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ABSTRACT

The growing demand for high-efficiency video compression has
driven the development of advanced codecs like AV1, which achieve
superior compression rates but face challenges related to com-
putational complexity. This paper addresses these challenges by
proposing a machine learning-based optimization for the AV1 Local
Warped Motion Compensation (LWMC) tool. This solution uses a
Decision Tree model to skip unnecessary LWMC executions, reduc-
ing its processing time by 52% while maintaining a low impact on
coding efficiency of only 0.21% in BD-BR. Compared to complete
LWMC deactivation, our method demonstrates significantly better
performance, particularly for content with complex motion pat-
terns. To the best of the author’s knowledge, this is the first work in
the literature to explore machine learning-based solutions applied
to the AV1 LWMC tool.
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1 INTRODUCTION

With the ever-increasing demand for high-quality, low-bandwidth
video streaming, video compression is essential for optimizing mul-
timedia content delivery. The last decade has witnessed a significant
shift in media consumption toward streaming services like Netflix,
Amazon Prime, Twitch, and YouTube. As the demand for video
quality increases, compression becomes increasingly complex. Ef-
ficient encoders are essential for reducing storage requirements,
transmission costs, and ensuring smooth playback.

The AV1is an open and royalty-free video codec developed by the
Alliance for Open Media (AOM) [2]. This consortium includes big
tech companies such as Amazon, Cisco, Google, Microsoft, Netflix,
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and many others. Released in 2018 as the successor to Google’s
VP9 [26], AV1 was developed to target high-performance video
delivery, achieving up to 30% better compression efficiency than its
predecessor [13], while maintaining visual quality.

Despite its high compression gains, the AV1 encoding process is
significantly more computationally expensive than its predecessors,
taking about 55 times longer to encode than VP9 [20]. The AV1’s
complexity arises from its advanced prediction, transformation
techniques, and motion compensation methods [3], which improve
compression efficiency at the cost of increased encoding time and
greater computational overhead.

Among AV1’s many tools, Warped Motion Compensation modes
represent a more advanced approach to inter-prediction, employing
affine transformations to model complex motion patterns that go
beyond simple translations, such as scaling, rotation, shearing, and
perspective changes. This allows for more accurate predictions
in scenarios with intricate object movements or camera motion.
AV1 includes two warped motion modes: Global Warped Motion
Compensation (GWMC) and Local Warped Motion Compensation
(LWMC) [21].

This work proposes skipping the LWMC execution when it is
not needed, thereby reducing encoding time and, consequently,
the computational cost of the AV1 encoder. A Decision Tree-based
machine learning model was trained to predict whether the tool
would be used in the encoding process. The model fully complies
with the AV1 standard and does not affect the bitstream syntax.

2 BACKGROUND

Video coding explores temporal redundancy between frames, with
motion compensation being a key technique in modern codecs.
This is typically implemented through block-based motion com-
pensation, where a frame is divided into blocks predicted from
corresponding blocks in a previously encoded frame. The motion
assumed in this process is generally translational, as used in most
modern codecs.

However, real-world motion in videos is often more complex.
Rotations, such as those caused by handheld camera shake, and
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distortions due to object movement, introduce motion components
beyond simple translation. Panning and zooming also contribute to
motion that a purely translational model cannot fully capture. While
smaller block sizes allow for a closer approximation of such motion,
they increase computational costs and reduce coding efficiency.
Examples of these translational and non-translational motions are
presented in Figure 1.

The AV1 codec introduces warped motion models to enhance
prediction efficiency for sequences with strong non-translational
motion. Its Global Warped Motion Compensation (GMWC) tool
explicitly encodes frame-level transformations, particularly for cam-
era motion, applying them selectively when beneficial. Additionally,
the Local Warped Motion Compensation (LWMC) tool estimates
transformations at the block level using neighboring motion vec-
tors, allowing for an adaptive representation of object motion. Both
tools compete with traditional translational Motion Compensation,
ensuring they are only used when they provide a coding advantage
[6]. In these cases, an affine motion model is applied to represent
the transformation more accurately.

The transformation applied in both GWMC and LWMC follows a
homography model. Given a pixel at a position (x, y) in the current
frame, its warped coordinates (x’,y’) in the reference frame can
be computed using the affine transformation in (1):

z; :[hu hi2 h13]; )
1 h21 haz  hos 1

The transformation matrix contains six degrees of freedom, en-
abling flexible warping, such as rotation, scaling, and shearing. The
parameters hy3 and hy3 define the translational component of mo-
tion. To reduce computational complexity, these values are assumed

to represent the motion vector (MV) of the current block (MV; in

Figure 2), where MV; = (22

formation to four degrees of freedom, restricting the mapping to a
parallelogram while reducing processing costs.

Warped motion prediction is performed by projecting each pixel
within a block to a new position in the reference frame. As shown
in Figure 2, the motion vector (uy, uy) = MV is applied to every
pixel in the current block (blue square), producing the warped
coordinates (x’,y") = (x + uy,y + uy). This projection is carried
out for all neighboring blocks (green squares), referencing the same
frame. Since the translational parameters h13 and hy3 are omitted
from explicit signaling, the source coordinates are shifted to the
block center, and the motion vector is directly added to the projected
destination. The model is then simplified to (2):

). This assumption simplifies the trans-
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Figure 1: Example of translational and non-translational
motion.
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Figure 2: Example of MVs of neighboring blocks.

(2)

To obtain the best-fit transformation, the parameters h11, h12, ha1,
and hyy are estimated using a least-squares approach, minimizing
the difference between reference pixels and warped projections.

To refine the motion model, AV1 LWMC decomposes the affine
transformation into two sequential shear operations: one horizontal
and one vertical. This structure facilitates the application of inter-
polation filters, improving accuracy. The decomposition process is
defined in (3):

x’ = h11x + hlzy, y, = h21x + hzzy

h11 hi2 1 0 1+a f 3)
hat  ha| |y 1+6|| 0 1
The final transformation is then expressed as:
| |1 o0 |1+ B|x
y’] - [y 1+6 0 l] [y] 4)

The parameters a, f, y, and § are derived from h11, h12, h21, and
haa, respectively, through subpixel interpolation. The AV1 codec
utilizes 192 predefined 8-tap Finite Impulse Response filters with
1/64"-pel precision to refine the motion estimation. Warped Mo-
tion Compensation is applied to blocks of 8x8 pixels, with the final
prediction constructed from individual sub-blocks.

The affine matrix for the LWMC is built by selecting candidate
blocks that meet specific criteria: overlapping neighbors, a mini-
mum size of 8x8 pixels, and warped motion mode enabled. A motion
vector is then chosen from reference lists, typically the nearest or
newly estimated ones [10].

Next, affine parameters are estimated by collecting motion vec-
tors from neighboring blocks and filtering outliers. If insufficient
valid samples remain, the candidate is discarded. Valid parameters
are estimated, and candidates exceeding thresholds are rejected.

For valid candidates, motion compensation generates the pre-
dicted block. Luminance and chrominance components are pro-
cessed separately — larger blocks use direct warped prediction,
while smaller ones require specialized chroma compensation. With
multiple reference frames, weighted blending combines predictions.
The final transformation uses subpixel interpolation filters to refine
accuracy.

Finally, the rate-distortion cost determines if LWMC improves
compression. If beneficial, it is selected as the motion mode, and
the parameters are encoded.
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3 RELATED WORKS

Few works in the literature target the AV1 Warped Motion Com-
pensation tool. The reference work [21] introduces two coding
modes: Global and Locally Adaptive Warped Motion. Results show
significant coding gains, especially for videos with strong non-
translational motion, making this a key contribution to AV1’s ad-
vanced motion compensation.

The work [7] presents two high-throughput, multiplierless hard-
ware designs for the AV1 LWMC interpolation filters. This is the
first work in the literature focusing on an AV1 LWMC specialized
solution.

The works [17, 18] focus on the AV1 GWMC. The first paper
investigates the impact of modifying the standard libaom GWMC
implementation by replacing algorithms with others used in the
field of computer vision. The second work proposes a machine
learning-based approach to terminate the GWMC execution early
to reduce computational costs.

To the best of our knowledge, no other works targeting AV1
Warped Motion Compensation have been published.

On the other hand, some works are targeting the VVC Affine
Motion Estimation (AME), a tool with the same function as the AV1
LWMC. For example, the works [9, 24, 25] use machine learning
models to reduce the VVC AME computational effort. However,
since the encoding tools are different in VVC and AV1, the solutions
targeting VVC AME are not relevant in this work, since the pre-
sented ideas cannot be applied to the AV1 LWMC machine learning
models implemented in our work.

4 PROPOSED SOLUTION

The LWMC tool in AV1 competes with other inter-prediction meth-
ods like translational Motion Compensation and Overlapped Block
Motion Compensation. The encoder evaluates all options and se-
lects the one with the best Rate-Distortion trade-off. This work
proposes a machine learning model to predict when LWMC will
not be chosen, allowing it to be skipped. This reduces encoding
time and power consumption while maintaining AV1 compatibility
and minimizing impacts on coding efficiency.

A Decision Tree (DT) model was selected to minimize compu-
tational overhead due to its efficiency, hardware-friendly binary
structure, and low processing cost — ideal for real-time encoding.
A DT [5, 12] recursively partitions the feature space using binary
splits on attributes, where each leaf node represents a class predic-
tion. For our binary classification task, the tree predicts whether to
skip LWMC execution.

To achieve enhanced results, the DT was trained using CatBoost
[8, 22], a gradient boosting algorithm that natively handles cate-
gorical features, eliminating pre-processing needs while improving
performance. The model was designed to be independent of video
spatial and temporal resolutions, quantization levels, block sizes,
and other encoder settings. Additionally, the model was tuned to
use 100 iterations, with a max depth of 7, keeping the tree small
and efficient.

Feature selection was conducted using CatBoost’s importance
scoring to identify and remove features. To ensure robustness, it
was combined with cross-validation [23], training models on differ-
ent dataset splits and selecting only the most consistently essential
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features for the final model. Over 600 features — listed in [14] -
were evaluated from the motion mode selection data. After fea-
ture selection, 32 were retained for the final model. Due to space
restrictions, the features are listed in [16].

The training dataset contained 36 video sequences across five
resolutions, while the test dataset included 10 other sequences with
the same resolution distribution. Both datasets were balanced by
class, and all sequences were selected by resolution and content
type according to [1] and sourced from the XIPH database [19].

To construct the datasets, the video sequences were encoded
using a modified AV1 encoder (libaom v3.9.2) to extract features,
processing each sequence at four Constrained Quality (CQ) levels
(20, 32, 43, 55) in Random-Access mode. After model training, the
model was implemented in a modified libaom encoder. This encoder
processed a separate set of 15 sequences (Table 2), matching those
used in the reference work [21].

It is important to emphasize that no video sequence was reused
across datasets to prevent data leakage. The sequences were ran-
domly selected while ensuring a balanced resolution and content
type distribution, as categorized in [1]. A comprehensive list of
sequences in each dataset can be found in [15].

Figure 3 illustrates our method integrated into AV1’s motion
mode decision flow. The process begins with the “Handle Inter
Mode” function, which evaluates the Translational Motion Com-
pensation (MC), Overlapped Block Motion Compensation (OBMC),
and Local Warped Motion Compensation (LWMC) modes to select
the option with the lowest Rate-Distortion (RD) cost. These modes
compete with each other and, although they are executed sequen-
tially in the current libaom implementation, they could theoretically
be processed in parallel.

Subsequently, the encoder may perform additional procedures
- such as transform search [11] and further RD-cost evaluations —
before updating internal statistics with the best RD result obtained
up to that point. This motion mode search is repeated for each
available reference motion vector associated with the current block.
Finally, the motion mode with the best RD performance is selected
and transmitted in the bitstream.

The key innovation is the orange ‘Skip?’ decision step, where our
machine learning model predicts whether to execute LWMC. By
activating LWMC only when beneficial, this approach reduces com-
putation while preserving coding efficiency. The prediction is based

Handle Inter Mode

o —>

l

Translational
MC

A
Update Stats ‘

‘4— Select Best RD

Figure 3: Proposed Method Diagram.
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on the estimated likelihood of LWMC improving RD cost, allowing
selective bypass of unnecessary warped motion compensation.

Table 1 presents the results using standard machine-learning
metrics, where False indicates a no-skip decision and True repre-
sents a skip decision. Correct False predictions prevent discarding
effective predictors, maintaining coding efficiency, while accurate
True predictions enable encoding time savings. Mispredictions in
either class may compromise coding efficiency or fail to achieve
computational gains.

The results shown in Table 1 indicate that the model performs
consistently across both classes, with the same F1-Score (0.85),
suggesting a balanced trade-off between precision and recall. The
False class achieves a slightly higher recall, while the True class
has a marginally better precision, implying that the model is more
effective at correctly identifying negative instances. The overall
accuracy is 0.85. These results were considered satisfactory, and
then a complete evaluation in a real scenario was done, and the
results are presented in the next section.

5 RESULTS

The proposed method was implemented in AV1’s reference software
(libaom v3.9.2) and tested on 30 frames from 15 XIPH database
sequences [19] that were excluded from the training and testing
datasets. Encodings used Random-Access configuration at four CQ
levels (20, 32, 43, 55), with all CPU cores fixed at 100% utilization to
ensure consistent timing measurements.

To better determine the limits of gains and losses of our solution,
an ablation experiment was conducted to investigate the relevance
of the LWMC in terms of coding efficiency. For this, the LWMC
was completely disabled, and the coding efficiency was measured.
Effectively, the skip decision in Figure 3 was consistently enforced,
meaning a 100% time reduction.

Table 2 shows coding efficiency (BD-BR) for each sequence, con-
sidering both experiments. BD-BR [4] measures bitrate variation at
equivalent quality versus an anchor encoder, where negative values
indicate improved efficiency.

Encoding time gains are also presented in Table 2. In this case,
the results demonstrate the gain percentage when comparing our
LWMC implementation to the original AV1 version. Negative values
show faster LWMC execution.

The ablation experiment showed a 3.41% average BD-BR increase,
demonstrating the content-dependent behavior of LWMC, with
significant BD-BR variation, particularly in high-motion sequences
like Station 2 and Blue Sky. In contrast, low-motion sequences like
BQ Square and Party Scene exhibited minimal coding efficiency
degradation. Then, the standard deviation (SD) of LWMC coding
efficiency is high, as presented in Table 2.

The results of our method, presented in Table 2, showed an
average BD-BR penalty of 0.21%, outperforming the complete deac-
tivation of LWMC by 16 times. Besides, our method also reached a

Table 1: Model Classification Report

Class | Precision | Recall | F1-Score | Accuracy
False 0.84 0.87 0.85 0.85
True 0.86 0.83 0.85 ’
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Table 2: Results of the Proposed Method

BD-BR (%)

Group Sequence Ablation Ours LWMC (%)
BQ Square +0.02 -0.06 -75.87
Flowervase +2.71 +0.66 -63.15

lowres | Tempete +0.75 +0.17 -59.71
Waterfall +0.51 +0.02 -61.58
Blue Sky 360p +6.67  +0.07 -67.34
Aspen +1.01 +0.08 -38.19

midres Into Tree 480p +2.10 +0.09 -30.23
Party Scene +0.18 -0.01 -50.39
Station 2 480p +7.66 +0.24 -34.19
Driving POV +1.51 +0.49 -46.21
Into Tree 720p +3.21 +0.38 -49.77

highres Into Tree 1080p +2.32 +0.32 -48.93
Mobcal +2.70 +0.34 -68.21
Blue Sky 1080p +4.05 +0.14 -43.94
Station 2 1080p | +15.77  +0.72 -44.05
AVG +3.41 +0.21 -52.12

SD 4.07 0.23 13.37

lower standard deviation. Surprisingly, sequences BQ Square and
Party Scene presented small coding efficiency gains, which were
not expected.

When considering encoding time, our method reduced the av-
erage LWMC execution time by more than 52%, with consistent
results across the evaluated video sequences. These values already
consider the overhead of the developed method. The execution cost
of our method was measured and was approximately 11% of the
LWMC execution.

The encoding time and coding efficiency results demonstrate
the effectiveness of the proposed method. To the best of the au-
thors’ knowledge, no prior work in the literature has specifically
addressed the reduction of computational effort for the AV1 LWMC,
as discussed earlier. Most related works, such as [9, 24, 25], focus
on optimizing the affine motion compensation tool in the VVC
standard. Then, a fair comparison is impossible.

6 CONCLUSION

This work presented a machine learning-based method to reduce the
AV1 Local Warped Motion Compensation (LWMC) computational
effort while preserving coding efficiency. Using a Decision Tree
model, a 52% LWMC time reduction was achieved with only 0.21%
BD-BR increase, significantly outperforming complete LWMC deac-
tivation (3.41% BD-BR penalty). Our adaptive approach maintains
AV1 compliance and shows particular effectiveness in complex-
motion sequences. To our knowledge, this work represents the first
machine learning-based optimization specifically targeting the AV1
LWMC tool.
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