Using Semantic Web for Selection
of Web Services with QoS

Luis H. V. Nakamura
Institute of Mathematics and
Computer Science
University of Sdo Paulo (USP)
S&o Carlos, Brazil
nakamura@icmc.usp.br

Julio C. Estrella
Institute of Mathematics and
Computer Science
University of Sdo Paulo (USP)

_ Sé&o Carlos, Brazil
jcezar@icmc.usp.br

Marcos J. Santana
Institute of Mathematics and
Computer Science
University of Sdo Paulo (USP)
S&o Carlos, Brazil
mjs@icmc.usp.br

Regina H. C. Santana
Institute of Mathematics and
Computer Science
University of Sdo Paulo (USP)
Sao Carlos, Brazil
rcs@icmc.usp.br

ABSTRACT

This paper introduces a module named UDOnt-Q (Universal
Discovery with Ontology and QoS) that uses the Semantic
Web and an Ontology based on Service Level Agreements
(SLA) and attributes of Quality of Service (QoS). In order
to classify and select Web Services without drastic changes
in the standard Web Service architecture, two semantic al-
gorithms were developed and included in the module. At
the end, a performance evaluation was executed to compare
their performance in different settings, trying to identify an
efficient way to promote the selection of Web Services.

Categories and Subject Descriptors

H.3.5 [Information Systems|: Online Information Ser-
vices — Web based service

General Terms

Algorithms, Languages, Measurement, Performance

Keywords
Semantic Web, Web Service, QoS, UDDI

1. INTRODUCTION

In the current context of the Web, more companies do
business through this virtual environment. Thus, a large
number of Web applications are becoming available and de-
manding greater attention on two main points: (1) Interop-
erability and (2) Quality.

WebMedia'l 1: Proceedings of the 17" Brazilian Symposium
on Multimedia and the Web. Short Papers.

October 3 -6, 2011, Florianopolis, SC, Brazil.

ISSN 2175-9650.

SBC - Brazilian Computer Society

39

Interoperability is a key issue when there are several ap-
plications developed in various programming languages and
running on different architectures. For example, it is not
acceptable the fact that an online trading company cannot
communicate with the operator credit card of its client be-
cause their applications were not developed with the same
programming language. In this case, the client is not wor-
ried if the implementation of e-commerce companies do not
understand the language or communication protocol used
by the operator, for him the purchase must be conducted
as transparently as possible. The lack of interoperability
between different systems is solved with the use of Web
Services, which adopt a standard communication protocols
based on Web.

The Quality of Services (QoS) provided on the Web should
also be observed by its developers and providers. Ensuring
quality of service in Web Services is not a trivial task [§],
as well as in any distributed system. Web Services are sub-
mitted to various failures that may occur during the process
of the service and transport of the information over the net-
work. Therefore, for a service to obtain quality, it must have
the assurance that other important factors, such as availabil-
ity, latency, security, etc., are provided. These factors are
the attributes of QoS, that despite they are not functional,
i.e. not having an effect on operation of the service, they
become essentials when the customer begins to demand a
quality of service.

This paper presents a proposal of a Semantic Web applica-
tion that use an ontology based on Service Level Agreements
(SLA) and Quality of Services (QoS) attributes to classify
and select Web Services that have the quality required by
the clients. The ontology created is used as a knowledge
base and it can be accessed by a module called UDOnt-
Q (Universal Discovery with Ontology and QoS) that was
developed as a platform for algorithms that use semantics
become able to perform the search for quality services.

This article is composed of five sections. In section 2 the
related work are mentioned. In section 3, the UDOnt-Q and
the ontology are briefly explained. In section 4 is carried out
the performance evaluation and analysis of the results, and
in the section 5 the conclusion is commented.



2. RELATED WORK

A SOA architecture for Web Service [1], in its original
specification, does not present preoccupation with the qual-
ity of service. The UDDI (Universal Description, Discovery
and Integration) is a register used in the architecture for
Web Service to store functional information about the ser-
vices, such as the interface description (WSDL - Web Ser-
vice Definition Language) [4]. However, it lacks the ability
to record information that are not functional, so it has no
information about the QoS services [11].

Furthermore, the services can have different levels of QoS
and can become a challenge to find out which ones have the
appropriate QoS for a particular activity. To deal with this
limitation, several architectural models are discussed in the
literature [13], [2]. Some of these works propose the use of
mechanisms for managing and monitoring service providers.

Another approach discussed for the implementation of
QoS is through the use of Semantic Web. The semantics pro-
vides not only the search for explicit information, but also
those that can be deduced by an inference engine. Ontolo-
gies have been used for descriptions of knowledge domains
that can be shared and help the semantic interoperability in
different QoS models and languages. Several works suggest
the use of ontologies to represent QoS in Web Services [10].
But, some of them are not implemented in a real environ-
ment, and when they are, they do not usually present the
results of a performance evaluation.

Targeting a more specific point (the quality of services
in Web Services), there are studies [11] [12] which devel-
oped ontologies, but do not provide information about ser-
vice agreements. The use of agreements is one of the most
reliable ways to achieve a good level of QoS [6]. On this
account, both the client and the service provider should
monitor themselves and conduct periodic evaluations to de-
termine whether the goals stated in the contract are being
achieved, nevertheless the service provider is subject to fines
established in the pre-contract if the QoS level required by
the customer is not satisfactory. A proposed ontology based
in modeling contract SLA (Service Level Agreement) is the
SLAOnt [3], which works with the parties involved (clients
and providers), obligations and services. SLAOnt is the clos-
est ontology with the ones that is presented in this article,
but in UDOnt-Q, there is the definition of clients and ser-
vices classes that are inferred according to the values as-
signed of QoS required in the agreements.

3. UDONT-Q COMPONENTS
3.1 UDont-Q Module

The UDOnt-Q module was created to serve as a plat-
form for the search algorithms and semantic selection. It
is designed to be reusable and configurable to accept new
algorithms (not only semantics), requiring minimal changes
to source code. It was developed with the Java program-
ming language to be portable to different platforms. The
use of this language is also justified by the fact that several
semantic tools make available APIs (Application Program-
ming Interfaces).

During the module construction, the inference engine (rea-
soner) called Pellet was used to perform the consistency
check and execute inference on ontologies, including those
created in the OWL language. Pellet is based on algorithms
developed for expressive logics description and includes the

40

characteristics defined in OWL [7]. The UDOnt-Q is divided
into components (java packages), each of them performs a
specific function, the main ones are:

e Command Components (CC): Responsible for lead-
ing, directing and analyzing the requests of the clients.

e UDDI Components (UC): responsible for the ac-
cess to the UDDI registry.

e Common Information Shared (CIS): responsible
for maintaining the information in the ontology and
the UDDI registry.

e Ontology Components (OC): responsible for search-
ing for QoS service in the ontology, using the following
semantic algorithms:

— OntAlgorithmObject: this algorithm uses the
API provided by Jena to manipulate the informa-
tion in the ontology programmatically.

— OntAlgoritmSPARQL: it makes use of pack-
ages that allow the use of query language SPARQL-
DL a variant of SPARQL (Simple Protocol and
RDF Query Language) [9].

3.2 UDOnt-Q Ontology

The ontology for the module UDOnt-Q was created in or-
der to represent the key elements involved in the field of Web
Services with QoS. Some of these elements deserve attention:

e Clients: Elements that order quality services. For
this, they sign agreements with service providers.

e Providers: They must provide the Web Services with
the quality agreed.

e Services: Web Services provided by Providers and
consumed by Clients. Web Services should be exam-
ined for their functional characteristics and particu-
larly for the non-functional (QoS attributes) be speci-
fied.

e Agreements: Agreements between clients and providers.
The client agreement indicates which is the QoS de-
sired to him.

e QoS: Quality of service belonging to a certain service
or that contracted in a particular agreement. Addi-
tionally, it contains levels and quality attributes.

Each element is represented with a class in the ontology of
UDOnt-Q that may has subclasses forming a hierarchy class.
Furthermore, they can be linked through properties that are
known as “object properties”. There is also the “data proper-
ties” which relate a class or instance of a class to a data type
(e.g. an integer). These properties can have attributes or
characteristics that express information about the relation-
ship allowing the machine to be able to “understand” the
semantic meaning of the relationship.

The Client, Service and QoS classes have three subclasses
that correspond to the clients, services and QoS (Gold, Silver
and Bronze). What determines whether a service belongs
to a particular subclass is its QoS (related by the property
hasServiceQoS). Moreover, the client is related to a type of



agreement which may belong to three subclasses (HeavyA-
greement, MediumAgreement and LightAgreement). KEach
agreement is related to a QoS that determines its subclass.
To determine whether QoS is Gold, Silver or Bronze, the in-
ference engine checks the values (or levels) of the attributes
in each QoS and by comparisons with the restrictions set
forth in the “Equivalent Classes” it determines what is its
subclass. For example, some constraints (or conditions) for
any other element of the ontology be an equivalent element
to a QoSGold class can be:

e Have the QoS class as “superclass”, or be a subclass of

QoS.

e Have the value of property hasResponse TimeContent-
Value less than or equal to 500.00 (meaning that the
response time should be less than or equal to 500 mil-
liseconds).

e Have the value of property hasAvailabilityContent Value
greater than or equal to 98.00 (meaning having an
availability of service greater than or equal to 98% of
the time)

Likewise, there are also restrictions on equivalent classes
to subclasses QoSSilver and QoSBronze, but their values of
the ranges are different in each property. Once consistent,
the ontology can be used as a knowledge base for semantic
search and the classification through inference that allows
new individuals (instances of a class) be created to represent
the real world without the need to be previously labeled with
respect its quality. To find the correct service, the algorithm
must seek individuals who represent clients in the ontology
and find the services that have a QoS in the same subclass
of the client agreement’s QoS.

4. PERFORMANCE EVALUATION

4.1 Environment Configuration

The Environment Configuration details the elements of
hardware and software used in the experiments. Such infor-
mation are interesting because it facilitates the reproduction
of the environment used during the experiments.

The Table 1 shows the computing infrastructure and Ta-
ble 2 lists the main software elements used in the perfor-
mance evaluation.

Table 1: Hardware Elements

Component Quantity Configuration

Providers 5 Intel QuadCore Q6000 (2.4GHz)

2GB RAM, HD 120GB, 7200RPM

Clients 3 Intel QuadCore Q9400(2.66GHz)

4GB RAM, HD 500GB, 7200RPM

UDOnt-Q and 1 Intel QuadCore Q9400(2.66GHz)

UDDI 8GB RAM, HD 320GB, 7200RPM
Switches 2 Gigabit 3Com Baseline: 2916 and 2913

Table 2: Software Elements

Element Version
10.04 kernel 2.6.32-26

Linux Ubuntu Server

Apache Web Server 2.2.14

Apache Tomcat 6.0.26

Apache Axis2 1.4.1

JjUDDI 0.9rc4
MySQL Server 5.1.41-3ubuntul2.8

Pellet 2.2.2

Jena 2.6.3

Log4J 1.2.16

41

4.2 Experiment Design

The design of experiments seeks to obtain maximum in-
formation with a minimum number of experiments [5]. This
experimental planning can facilitate the understanding of
the behavior and performance of the modules in certain sit-
uations. It also seeks to identify what are the possible re-
sponses of the system to be analyzed. In the experiments
were considered as response variables the load of CPU uti-
lization and the time spent by the module to find the right
service, this time is referenced in this article as the response
time of the module.

Another point to be identified is in which situations the
module should be evaluated, i.e., to determine which factors
are influencing the system performance and which levels of
each factor may be of interest.The factors and levels chosen
in this planning of experiments are listed in Table 3.

Table 3: Factors and Levels of the Experiments
Factors Levels

Number of Services 300 and 600

(Factor A)

Number of Clients 15 and 30
(Factor B)
Algorithm OntAlgorithmObject and
(Factor C) OntAlgorithmSPARQL

The technique of complete 2% factorial design was used
and determines that each factor (k) has at most two levels.
Each variation is a new experiment that should be analyzed.
Thus, the complete factorial design to evaluate the module
is of 23 possible combinations shown in Table 4. In the
experiments performed were considered two constraints of
equivalent classes (properties): response time and availabil-
ity.

The hardware elements available and listed in Table 1 were
not sufficient to represent 15 and 30 clients, so it was nec-
essary to create threads on the client machines to represent
the number of concurrent requests in the proposed experi-
ments (5 or 10 threads per client) and each experiment was
replicated 30 (thirty) times.

Table 4: Experiments, Factors and Levels

Exp A (N. Services) B (N. Clients) C (Algorithm)
1 300 15 OntAlgorithmObject
2 300 15 OntAlgorithmSPARQL
3 300 30 OntAlgorithmObject
4 300 30 OntAlgorithmSPARQL
5 600 15 OntAlgorithmObject
6 600 15 OntAlgorithmSPARQL
7 600 30 OntAlgorithmObject
8 600 30 OntAlgorithmSPARQL

4.3 Result Analysis

The results obtained in the experiments were analyzed
statistically, being possible to find the mean, standard de-
viation, upper and lower limits and the confidence interval
at 95% confidence for each response variable chosen in the
previous section (CPU load and response time).

The experiments results can be seen in the graph of Fig-
ure 1. It shows that doubling the number of concurrent
clients, there is on average, an increase in the response time
of the module. The same occurs when the number of ser-
vices from 300 to 600 doubles. The behavior of the algo-
rithms was similar, but the response time were higher when
the OntAlgorithmSPARQL was used. This shows that the
OntAlgorithmObject has better performance. The reason for



this result is that its development was done specifically for
the ontology of UDOnt-Q. While the OntAlgorithmSPARQL
requires an additional java package for its operation and its
characteristics allow it to be flexible with the changes in the
structure of the ontology (an amendment only requires the
reformulation of the query).

M Average (sec) | Confidence
Interval (sec)

3.5000 3.2379

0.3500 -

Logarithmic scale (sec)

3.17155)
1.48313 1.31037
0.39042 0.38433[I0-46049

15x300 15x600 15x300 15x600 30x300 30x600 30x300 30x600
Object Object Sparql Spargql Object Object Sparql Sparql

0.0350

Figure 1: Comparison among concurrent clients,
services and algorithms.

Another variable response observed during the experiments
was the average of the load of CPU utilization. This load
was measured using a Perl script and the results are illus-
trated in Figure 2. It is noteworthy that in these results
can be included the processing fees by the operating sys-
tem, so to minimize this influence were considered only the
rates that exceeded 1% of CPU utilization. Furthermore, it
is possible to observe that the CPU usage is higher when
the algorithm OntAlgorithmSPARQL is used. The largest
number of clients also increases the CPU utilization.

B Average (%) | Confidence
Interval (%)

80.00

13.3701

15x300 15x600 15x300 15x600 30x300 30x600 30x300 30x600
Object Object Sparql Sparql Object Object Sparql Sparql

Figure 2: CPU Load during the experiments.

S. CONCLUSION AND FUTURE WORK

This work presented the creation of an ontology specifi-
cally designed to serve as a knowledge base for research and
selection of Web Services with quality of service. This on-
tology is accessed by the module UDOnt-Q that actually
performs the search and selection of Web Services, so it uses

42

algorithms that make use of Semantic Web resources. The
results obtained with the algorithm OntAlgorithmObject en-
courage their use. Regardless the algorithm used, the infer-
ence process allows that new clients and services be created
in the ontology to represent the real world without requiring
changes to the source code.

6. ACKNOWLEDGMENTS

The authors thank the Brazilian Foundation FAPESP for
the financial support given to this work.

7. REFERENCES

[1] T. Erl. SOA Principios de design de servigos. Pearson
Prentice Hall PTR, 2009.

[2] J. C. Estrella. WSARCH: Uma arquitetura para a
Provisao de web services com Qualidade de Servigo.
Phd thesis, ICMC-USP, Sao Carlos, SP, 2010.

[3] K. Fakhfakh, T. Chaari, S. Tazi, K. Drira, and
M. Jmaiel. A comprehensive ontology-based approach
for sla obligations monitoring. The Second
International Conference on Advanced Engineering
Computing and Applications in Sciences, 2008.

[4] P. Farkas and H. Charaf. Web services planning
concepts. Journal Of .net Technologies, pages 9—12,
2003.

[5] R. Jain. The Art of Computer Systems Performance
Analysis: techniques for experimental design,
measurement, simulation, and modeling. Wiley, 1991.

[6] B. Kandukuri, V. Paturi, and A. Rakshit. Services
computing. SCC ’09. IEEE International Conference,
pages 517 — 520, 2009.

[7] H.-U. Krieger, B. Kiefer, and T. Declerck. A hybrid
reasoning architecture for business intelligence
applications. In Hybrid Intelligent Systems, 2008. HIS
’08. Eighth International Conference on, pages 843
848, 2008.

[8] S. Lee and D. Shin. Web service qos in multi-domain.
In Proceedings of Advanced Communication
Technology, - ICACT, 2008.

[9] E. Prud’hommeaux and A. Seaborne. Sparql query
language for rdf, 2008. Available on:
http://www.w3.org/TR/rdf-sparql-query/. Accessed:
05/03/2011.

[10] V. X. Tran and H. Tsuji. A survey and analysis on
semantic in qos for web services. In.Proceedings of the
international Conference on Advanced Information
Networking and Applications, 2009.

[11] Z. Xu, P. Martin, W. Powley, and F. Zulkernine.
Reputation-enhanced qos-based web services
discovery. Proceedings of the 2007 IEEE International
Conference on Web Services (ICWS), 2007.

[12] G. Ye, C. Wu, J. Yue, and S. Cheng. A qos-aware
model for web services discovery. Proceedings of the
2009 First International Workshop on Education
Technology and Computer Science, 2009.

[13] S. Zilora and S. Ketha. Think inside the box!
optimizing web services performance today [web
services in telecommunications, part ii]. I[EEE
Communications Magazine, 46(3):112 =117, march
2008.



