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ABSTRACT
Volume rendering has several applications that benefit many
domains of knowledge, such as medicine, biology, geology,
and virtual reality. One of the most widely used methods
for real-time visualization of data volumes is the marching
cubes, which is part of a class of visualization techniques
called isosurface extraction. Due to the constant evolution
of graphics processing units, it is possible to obtain consider-
able rendering rates and a high degree of realism. This work
describes a methodology for accelerating the marching cubes
algorithm on a graphics processing unit and presents some
possible ways to improve its performance through auxiliary
spatial data structures. Experiments using several volumet-
ric datasets show the effectiveness of the proposed method.

Categories and Subject Descriptors
I.3.1 [Computer Graphics]: Hardware Architecture.

General Terms
Graphics Processors, Parallel Processing

Keywords
Marching Cubes, Volume Rendering, Volumetric Data,
Graphics Processing Unit, Isosurface Extraction

1. INTRODUCTION
Volume visualization is an approach to information extrac-
tion from volumetric data sets and it is related to the rep-
resentation, manipulation and rendering of such sets. This
method emerged during the 1990s as a branch of the sci-
entific visualization field and has applications in various
knowledge domains, such as medicine, virtual reality, ge-
ology, oceanography, meteorology, among others.

One of the challenges of volume visualization is the develop-
ment of efficient algorithms, as well as their possible refine-
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ments and adaptations. Despite the significant progress in
the area, it was observed that the use of a central processing

unit (CPU) to perform general purpose graphics process-
ing tasks was not enough to achieve better interactivity or
real-time rendering, when used in very large data sets. The
increasing technological advances enabled the emergence of
powerful graphics processing units (GPUs), capable of ren-
dering complex three-dimensional models, achieving a high
degree of realism.

The potential of GPUs is driven by their high level of paral-
lelism and their ability to perform floating point and geomet-
ric primitive operations in a fast and efficient way. Recently,
GPUs have been widely used for acceleration of applications
(such as image and video processing, fluid dynamics simu-
lation, seismic analysis, cryptography and so on), resulting
in a significant gain over the CPUs by an order of mag-
nitude. This has been possible due to the development of
the general-purpose computing on graphics processing units

(GPGPU), making them even more flexible. The idea of
this technique is to take advantage of the high parallelism
on GPUs and facilitate the application programming in gen-
eral.

Currently, the most used GPGPU technology is the Comput-

ing Unified Device Architecture (CUDA), from NVIDIA [19],
which allows the use of a C-like programming language for
the development of algorithms to run on GPUs. A num-
ber of other technologies have also been developed in recent
years, as will be shown later.

As a consequence of the evolution of these technologies, vol-
ume visualization has also achieved considerable advances.
Real-time GPU-accelerated volume rendering became a very
effective tool for visualization and analysis of volumetric
data.

The purpose of this paper is to describe a volume visualiza-
tion method, called marching cubes, for isosurface extrac-
tion, as well as how it can be optimized by changes in its
implementation details and GPU acceleration.

This paper is organized as follows. Section 2 reviews some
relevant concepts of volume visualization and isosurface ex-
traction, as well as the marching cubes algorithm and some
spatial data structures used to improve the performance of
the algorithm. Section 3 describes a methodology for ac-
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celerating the marching cubes technique on GPU. Section 4
presents and discusses the experimental results obtained by
applying the proposed method to volumetric data. Section 5
concludes the paper with some final remarks.

2. BACKGROUND AND PREVIOUS

WORK
This section describes the general background of the volu-
metric visualization, followed by the concepts of isosurface
extraction, marching cubes algorithm, and a description of
some data structures used to improve the performance of
this algorithm.

2.1 Volumetric Visualization
In general, the volumetric data is usually represented by a
set of volume elements, called voxels, where each one con-
tains a specific value in a regular grid contained in the
three-dimensional space. A voxel can be defined by a tu-
ple < x, y, z, S >, which represents the value S associated
to some property of a volume data, located at a general 3D
position (x, y, z).

According to Elvins [4], the fundamental volumetric visual-
ization algorithms can be classified into two groups: Direct
Volume Rendering (DVR) and Surface-Fitting (SF). The
first one is characterized by the direct element mapping onto
the screen space, without the use of geometric primitives as
an intermediary representation, and the second consists of
stages of feature extraction and representation of isosurfaces
(surfaces that represent a set of points with the same scalar
value), which are later rendered for visualization. These
isosurfaces can be defined from surface primitives (such as
polygons) or by a certain threshold.

Some of the DVR techniques include Raycasting [12, 14],
Splatting [22, 24], Cell-Projection [25, 26] and Shear-
Warp [11, 13]. Some of the SF techniques are Contour Con-
nection [10, 18] and Marching Cubes [6, 16, 23].

2.2 Isosurface Extraction
An isosurface can be defined as a set of points that have
the same value (called isovalue) in a volume data, i.e., {x ∈
ℜ3 : f(x) = h}, for some isovalue h ∈ ℜ. The procedure
of isosurface extraction involves the generation of meshes
(usually triangular) that approximately represents a certain
surface. In the medical field, for instance, this procedure is
commonly used in the visualization of organs, tissues and
anatomic structures.

The marching cubes algorithm [6, 16, 23] is the main isosur-
face extraction technique, and it was originally developed to
improve the study of 3D medical images. Later, many re-
searches were conducted to optimize this technique through
the use of spatial data structures to improve the process-
ing of volume data. However, with the advent of modern
graphics cards, techniques that take most advantages from
the graphics hardware have been explored due to the high
degree of parallelism present in these cards.

2.3 Marching Cubes
The marching cubes technique [6, 16, 23] uses a divide-and-
conquer approach in which the volume data is processed

through their cells (voxels), that are equivalent to cubes. In
each cell, the intersection between its respective edges and
the isosurface is verified. The values of each vertex cells are
then compared to a given isovalue h and these vertices are
classified as “inside” or “outside” the isosurface. The first
case is applied when the value of the vertex is greater than
or equal to h and the second one when it is less than h.
Once defined the type of intersection, an approximation of
the isosurface contained in the cell is done by constructing
triangles.

As each of the 8 vertex cells has only two possible states, we
have then a total of 28 = 256 cases of intersection between
isosurface and cell edge, which are listed in a lookup-table.
However, some pairs of these cases are symmetric or com-
plementary to each other, which restrains the problem to
15 cases, as shown in Figure 1. A demonstration of the
marching cubes algorithm using different isovalues is shown
in Figure 2.

Figure 1: Illustration of the 15 basic cases of the
marching cubes technique. The green vertices are
the ones classified as “inside” the isosurfaces, and
the remaining as “outside” them. Image extracted
from [16].

The pseudocode of the algorithm can be briefly described
according to the Algorithm 1. The advantage of this algo-
rithm is that the processing of a cell is independent of the
other ones, which permits its parallelization. However, as a
disadvantage, it may generate holes in the isosurfaces, due
to topological ambiguities of the cases.

The algorithm runs in time O(n), where n is the total num-
ber of processed cells. On the other hand, many of these
cells are empty, incurring an unnecessary waste of time. To
minimize this waste, some spatial data structures are used
to only process the active cells, i.e., the ones that are in-
tercepted by an isosurface, reducing the complexity of the
algorithm.

In the scope of the acceleration of marching cubes algorithm
on the GPU, Johansson and Carr [9] conducted a compara-
tive analysis of its execution using data structures, such as
k-d trees [2] and interval trees [3], reporting the rendering
rate speedups obtained in relation to the CPU. Newman and
Yi [17] developed an in-depth research about the possibili-
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Figure 2: Volume rendering of an angiography
dataset using marching cubes with different isoval-
ues: (a) 60; (b) 80; (c) 100; (d) 120.

ties of developing the marching cubes technique, describing
their respective properties, extensions and attempts to solve
its limitations.

2.4 Accelerating Data Structures
There are several classes of data structures that are very
useful to avoid the processing of empty cells. One of them
consists of interval-based representations, which uses cell in-
tervals to group cells [17]. The advantage of this type of
representation is in its flexibility, being applied not only on
regular grids, but also on non-regular grids, once it works
from an interval space, instead of using the mesh space itself.

The main methods of this class are based on a representa-
tion called span-space [15], where each cell of the volume
data is mapped to a two-dimensional point, whose coordi-
nates x and y correspond, respectively, to the minimum and
maximum values of the cell. From a given isovalue h, the
points of the span-space that represent the active cells are
the ones where x ≤ h and y ≥ h.

This section describes some spatial data structures and how
they can be used to improve the performance of the march-
ing cubes algorithm.

Algorithm 1 Marching Cubes

1: Read four slices from memory.
2: Take two slices and create a cube from 4 neighbors of a

slice and 4 of the next one.
3: Calculate an index to the cube, comparing the 8 density

values of the cube vertices with the surface constant (iso-
value).

4: Using the calculated index, verify the edge list from a
lookup-table.

5: Using the densities in each vertex of the edge, find the
intersection surface-edge by linear interpolation.

6: Calculate a unitary normal in each cube vertex by the
method of central differences [7]. Interpolate the normal
to each triangle vertex.

7: Return the triangle vertices and the vertex normals.

2.4.1 k-d Tree
The k-d tree [2] is a special case of the binary search tree,
used to organize points located in a k-dimensional space.
Each non-leaf node represents a splitting hyperplane that
divides the space into two parts in a specific direction, which
is defined according to the depth of this node in the tree.
The left subtree contains all the points located at the left
of the hyperplane and the right subtree contains the ones to
the right. The leaf nodes store one point each.

In the marching cubes algorithm, the volume data is mapped
onto a span-space before constructing the tree, once the
queries in the k-d tree are faster when working with points
in a 2-D plane rather than in a 3-D space. Furthermore,
every node stores a point in the span-space, instead of stor-
ing the points only in the leaves. The construction takes
O(n log n) time, where n is the total number of cells in the
volume data.

When searching in the tree, given an isovalue h, it will tra-
verse only the nodes that correspond to the active cells of
the volume data. Thus, the query takes O(

√
n + p) time,

where p the number of active cells.

2.4.2 Interval Tree
The interval tree [3] is an ordered tree used to store intervals
of values in 1-D. Similarly to the k-d tree, it is an extension
of the binary search tree, and allows an efficient search of all
intervals that overlap with a given interval or point.

The root of the tree stores a value that corresponds to the
median of the endpoints of all intervals and a list of intervals
that contain this value. The left subtree stores the intervals
that are completely below the median and the right subtree
stores the ones completely above the median. Then, the
process is repeated recursively for each subtree. It takes a
construction time of O(n log n).

The span-space is suitable for constructing an interval tree.
In this case, the intervals correspond to the volume cells, and
the endpoints are the minimum and maximum values of the
cell, which stands for its coordinates in the span-space.

Searching in an interval tree takes O(log n+ p) time, which
makes it more efficient than the k-d tree. On the other hand,
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it demands higher memory space.

2.4.3 Quadtree and Octree
A quadtree [5] is a tree data structure where every non-
leaf node has exactly four children. It is used to partition
a region in a 2-D space into four equal regions (or quad-
rants). These regions are then partitioned into other four
subregions, and so on, until the subregion is empty, which
characterizes a leaf node. The 3-D analogous structure of a
quadtree is called octree, which partitions a 3-D space region
into eight subregions (or octants).

Once the span-space is a 2-D space, it can be represented
by a quadtree. Let l be the number of bits used to store
the volume data values, which means that there are 2l pos-
sible values (ranging between 0 and 2l − 1) for a vertex cell.
Thus, the span-space is a 2l × 2l region, and the points cor-
respond to the mapped cells. Every node in the tree stores
the information of a point in the span-space.

However, more than one cell can be mapped to a same point
in the span-space. To overcome this problem, each node in
the quadtree also stores a pointer to a list of the volume data
cells that were mapped to this point. Then, the queries can
be made as usual, traversing the nodes corresponding to the
active cells.

In the octree case, the tree is built directly from the volume
data. But in case of non-regular grids (i.e., when volume
dimension is not a power of 2), the subregions have different
sizes, once we are partitioning cell regions.

3. METHODOLOGY
The significant evolution of the programmability of the
graphics hardware allowed the isosurface extraction proce-
dure to be accelerated by the GPU, taking advantage of its
parallel architecture. However, the bottleneck of the accel-
eration is in the communication bus between the CPU and
the GPU, which means that not always the best solution
is to transfer all the tasks to the GPU. Thus, in order to
maximize the performance of this procedure, it is necessary
a good planning of the graphics pipeline, selecting the tasks
that can be run on the CPU and the ones that can be trans-
ferred to the GPU, as well as a proper use of all the memory
hierarchy. Some proposals of graphics pipeline for isosurface
extraction were made by Pascucci [21] and Johansson [8].

The methodology proposed in this work is restricted to the
marching cubes technique, instead of generalizing to the iso-
surface extraction process. A general scheme is shown in
Figure 3, composed of six stages. At the Stage 1, the CPU
reads a volume data, which is then allocated both in the
main memory (RAM, used by the CPU) and in the video
memory (VRAM, used by the GPU). Later, one of the spa-
tial data structures described in Section 2.4 is constructed
from the volume data and stored only in the main memory
(Stage 2).

Once finished the preprocessing stage, the marching cubes
algorithm is started (Stage 3). From an isovalue h specified
by the user, the CPU makes a search in the data structure,
traversing only the nodes corresponding to the active vol-
ume cells, and generating a list of these cells, which is then

transferred to the GPU by a communication bus.

With the list of active cells and the isovalue h, the GPU
continues the marching cubes algorithm. Each cell is clas-
sified into one of the 15 cases of marching cubes (shown in
Figure 1) by comparing h to the 8 cell vertices. From this
comparison, a cell index is created and then used to deter-
mine the number of vertices needed to render the isosurface
contained in the cell. After this procedure is done for all
active cells, the exact total number of vertices to be out-
put can be determined, which will then define the size of
video memory needed to allocate the vertex buffers: one for
storing these vertices and other for their respective normals
(Stage 4).

After that, the GPU once more traverses the list of active
cells to generate the triangles that comprise the isosurfaces
(Stage 5). For each active cell of the list, it creates the
same cell index as described above, which in GPU is faster
than storing the previous results in an array and then re-
trieving the respective values. Furthermore, it calculates
the isosurface intersections with the 12 edges of the cell by
interpolating the vertices and the normals calculated by the
GPU from the volume data. Later, with the cell index and
the intersections, the GPU obtains the list of vertices and
normals related to the isosurface, writing them in the re-
spective vertex buffers. Finally, the volume data is rendered
from these buffers (Stage 6).

All the procedures executed by the GPU are parallelized,
once the results obtained from a cell are independent of the
others. However, the acceleration of the marching cubes
relies on the way this parallelization occurs. When a task is
assigned to the GPU, it creates a specific amount of blocks 1,
which contain the same number of threads, responsible for
running a part of this task.

In our approach, the amount of blocks depends on the num-
ber of active cells and the number of threads per block, also
called block size. The block size is chosen in such a way
that it is neither too low, assigning too much work for all
threads and not maximizing the task performance at all, nor
too high, causing an overhead of starting and terminating
threads.

4. EXPERIMENTAL RESULTS
The tests were executed on an AMD Phenom II X6 1090T
3.2 GHz processor with 4 GB of RAM, and an NVIDIA
GeForce GTS 450 with 1 GB of VRAM, using a C-like pro-
gramming language, OpenGL and CUDA API’s.

The experiments were made using 8-bit datasets from [1],
where each scalar value ranges from 0 to 255. Table 1 shows
a list of volume datasets used in the tests, together with
their respective dimensions (in voxels), isovalues (input to
the marching cubes algorithm) and number of triangles ren-
dered in the screen (which depends on the isovalue).

Figure 4 shows two plots that illustrate the average time of
50 executions of our marching cubes implementation on the
GPU for different values of block size, using each of the vol-

1Concept from CUDA Programming Model [19].
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Figure 3: Our approach for acceleration of the marching cubes algorithm. Stages 1 and 2 responsible for
the preprocessing stage; stages 3 to 5 correspond to the execution of marching cubes and stage 6 makes the
display of vertices on the screen. Blue boxes stand for the actions executed on CPU, and the red boxes the
ones on GPU.

Volume Name Dimensions Isovalue # Triangles

Fuel 64× 64× 64 10 11534

Hydrogen Atom 128× 128× 128 20 47864

Angiography 256× 320× 128 80 84974

Ventricles 256× 256× 124 120 167214

Engine 256× 256× 128 155 207592

Table 1: List of volume datasets with their respec-
tive sizes, isovalues, and number of triangles.

ume datasets and their respective isovalues listed in Table 1.
The plot (a) represents the executions of the brute force
version of the marching cubes algorithm, i.e., a naive im-
plementation that runs without the aid of accelerating data
structures, and (b) the executions using an interval tree to
store the voxels from the datasets. From both plots, it can
be noticed that for block sizes of 64 and higher, the running
time of the marching cubes algorithm is almost the same,
and it does not depend on whether a data structure is used
or not for acceleration. As stated in Section 3, although a
higher number of threads means higher parallelization, the
time spent to create the threads also gets higher, hence sta-
bilizing the performance. Thus, the block size used to run
our tests was defined at 64.

Table 2 shows the average framerate of the execution of
marching cubes algorithm in CPU and GPU, for all data
structures described in Section 2.4, and comparing to the
brute force version of the algorithm. These results do not
consider the time spent on the volume data reading and
the data structure construction (except for the brute force
marching cubes), considering only the events that occur be-
tween the search in the data structure and the volume dis-
play on the screen.

As it is possible to observe, the interval tree provided the
best results (highlighted in bold in Table 2), not only among
all the data structures used in the tests, but also in the ac-

celeration factor compared to the brute force CPU marching
cubes, achieving a speedup of 16.4 times, in case of the an-
giography dataset. This was expected because the interval
tree has, asymptotically, a better query time than the other
structures. The acceleration factor between CPU and GPU
(for the same data structure) is, on average, between 2.0 and
6.0.

Comparing the k-d tree against the octree, we can state that
the latter has better results when running marching cubes
in CPU, but it is worse than the former in GPU. This can
be explained by the fact that the k-d tree uses the span-
space approach, unlike the octree, which works directly on
the volume data.

The bottleneck of this approach resides on the fact that the
searches in the data structure are done on the CPU. Once
tree search algorithms are generally recursive and CUDA
does not support recursive algorithms, if non-recursive ver-
sions of these algorithms were implemented on the GPU,
there would have a large waste of time and space to create
stacks and loops.

5. CONCLUSIONS
This paper described a method for accelerating volumetric
visualization in graphics hardware using the marching cubes
algorithm, analyzing its performance when using different
spatial data structures, which makes the time complexity of
the algorithm be given based on the volume data cells that
contain an isosurface, rather than the total number of cells.

Our results demonstrate that it is possible to speed up the
algorithm by a factor of approximately 16 times when com-
pared to standard CPU marching cubes.

We plan to expand the proposed method to open frame-
works, such as OpenCL [20], once that CUDA framework
is restricted to NVIDIA graphic cards. We would also like
to make the same analysis shown in this paper with differ-
ent graphics cards, instead of using a specific card. Finally,
we intend to integrate the method into a web-based virtual

147



(a)

(b)

Figure 4: Average times of executions of the marching cubes algorithm on GPU for different block sizes.
Graph (a) shows the results for the brute force version and (b) for the interval tree.

environment for medical training.
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