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ABSTRACT
Understanding social influence and its related phenomena is a ma-

jor challenge in the study of the human collective behavior. In the

recent years, the availability of internet-based communication and

interactivity data has enabled studies on social influence at an un-

precedented scale and time resolution. In this work, we study how

individual behavior data may provide knowledge regarding influ-

ence relationships in a social network. We define what we call the

influence network discovery problem, which consists of identify-

ing influence relationships based on user behavior across time. Our

objective is the design of accurate models that are able to exploit

different types of behavior in order to discover how people influ-

ence each other. Several strategies for influence network discovery

are proposed and discussed. Moreover, we present a case study on

the application of such strategies using a follower-followee network

and user activity data from Twitter, which is a popular microblog-

ging and social networking service. We consider that a follower-

followee interaction defines a potential influence relationship be-

tween users and the act of posting a tweet, a URL or a hashtag

represents an individual behavior on Twitter. The results show that,

while tweets may be used effectively in the discovery of influence

relationships, hashtags and URLs do not lead to good performance

in such task. Moreover, strategies that consider the time when an

individual behavior is observed outperform those that do not and by

combining such information with the popularity of the behaviors,

even better results may be achieved.
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1. INTRODUCTION
Social influence has been argued to play an important role in our

society. The basic principle of social influence is that people can af-

fect each other through social ties. Therefore, someone’s decisions

are often driven by the opinion or influence of people from his/her

social circle. Previous work has found that 2/3 of the economy of

the United States is supported by the “word-of-mouth” dissemina-

tion process [9]. Moreover, from voting to purchasing decisions,

from information propagation to innovation diffusion, social influ-

ence has been an intriguing matter and important research topic in

social sciences, psychology, and, more recently, computer science.

Understanding social influence and its related phenomena is a ma-

jor challenge in the study of the human collective behavior. From

a computer science perspective, social influence is a key aspect

in the design of effective recommendation systems, viral market-

ing/advertising strategies, and information diffusion mechanisms.

An important challenge in the study of influence and information

diffusion in social networks is the lack of data at a large enough

scale. Most of the social network datasets available for research

contain just static topological information (i.e., persons and rela-

tionships) and do not contain key information for analyzing influ-

ence and information diffusion. Further, social influence analysis

requires temporal information that indicates, for instance, eventual

association of persons to information items. As a consequence of

such scarcity, a significant part of the existing models and analy-

sis of social influence are based on synthetic data, which is fre-

quently based on epidemiological models [13, 17]. Nevertheless,

previous work has shown that such assumption may not be appro-

priate [12]. However, this scenario changed in the recent years,

as a consequence of the availability of internet-based communica-

tion and interactivity data, resulting in studies on social influence

on an unprecedented scale and time resolution. Blogs, news me-

dia websites, viral marketing campaigns, photo and video sharing

services, and online social networks in general have provided rich

datasets that supported several interesting findings regarding social

influence and information diffusion in real scenarios.

In this work, we make use of a large scale dataset in order to study

how individual behavior data can provide knowledge regarding in-

fluence relationships in a social network. Table 1 illustrates what

we call individual behavior data. For a set of individuals (u1-u5)
we define a set of possible behaviors (b1-b4). Moreover, we also

define a set of timestamps t1-t4. Each individual may express some

of the defined behaviors in the time interval considered. The indi-

vidual u1 acts as b1 at time t1, for example. Examples of behaviors

in real settings include purchasing a given product, expressing an

opinion, or posting a comment in a blog.
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user behavior time

u1 b1 t1
u1 b2 t2
u2 b1 t2
u2 b2 t2
u2 b3 t2
u1 b3 t3
u3 b2 t3
u3 b1 t3
u3 b3 t3
u4 b3 t3
u1 b4 t4
u5 b1 t4
u5 b4 t4

Table 1: Example of individual behavior data

This paper studies how influence relationships can be discovered

based on such individual behavior information in social networks.

Based on the well-accepted hypothesis that social influence affects

individual behavior significantly, we track what people do over time

in order to learn implicit influence ties among them. Our objective

is the design of accurate models that are able to exploit different

types of behavior in order to discover how people influence each

other.

Figure 1: Example of an influence network

An influence relationship defines whether the behavior of a given

individual is affected by the behavior of another one. These rela-

tionships integrate what we call an influence network, which may

be represented by a directed graph G(V,E) where each vertex

v ∈ V corresponds to an individual and each edge (vi, vj) ∈ E
represents an influence relationship from vj to vi. Figure 1 shows

an example of an influence network involving the individuals in

the illustrative individual behavior dataset from Table 1. In such

network, individuals u5, u3, and u2 are influenced by u1. The

relationship between u1 and u2 is of mutual influence.

This work focuses on the problem of inferring how individuals in-

fluence each other, as shown in the example from Figure 1, using

individual behavior data, such as in the dataset from Table 1. For-

mally, given two individuals ui and uj , lets consider an inference

model that considers how many times uj presented the same be-

havior of ui in a subsequent instant of time in order to evaluate

whether the behaviors of ui might influence the behaviors of uj .

The individual u3, for example, repeated the behavior of u1 twice

(b1 and b2). On the other hand, u5 never behaved like u3. There-
fore, such model would infer that u3 is influenced by u1 and u5
is not influenced by u3. Along this paper, we study models for the

discovery of influence relationships based on individual behavior

information.

We present an exploratory case study using influence network and

user behavior data from Twitter1, for the purpose of promoting an

initial investigation. Twitter is a popular microblogging and social

networking service. In Twitter, a user represents an individual and

influence is expressed, in our approach, through the relationships

associated with the act of posting a particular content, which can

be a tweet, a URL, or a hashtag, which is a way of categorizing

tweets through a word prefixed with a hash sign (#). Our analysis

of such scenario reached some interesting conclusions that include:

• Tweets are discriminative in the discovery of influence rela-

tionships. However, the use of URLs and hashtags does not

achieve good performance in such task.

• The order in which the individuals perform a given behavior

is a relevant information of influence network discovery.

• Inter-posting time is more useful than co-occurrence infor-

mation in the identification of influence edges. However,

when the order in which the behaviors are expressed is known,

strategies that consider co-occurrence are more effective than

those that consider only inter-activity time information.

The remaining of this paper is organized as follows. Section 2 dis-

cusses some topics related to the the problem of discovering in-

fluence relationships from user behavior data. In Section 3, we

characterize important aspects of the dataset used in this work. In

Section 4, we present several strategies for identifying influence re-

lationships based on user behavior along time. Such strategies are

evaluated in a case study using data from Twitter in Section 5. The

work finishes with the conclusions and future work in Section 6.

2. RELATED WORK
In this section, we discuss related work on influence and informa-

tion propagation in social networks, and link prediction, which are

research topics related to this work.

2.1 Influence and Information Propagation in

Social Networks
Social influence and information propagation have become popu-

lar research topics in Computer Science in the recent years. We

divide the existing work on influence and information propagation

into three main groups: (1) understanding influence, (2) character-

izing influence and information propagation in real networks, and

(3) detecting influentials.

Understanding influence: Few people would argue that social in-

fluence does not exist or does not affect our society. However, there

is no consensus regarding how influence occurs and may be mea-

sured. A significative effort has been made on distinguishing social

influence from other phenomena, such as homophily and confound-

ing [1, 2, 14]. Moreover, while most of the research community

has supported the idea of the existence of a minority of influentials

with the power to determine the decisions of social networks, others

1http://twitter.com
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have argued that the role played by influentials should be studied

more carefully [4, 26].

Characterization: Previous work has characterized social influ-

ence and information propagation (a.k.a., information diffusion)

in several real-life scenarios such as blogs [18], viral marketing

campaigns [16, 24, 12], knowledge-sharing sites [23, 12], photo-

sharing services [7], and Twitter [6]. Despite the absence of a stan-

dard methodology for measuring social influence and information

propagation, such studies have discovered interesting empirical ev-

idences regarding how individuals affect each other and how infor-

mation spreads in social networks.

Detecting influentials and maximizing influence: Selecting a sub-

set of nodes that are able to maximize the influence in a social

network [13, 8] is an optimization problem that has attracted the

interest of the research community in the recent years. A related

problem is the selection of nodes in order to detect outbreaks in

networks [17]. In [5] and [27], the authors propose techniques for

ranking users in terms of their influence on Twitter.

2.2 Link Prediction
Link prediction is a relational learning problem presented in [19].

It consists of predicting links that will be added to the network in

the future, based on a current snapshot of the network. The basic

idea is to compute simple proximity metrics, such as distance and

number of common friends, for pairs of nodes in order to predict

new links. More recent approaches [25, 20, 3] proposed machine

learning techniques for link prediction. Such approaches assume

the availability of part of the network in order to predict new links.

The problem of discovering influence relationships based on user

behavior data can be seen as a particular case of the classical link

prediction task. However, different from most of the link prediction

methods we do not assume the availability of any initial informa-

tion regarding the structure of the influence network.

In [15], the authors introduce the cold start link prediction problem,

which is a version of the link prediction problem when the network

is totally missing. The idea is to consider information about the

nodes in order to predict the network structure. Such problem is

very close to the influence network discovery problem studied in

this work. However, while they consider friendship relationships,

which are undirected, we consider directed influence relationships.

The problem of inferring networks of diffusion and influence was

proposed by [10]. The authors present an approximate algorithm

for the identification of the optimal network that explains individ-

ual transmissions over the set of nodes. This work has a different

focus, which is understanding how different types of individual ac-

tivity across time may be used as evidences in order to discover

influence relationships. Moreover, while we present a case study

using data from Twitter, they have applied their technique to infer

how information flows through media sites and blogs.

In [11], the authors propose models for computing influence prob-

abilities based on individual activity and social network data. Such

influence probabilities measure how the actions of a user will be

influenced by the actions of its neighbohrs. They applied the pro-

posed models to a social graph from Flickr, achieving good results

in the prediction whether and when individuals perform a given ac-

tion. This paper considers a different problem in which there is no

social network data available. Moreover, instead of computing in-

fluence probabilities, our problem consists of identifying influence

relationships in a social network.

3. TWITTER DATA CHARACTERIZATION
This paper studies how individual behavior data can be employed in

the discovery of influence relationships in social networks. We use

a dataset crawled from Twitter. The dataset is a sample of tweets

related to the Brazilian Soccer Championship, which is one of the

biggest sport events in Brazil.

Twitter is a social network and microblogging website. In the re-

cent years, Twitter has been extensively used in the study of social

influence and information propagation in social networks. The next

sections give an overview of the individual behavior and the influ-

ence network data employed in this work.

3.1 Individual Behavior
We call individual behavior data any information that represents

particular individual activities performed across time. Examples of

individual behavior include buying a given product, voting for a

particular candidate, or practicing a given sport activity. Table 1

shows an illustrative example of individual behavior data where in-

dividuals u1-u5 can act as b1-b4. The availability of internet-based

communication and interaction data in the recent years enables the

analysis of rich individual behavior data in large scale. Examples

of online individual behavior include buying a particular product in

an e-market (e.g., Amazon, eBay), watching or uploading a specific

video through video-sharing website (e.g., Youtube, Vimeo), post-

ing or commenting about a particular topic on a blog website (e.g.,

Blogspot, Blogger), and exchanging a message regarding a particu-

lar subject in an online social network (e.g., Facebook, MySpace).

This work uses individual behavior data crawled from Twitter. We

consider three types of content generated by users: tweets, URLs,

and hashtags. We distinguish expanded from non-expanded URLs

in our study, since compressing URLs is a common practice in or-

der to generate short messages in Twitter. Table 2 shows important

statistics about our dataset. It contains a signficative amount of

users, tweets, hashtags, URLs, and edges. Figure 2 presents the

popularity, activity, and inter-posting time distributions of tweets,

non-expanded URLs, expanded URLs, and hashtags in our dataset.

#tweets 2,956,941

#users 318,627

#URLs 508,538

#hashtags 430,084

#edges 269,217,548

Table 2: Dataset description

The popularity distributions of the contents in our dataset (Figures

2a, 2b, 2c, and 2d) are heavy-tailed, as expected. The shape of

the distributions is characteristic of power-law distributions. Most

of the content shared reach few users and only a small fraction

of the tweets, URLs and hashtags get popular. The top popular-

ity tweet, non-expanded URL, expanded URL, and hashtag, have

reached 4,757, 3,906, 14,996, and 8,268 users, respectively. Along

this paper, we investigate the impact of the frequency of a given

behavior over its power in predicting influence relationships.

The activity distributions (Figures 2e, 2f, 2g, and 2h) are also heavy-

tailed. In general, most of the users post few tweets, URLs and
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(a) tweets (b) non-expanded URLs (c) expanded URLs (d) hashtags

(e) tweets (f) non-expanded URLs (g) expanded URLs (h) hashtags

(i) tweets (j) non-expanded URLs (k) expanded URLs (l) hashtags

Figure 2: Popularity, activity, and inter-posting time distributions of tweets, URLs and hashtags in Twitter

hashtags. On the other hand, few users have posted more than

1,000 tweets, URLs, and hashtags in our dataset. Since this pa-

per focuses on the problem of discovering influence relationships

based on user activity, we are specially interested in active users,

which may produce significative evidences regarding the influence

network.

Figures 2i, 2j, 2k, and 2l show the inter-posting time distributions

for tweets, non-expanded URLs, expanded URLs, and hashtags,

respectively. Inter-posting time also presents heavy-tailed distribu-

tions, what means that sequential posts of a given tweet, URL or

hashtag are usually submitted in a short period of time. Moreover,

few tweets, URLs and hashtags present long inter-posting time. In

Section 4, we propose strategies to consider the inter-activity time

in the discovery of influence relationships.

Along this section, we have presented the individual behavior data

used in this work, which is a set of tweets, URLs and hashtags from

Twitter. In the next section, we describe the influence network data

that is based on follower-followee interactions in Twitter.

3.2 Influence Network
This section characterizes the influence network employed in this

work, which is composed by follower-followee interactions in Twit-

ter. If a user ui follows a user uj , ui will receive all the posts of uj

on his or her Twitter page. Therefore, a follower is potentially influ-

enced by his or her followee. Twitter is an interesting mechanism

for the spread of information between its users, enabling online in-

fluence relationships among them.

In this paper, we employ a follower-followee network, composed of

318,627 users and 269,217,548 edges, crawled from Twitter. The

users in the network are those who have posted, at least, one tweet

from the user behavior dataset described in the last section. Figure

3 show the indegree and outdegree distributions from our network.

The indegree of a user in our influence network corresponds to the

number of followers he/she has. Figure 3a shows that the indegree

may be characterized by a power-law distribution. Most of the users

have few followers and only few of them are followed by many.

Power-law degree distributions occur in several real-life networks

and Twitter was not expected to be different [21]. The outdegree

of a user represents the number of followees it has. Similarly to

the indegree distribution, the outdegree distribution also present a

slope characteristic of power-law distributions. The top indegree

and outdegree users in our dataset have a degree of 30,146 and

12,549, respectively.
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(a) indegree (b) outdegree

Figure 3: Degree distributions

Since follower-followee relationships are asymetric, it is interest-

ing to check the reciprocity rate of such relationships in Twitter.

The reciprocity rate is the fraction of edges (ui, uj) for which there

is a reciprocal edge (uj , ui). We found a reciprocity rate of 41%

in our dataset. While some of the strategies for influence network

discovery studied in this paper do not take the order in which the

behaviors occur, generating the same scores for reciprocal edges,

we also study how temporal information may be useful in the iden-

tification of the direction of influence relationships.

In the next section we present the influence network discovery prob-

lem, which consists of identifying influence relationships based on

individual behaviors across time.

4. INFLUENCE NETWORK DISCOVERY
In this section we study the influence network discovery problem.

First, in Section 4.1,we give a formal definition for the problem

of discovering an influence network from individual behavior data.

Section 4.2 defines a general framework for influence network dis-

covery. Such framework may apply different scoring functions,

which are described in Section 4.3.

4.1 Problem Formulation
The influence network discovery problem can be seen as a partic-

ular case of the traditional link prediction problem. The objective

is to identify influence relationships based on individual behavior

across time. The set of influence relationships composes what we

call an influence network.

DEFINITION 1. Influence Network Discovery Problem: Given

a set of individuals I, a set of possible behaviors B, and a function

T : B×I → T , which gives the time when an user ui behaved as

bj , defined as follows:

T (ui, bj) =

{

0, if ui has never behaved as bj
t, if ui behaved as bj in t(t > 0)

The problem consists of discovering a set of influence relationships

E , such that E = {(ui, uj)|ui ∈ I ∧ uj ∈ I}.

We may evaluate a solution for the influence network discovery

problem by comparing the influence network discovered against

ground truth information about influence relationships. Based on

the problem definition presented in this section, the next section

defines a general framework for influence network discovery.

4.2 General Framework
Algorithm 1 is a high-level description of a general framework for

influence network discovery. The framework receives the set of in-

dividuals I, the set of behaviors B, and a scoring function φ, which

gives a score for an influence edge (ui, uj) based on a particular be-

havior. The output π is a function that gives, for each pair of users

(ui, uj), where ui 6= uj , a value proportional to the probability of

(ui, uj) to be an influence edge.

A scoring function φ receives as parameters two individuals ui and

uj , such that ui ∈ I and uj ∈ I, a behavior b ∈ B, and the

function T . Based on such information, it returns a score r ∈ R,

which is a measure of how the adoption of b by ui and uj gives

evidence concerning the existence of the influence edge (ui, uj). In

the next section, we define several scoring functions for influence

network discovery.

Algorithm 1: Framework for influence network discovery

Input : I, B, T , φ

Output: π

for ui ∈ I do1

for uj ∈ I do2

π(ui, uj) = 0;3

for b ∈ B do4

Ib ← {ui ∈ I|T (ui, b) > 0};5

for ui ∈ Ib do6

for uj ∈ Ib do7

if ui 6= uj then8

π(ui, uj) = π(ui, uj) + φ(ui, uj , b, T );9

The framework first sets the score of each edge to 0 (lines 1-3) and

then applies the scoring function φ to each pair of users (ui, uj),

for each behavior b ∈ B. The score of a pair (ui, uj) is given by

the following expression:

π(ui, uj) =
∑

b∈B

φ(ui, uj , b, T )

4.3 Scoring Functions
In this section, we propose scoring functions for influence network

discovery. As described in the last section, a scoring function φ
receives two individuals, ui and u2, a behavior b, and the function

T , and returns a score r ∈ R. A scoring function may be given

as input to the general framework described by Algorithm 1 in or-

der to compute scores for candidate influence relationships based

on user behavior data. We propose 11 scoring functions that con-

sider three types of information: (1) co-occurrence, (2) popularity,

and (3) inter-activity time. Table 3 shows the scoring functions

employed in this work, which will be detailed in the following sec-

tions. Each function is described in terms of an expression and a

condition that must hold for a given pair of vertices to receive the

score given by the expression.

4.3.1 Co-occurrence functions
Co-occurrence scoring functions compute the score of a candidate

edge (ui, uj) as the number of common behaviors shared by ui

and uj . The basic idea is that the higher the number of behaviors

shared by individuals, the more likely is an influence relationship

between them. We define two co-occurrence scoring functions: the

directed co-occurrence scoring function (DC) and the undirected

co-occurrence scoring function (UC).
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Name Expression Condition

Directed co-occurrence function (DC) 1 T (ui, b) ∧ T (uj , b) ∧∆ > 0
Undirected co-occurrence function (UC) 1 T (ui, b) ∧ T (uj , b)

Directed co-occurrence function with linear frequency decay (DCLIF) σ(b)−1 T (ui, b) ∧ T (uj , b) ∧∆ > 0

Directed co-occurrence function with logarithmic frequency decay (DCLOF) (log(σ(b))−1 T (ui, b) ∧ T (uj , b) ∧∆ > 0

Directed co-occurrence function with exponential frequency decay (DCEF) e−σ(b) T (ui, b) ∧ T (uj , b) ∧∆ > 0

Undirected co-occurrence function with linear frequency decay (UCLIF) σ(b)−1 T (ui, b) ∧ T (uj , b)

Undirected co-occurrence function with logarithmic frequency decay (UCLOF) (log(σ(b))−1 T (ui, b) ∧ T (uj , b)

Undirected co-occurrence function with exponential frequency decay (UCEF) e−σ(b) T (ui, b) ∧ T (uj , b)

Directed co-occurrence function with linear time decay (DCLIT) ∆−1 T (ui, b) ∧ T (uj , b) ∧∆ > 0

Directed co-occurrence function with logarithmic time decay (DCLOT) log(∆)−1 T (ui, b) ∧ T (uj , b) ∧∆ > 0

Directed co-occurrence function with exponential frequency decay (DCET) e−∆ T (ui, b) ∧ T (uj , b) ∧∆ > 0

Table 3: Scoring functions

The directed co-occurrence scoring function scores edges accord-

ing to the order in which individuals presented the behaviors. If

two users ui and uj have shown the same behavior, but ui did it

before uj , then only the edge (uj , ui) is scored based on b. We

use the symbol ∆ to represent the time interval in between the in-

dividual behaviors of ui and uj (i.e., ∆ = T (ui, b) − T (uj , b)).
Differently from its directed version, the undirected co-occurrence

scoring function computes the number of co-occurrences ignoring

which user has shown the behavior first.

4.3.2 Popularity decay functions
The popularity decay functions extend the co-occurrence functions,

described in last section, by considering a decay based on the pop-

ularity of the behaviors. Since less popular behaviors are expected

to be more informative for the discovery of influence relationships,

we expect that such approach may be an improvement over the co-

occurrence models. We represent the popularity (or frequency) of

a behavior b by σ(b).

We propose six scoring functions that consider the co-occurrence of

behaviors with a popularity decay in the discovery of the influence

network. Such functions can be classified into directed (DCLIF,

DCLOF, and DCEF) or undirected (UCLIF, UCLOF, and UCEF),

depending on whether they consider the order in which the individ-

uals expressed a given behavior, and according to the decay func-

tion applied, which can be linear (DCLIF and UCLIF), logarithmic

(DCLOF and UCLOF), or exponential (DCEF and UCEF).

4.3.3 Inter-activity time decay functions
The last group of scoring functions employed in this work extend

the co-occurrence function presented in Section 4.3.1 by consid-

ering the inter-activity time. The intuition is that the closer in

time two individuals presented a given behavior, the more likely

it is an evidence of an influence relationship. Therefore, differently

from the directed functions that take into account which individual

has shown the behavior first, the inter-activity time decay functions

consider also the length of the time interval in which the individuals

presented a given behavior.

Since inter-activity decay functions are based on the time when

the individuals have shown a given behavior, they are naturally

directed. However, the decay of such functions can vary accord-

ing to the function employed. The directed co-occurrence function

with linear time decay (DCLIT), directed co-occurrence function

with logarithmic time decay (DCLOT), and directed co-occurrence

function with exponential time decay (DCET), which are detailed

in Table 3 apply a linear, logarithm, and exponential decay func-

tions, respectively.

The next section applies the strategies for influence network dis-

covery presented along this section in a case study using individual

behavior and influence network data from Twitter.

5. EXPERIMENTAL RESULTS
In this section, we present an exploratory case study on the influ-

ence network discovery problem using a real dataset from Twitter.

In Section 3, we have characterized important properties of such

dataset, which consists of a set of user activities (posting a tweet,

a URL, or a hashtag) and a network defined by follower-followee

interactions. We consider user activities as individual behavior data

and the follower-followee interactions as influence relationships.

We evaluate the quality of a solution for the influence network dis-

covery problem using the ROC (Receiver Operating Characteristic)

analysis [22]. A ROC curve is a plot of the true positive rate (TPR

= TP/(TP+FN)) versus the false positive rate (FPR = FP/(FP+TN)),

where TP is the number of true positives, FN is the number of false

negatives, FP is the number of false positives, and TN is the num-

ber of true negatives. For a given influence network G(V,E) and

a solution E′, a true positive is an edge e ∈ E ∩ E′, a false neg-

ative is an edge e, such that e ∈ E and e /∈ E′, a false positive is

an edge e, such that e ∈ E′ and e /∈ E, and a true negative is an

edge e, such that e /∈ E′ and e /∈ E. Based on a ROC curve, we

compute the area under curve (AUC) as a measure of effectivity.

In our evaluation, we consider edges (vi, vj) for which there is, at

least, one common behavior (posting a tweet, a URL, or a hashtag)

shared by vi and vj , since other edges could not be predicted using

any scoring function described in Section 4.

Table 4 shows the value of the AUC for the scoring functions de-

fined in Section 4 and for the user activities described in Section 3.

Posting a tweet is the most effective behavior in the discovery of in-

fluence relationships, achieving values of AUC from 0.54 to 0.77,

depending on the scoring function applied. Expanded and non-

expanded URLs have shown not to be effective in the discovery of

influence relationships, achieving AUC values close to 0.50. Non-

expanded URLs present slightly better results than the expanded

ones, what was expected, since URLs propagated through an in-

fluence edge may maintain their original compressed form, evi-

dencing a particular propagation. Moreover, the results show that
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Function Tweets Non-expanded URLs Expanded URLs Hashtags

DC 0.71 0.54 0.53 0.39

UC 0.54 0.50 0.47 0.28

DCLIF 0.77 0.55 0.54 0.35

DCLOF 0.77 0.55 0.54 0.45

DCEF 0.77 0.55 0.54 0.55

UCLIF 0.62 0.51 0.49 0.31

UCLOF 0.62 0.51 0.49 0.30

UCEF 0.62 0.51 0.49 0.52

DCLIT 0.72 0.54 0.54 0.37

DCLOT 0.72 0.54 0.53 0.38

DCET 0.70 0.54 0.53 0.46

Table 4: Area under curve for different scoring functions and user activities

(a) tweets (b) non-expanded URLs

(c) expanded URLs (d) hashtags

Figure 4: ROC curves for the most effective scoring functions of each group of functions

hashtags are ineffective in the influence network discovery prob-

lem. Only two scoring functions (DCEF and UCEF) were able to

achieve AUC values higher than 0.50 using hashtag data.

In terms of the scoring functions defined in this work, the results

from Table 4 support some interesting conclusions. The directed

scoring functions always outperform their non-directed versions,

in spite of the reciprocity rate of 41% in the influence network.

Moreover, inter-posting time has shown to be more effective than

co-occurrence information. However, functions that consider co-

occurrence and the order in which the activities are performed lead

to the best results. Specific decay functions (logarithmic, linear,

or exponential) have shown to be specially useful for hashtag data.

In particular, the good results achieved by exponential frequency

decay functions (UCEF and DCEF) when compared to the other

functions evidences that very popular hashtags (see Figure 2d) carry

little knowledge about influence relationships on Twitter, what was

expected, since their popularity results in low discriminative power.

Figure 4 shows the ROC curves for the top scoring functions of
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each group of functions and for each user activity. Scoring func-

tions are divided into 4 groups: co-occurrence functions (DC and

UC), directed popularity decay functions (DCLIF, DCLOF, and DCEF),

undirected popularity decay functions (UCLIF, UCLOF, and UCEF),

and inter-activity time decay functions (DCLIT, DCLOT, and DCET).

Figure 4a shows the ROC curves for the top scoring functions of

each group and considering tweets. We can notice that the DCLIF

function presents the best results in general. The UCLIF function

achieves good performance for the top influence edges, but its not

able to achieve similar results when the number of edges considered

is increased. An opposite behavior is shown by the DC function,

which presents poor effectivity for top edges but performs similarly

to the DCLIF function for a large fraction of influence edges.

The ROC curves for the top scoring functions for the non-expanded

URLs are shown in Figure 4b. We can notice that non-expanded

URLs cover a very small fraction of the edges from the influence

network, what explains the poor performance presented in Table 4.

Similar conclusions can be drawn from the ROC curves for the top

scoring functions for the expanded URLs (Figure 4c) and hashtags

(Figure 4d). Figures 2e, 2f, 2g, and 2h have shown that users are

more active in posting tweets than URLs and hashtags. In gen-

eral, we found that URLs and hashtags are not discriminative in the

identification of influence relationships.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied how individual behavior data may

be applied in the identification of influence relationships in social

networks. We formalized such problem as the influence network

discovery problem and presented several strategies for solving the

proposed problem. The basic idea is to score potential influence

edges based on co-occurrences of particular behaviors for pairs of

individuals. Along Section 4, we presented several scoring func-

tions for influence network discovery.

In order to evaluate the proposed strategies for influence network

discovery, we applied them to the identification of follower-followee

interactions on Twitter based on the content (tweets, URLs, and

hashtags) generated by users across time. The results show that

tweets may be very useful in the discovery of influence relation-

ships. However, URLs and hashtags do not achieve such good per-

formance. Moreover, it is important to consider the order in which

two individuals present the same behavior and the popularity of

such behaviors in the influence network discovery problem.

As future work, we will study techniques for extending the set

of influence relationships discovered. Basically, potential influ-

ence edges identified based on individual behavior may be applied

as probabilistic topological information in the generation of new

edges. A similar approach have been proposed for the link predic-

tion problem in [15]. Moreover, it would be interesting to apply

the influence relationships discovered in order to predict individual

behavior, such as in [11].
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