura empregada no treinamento, com a diferença de
que, ao final do processo, o mel-espectrograma gerado que combina
o conteúdo do áudio-fonte com o estilo do áudio-alvo é passado por
um vocoder. Esse vocoder realiza a reconstrução da forma de onda,
resultando em um novo áudio que preserva o conteúdo semântico
original, mas com as características vocais do falante-alvo.

4.2 Base de Dados
O dataset utilizado é o Mozilla Common Voice, um dos maiores
e mais diversos corpora de fala disponíveis em domínio público.
Ele é composto por milhares de horas de gravações de áudio tran-
scritas em dezenas de idiomas, coletadas e validadas por meio de
crowdsourcing. Os participantes gravam sentenças apresentadas
pelo sistema e validam as gravações de outros usuários, garantindo
qualidade e diversidade de locutores, sotaques, idades e gêneros.
As gravações são divididas em conjuntos de treino, validação e
teste, evitando que o mesmo locutor apareça em mais de um con-
junto. O Common Voice é amplamente utilizado em tarefas de
reconhecimento e conversão de fala, por ser aberto, sustentável e
continuamente expandido pela comunidade global [1].

Devido à ausência de datasets contendo áudios de pessoas traque-
ostomizadas que utilizam laringe eletrônica, modificamos o dataset
Mozilla Common Voice para simular esse tipo de áudio e criar
um dataset sintético. Para reproduzir as características da laringe
eletrônica, ajustamos os áudios de forma a manter o F0 constante,
eliminando variações na periodicidade. Esse procedimento reflete o
comportamento real do dispositivo, que, por ser eletrônico, emite
sempre a mesma frequência fundamental. E isso pode ser visto

também em [22] que utiliza desse mesmo artificio para criação de
um dataset sintético.

Foi utilizado um total de 19.002 áudios em português de falantes
nativos, sendo 15.202 destinados ao treinamento, 1.900 à validação
e 1.900 ao teste. Para cada áudio, existe também uma versão com F0
constante; entretanto, essa modificação é aplicada de forma online
durante o treinamento.

4.3 Experimentos
Os experimentos foram conduzidos em duas linhas principais. Na
primeira, utilizou-se a arquitetura base do Seed-VC, conforme de-
scrito na seção anterior. Para a extração do conteúdo semântico foi
utilizado o XLSR [2].

Na segunda linha experimental, o componente Timbre Shifter
foi substituído por um módulo de modificação do F0, responsável
por tornar a frequência fundamental do áudio constante. Essa abor-
dagem foi inspirada em [22], que propõe essa técnica para simular o
padrão de fala de usuários de laringe eletrônica, cujo som apresenta
F0 invariável devido à natureza do dispositivo.

A frequência fundamental (F0) representa a estrutura periódica
do sinal de fala, sendo as variações em sua periodicidade respon-
sáveis pelas características individuais da voz humana. Como o
sistema fonador humano é orgânico e sujeito a variações fisiológi-
cas, cada pessoa apresenta flutuações únicas na F0, o que resulta
em timbres e entonações distintos. Em contrapartida, dispositivos
mecânicos, como a laringe eletrônica, produzem um sinal com
periodicidade constante, resultando em uma frequência fixa e, con-
sequentemente, em um som monótono e artificial.

Para simular essa característica em experimentos de reconstrução
vocal, os áudios são ajustados para uma frequência fundamental
fixa de 80 Hz, de modo a reproduzir o padrão de vibração con-
tínua e uniforme gerado pela laringe eletrônica. Essa abordagem
permite aproximar os sinais sintéticos das propriedades acústicas
observadas na fala produzida por esse tipo de dispositivo.

Todos os experimentos foram conduzidos com batch size 8 ao
longo de 10 épocas de treinamento.

4.4 Métricas de avaliação
A Distância Cepstral de Mel (MCD) é uma métrica objetiva usada
para quantificar a similaridade espectral entre a fala gerada e a
fala de referência [16]. Ela mede a diferença média nos coeficientes
cepstrais na escala de Mel (MFCCs) entre os dois sinais, fornecendo
uma indicação da distorção espectral.

O MCD é frequentemente utilizado na avaliação de síntese de
fala, cujo objetivo é produzir uma fala sintetizada que soe o mais
próxima possível da fala humana natural. Um valor menor de MCD
indica uma correspondência mais próxima entre as características
espectrais da fala sintetizada e da fala de referência, e, portanto,
uma melhor qualidade de síntese [16].

O log spectral distance LSD compara os espectros de magnitude
(em dB) dos dois sinais, frame a frame. Ele calcula o erro logarítmico
ponto a ponto entre os espectros e a média ao longo do tempo.
Quanto menor o LSD, mais próximos estão os espectros e são de
melhor qualidade [9].

Peak Signal-to-Noise Ratio (PSNR) é uma métrica amplamente
utilizada para medir a qualidade de reconstrução de imagem no
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Métricas (i) Timbre→ Timbre (ii) Timbre→ F0 (iii) F0 → Timbre (iv) F0→ F0
MCD ↓ 464.25 ± 9.35 460.21 ± 7.25 447.84 ± 6.19 444.04 ± 8.17
LSD ↓ 0.48 ± 0.009 0.48 ± 0.0021 0.50 ± 0.006 0.47 ± 0.0079
PSNR ↑ 42.01 ± 0.16 41.96 ± 0.099 42.05 ± 0.096 42.27 ± 0.14
LPIPS ↓ 0.00042 ± 0.000052 0.00046 ± 0.000047 0.00067 ± 0.000061 0.00066 ± 0.000072

Table 1: Resultados para cada configuração de treino e teste: (i) Timbre shifter → Timbre shifter, (ii) Timbre shifter → F0
constante, (iii) F0 constante→ Timbre shifter, (iv) F0 constante→ F0 constante.

nosso caso o mel espectrograma. O PSNR mede a razão entre o
valor máximo possível de um sinal e o ruído que afeta a fidelidade
da sua representação [11].

Learned Perceptual Image Patch Similarity (LPIPS) mede a distân-
cia perceptual entre duas imagens com base em ativações internas
de redes neurais profundas (como VGG ou AlexNet) no nosso caso
usamos a AlexNet. Ao contrário de métricas tradicionais como
PSNR e SSIM, ela não compara pixels diretamente, mas sim rep-
resentações extraídas por redes treinadas. LPIPS baixo imagens
perceptualmente similares, LPIPS alto imagens mais diferentes para
o olho humano, e no contexto da conversão de voz ele serve para se
a imagem gerada continua no domínio do mel espectrograma [23].

5 RESULTADOS E DISCUSSÃO
Foram realizados dois tipos de experimentos. No primeiro, utilizou-
se a estratégia de remover o timbre do áudio, gerando um áudio
neutro, a partir do qual se busca reconstruir o áudio original, neste
caso, representado pelomel espectrograma de referência. O segundo
tipo de treinamento segue amesma lógica, porém substitui omódulo
responsável pela remoção do timbre (timbre shifter) por uma função
que transforma a frequência fundamental (F0) do áudio em uma
constante, resultando em um áudio com timbre fixo.

Durante os testes, seguiu-se omesmo princípio adotado no treina-
mento. Foram avaliadas quatro combinações: (i) treinamento com
timbre shifter e teste com timbre shifter; (ii) treinamento com timbre
shifter e teste com F0 constante; (iii) treinamento com F0 constante
e teste com timbre shifter; e (iv) treinamento com F0 constante e
teste com F0 constante.

Foi utilizada a estratégia de hold-out para cada tipo de experi-
mento, treinando o modelo cinco vezes tanto na configuração com
timbre shifter quanto na configuração com F0 constante, mantendo
os mesmos parâmetros de treinamento em todas as execuções.

A comparação dos resultados na tabela 1 evidencia que a abor-
dagem baseada na fixação da frequência fundamental (F0 constante)
apresenta desempenho superior à técnica com timbre shifter. No
cenário F0→ F0, foram obtidos os melhores valores em três das qua-
tro métricas avaliadas: MCD de 444.04, LSD de 0.47 e PSNR de 42.27,
superando consistentemente os resultados dos demais cenários.
Embora o LPINPS não tenha sido o menor, seu valor (0.00066) per-
maneceu próximo aos melhores obtidos, indicando que não houve
perda significativa nesse aspecto. Esses resultados sugerem que
a fixação do F0, ao eliminar variações de periodicidade, contribui
para uma reconstrução de voz mais fiel e próxima do sinal original.

Outro ponto relevante diz respeito aos resultados apresentados
na métrica LPIPS. Não foi observada uma diferença significativa
entre os diferentes testes realizados. Isso ocorre porque a métrica

utiliza convoluções para avaliar a semelhança entre imagens, cap-
turando informações mais gerais da estrutura visual. Como todas
as imagens comparadas pertencem ao mesmo domínio (espectro-
gramas), o LPIPS tende a apresentar pouca variação.

5.1 Discussão Ética
O avanço das técnicas de reconstrução e conversão de voz, embora
promissor para a reabilitação da fala em pessoas laringectomizadas,
levanta questões éticas relevantes, sobretudo no que diz respeito ao
uso indevido dessas tecnologias. A capacidade de reproduzir a voz
de um indivíduo com alto grau de fidelidade pode ser explorada de
forma maliciosa, resultando em casos de falsificação de identidade,
manipulação de áudios e desinformação. Tais riscos tornam essen-
cial a implementação de estratégias de mitigação que garantam o
uso responsável e seguro dessas ferramentas.

Entre as principais medidas de mitigação, destaca-se a neces-
sidade de diretrizes éticas claras para o desenvolvimento e com-
partilhamento de modelos de reconstrução de voz. Isso inclui o
uso de datasets anonimizados, com consentimento explícito dos
participantes e restrições quanto à finalidade de uso. Além disso, é
fundamental promover a transparência dos modelos por meio de
documentação detalhada e auditorias independentes, assegurando
que os sistemas sejam utilizados exclusivamente em contextos clíni-
cos e de pesquisa.

Outra estratégia envolve o desenvolvimento de mecanismos de
watermarking ou assinaturas digitais embutidas nos áudios sinteti-
zados, permitindo a rastreabilidade e a identificação de conteúdos
gerados artificialmente. Por fim, recomenda-se criar comitês inter-
disciplinares envolvendo profissionais de tecnologia, ética, medicina
e direito, capazes de avaliar continuamente os impactos sociais e
morais decorrentes do uso dessas tecnologias.

Dessa forma, ao mesmo tempo em que se busca o avanço cien-
tífico e a melhoria na qualidade de vida de pessoas com perda de
voz, é imprescindível garantir que tais inovações sejam conduzi-
das dentro de um marco ético sólido, que assegure a integridade, a
privacidade e a dignidade dos indivíduos beneficiados.

6 CONCLUSÃO
Constata-se que ainda há uma escassez de pesquisas voltadas ao
tratamento do problema enfrentado por pessoas que perderam a
laringe. Durante esta investigação, não foi identificado nenhum
dataset contendo amostras de indivíduos que utilizam laringe eletrônica,
o que motivou o uso de bases sintéticas, como demonstrado em
[18], abordagem também adotada no dataset [1].

Outro aspecto relevante foi a comparação entre dois tipos de
treinamento: um empregando a arquitetura original proposta por
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[18], com timbre shifter, e outro substituindo esse módulo por uma
função que fixa a frequência fundamental (F0) do áudio. Essa modi-
ficação resultou em melhorias nas métricas, com ganhos de até 20
pontos e redução no desvio padrão, especialmente na métrica MCD,
indicando maior estabilidade e qualidade na reconstrução vocal.

Como trabalhos futuros, sugere-se construir uma base de dados
real composta por gravações de pessoas submetidas à laringectomia
e que utilizem a laringe eletrônica como meio de comunicação.
Além disso, propõe-se a construção colaborativa de um dataset em
parceria com hospitais e universidades, fomentando a criação de
uma base pública e diversificada que possa apoiar novas pesquisas
na área. Também sugere-se analisar comparativamente diferentes
modelos de conversão de voz (Voice Conversion), a fim de avaliar o
desempenho dessas abordagens tanto em datasets sintéticos quanto
em dataset real.
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