
Optimizing Motion Estimation for H.264 Encoding

Mateus Krepsky Ludwich
Federal University of Santa Catarina – UFSC

Laboratory for Software and Hardware
Integration – LISHA

PO Box 476 - 88049-900 - Florianópolis, SC,
Brazil

mateus@lisha.ufsc.br

Antônio Augusto Fröhlich
Federal University of Santa Catarina – UFSC

Laboratory for Software and Hardware
Integration – LISHA

PO Box 476 - 88049-900 - Florianópolis, SC,
Brazil

guto@lisha.ufsc.br

ABSTRACT

Around 90% of the total encoding time of raw video into
H.264 is spent in block-matching, a stage of Motion Esti-
mation. In this paper we combine two block-matching opti-
mizations that yield significant performance improvements
on Motion Estimation: 4:1 subsampling by macroblock and
truncation of the two less significant bits per sample. When
applied to the JM Reference Encoder, our strategy showed
an average speedup of 2.64 times in total encoding time with
a small loss of quality (less than 0.5 dB).

Categories and Subject Descriptors

I.4 [Image Processing and Computer Vision]: Com-
pression (Coding)

General Terms

Algorithms

Keywords

Video encoding, Motion Estimation, H.264

1. INTRODUCTION
Motion Estimation (ME) is a technique used to explore

temporal redundancy in video sequences during compres-
sion. Temporal redundancy arises from the fact that neigh-
boring frames very often share similar pixel regions. There-
fore the goal of Motion Estimation is to estimate the shifting
of such similar regions across neighbor frames, thus enabling
them to be differentially encoded. In block-based ME, the
displacement of similar regions is represented by motion vec-
tors, which are computed by the Block-Matching Algorithms.
Standards like the ISO MPEG series and the ITU-T H26x
are examples of encoders that use ME to improve compres-
sion ratios in output video streams [19].
Around 90% of the total encoding time in a H.264 encoder

is spent in the Motion Estimation stage [7], [21]. Conse-
quently, Motion Estimation optimization is a relevant issue

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Webmedia 2011 Florianópolis, SC Brazil
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

for H.264 and video encoding in general. Since the appear-
ance of ME, many strategies were proposed for its optimiza-
tion. The Block-Matching Algorithm (BMA), which searches
for similar blocks and generates the motion vectors, is mainly
responsible for ME being so time consuming. Therefore one
strategy for optimizing BMA is the fast-search, which looks
only in specific points of the search window, while a similar
block is being searched. Another strategy is to perform ME
hierarchically, computing motion vectors for a specific frame
region, and refining them in each level, which is known as
multi-resolution motion estimation. Other strategies look
into finding parallelism in BMAs, in order to run ME stages
simultaneously. For all strategies there are also hardware
implementations, based on optimized functional units (such
as vector operations) or based on replication of functional
units, to explore parallelism.

Block-Matching Algorithms using fast-search improve time
performance of ME, but they can find suboptimal motion
vectors because they do not search in all positions of the
search window. Multi-resolution ME works with different
resolutions of one frame, successively refining the found mo-
tion vectors. This increases the ME time if the search is
performed sequentially as in [9] or demands for replicated
hardware functional units, as in [10]. Similarly, parallel and
hardware implementations come at the cost of replicated or
dedicated functional units.

The search for new methods to optimize motion estima-
tion is an important issue to enable the construction of real-
time H.264 encoders and the implementations of encoders in
devices with less computational resources, since those opti-
mizations aim to reduce ME complexity. Two other strate-
gies used to reduce ME complexity are macroblock sub-
sampling and sample truncation during the block-matching.
Macroblock subsampling means that, during block-matching,
just some samples of a macroblock (or macroblock parti-
tion) are taken into consideration. Sample truncation is a
technique for pixel decimation, where a sample can be rep-
resented only by its most significant bits (MSB).

In this paper we have proposed and evaluated the combi-
nation of macroblock subsampling and sample truncation in
order to speed up motion estimation, keeping a good video
quality - which is measured by the Peak Signal to Noise
Ratio (PSNR). We aimed to evaluate these two strategies
in an optimal algorithm (i.e. which always finds the best
motion vectors), therefore we have used a full-search algo-
rithm instead of a fast-search one. However these strategies
can also be applied in fast-search algorithms since they are
orthogonal to the block-matching algorithm used.

198

__

WebMedia'11: Proceedings of the 17th Brazilian Symposium

on Multimedia and the Web. Full Papers.

October 3 -6, 2011, Florianópolis, SC, Brazil.

ISSN 2175-9642.

SBC - Brazilian Computer Society

The next sections of this article are organized as follows:
section 2 makes an overview of issues and strategies for ME
optimization; section 3 presents the proposed ME optimiza-
tions; section 4 describes the implementation of the pro-
posed optimization for the JM H.264 Reference Encoder.
Section 5 evaluates the results obtained from the proposal’s
evaluation using the JM encoder. The final considerations
are presented in section 6.

2. STRATEGIES FORMEOPTIMIZATION
There are two major goals in motion estimation optimiza-

tion: to improve the compression rate and to reduce the total
encoding time. Improving the compression rate is achieved
by finding the best possible motion vectors, which means
motion vectors that will generate the smallest residual differ-
ence during the motion compensation (MC). Reducing the
total encoding time is achieved by finding the motion vectors
in the smallest possible period of time. Several tools in H.264
are used to find the best possible motion vectors; besides
looking in all positions of a search window (i.e. full-search),
it is possible to search in several reference frames (backwards
or forwards), and it is possible to perform block-matching us-
ing sub-pel precision (half and quarter of a pel) [19]. Finding
the best motion vectors, very often, goes against finding the
motion vectors more quickly. In this work we focus on mo-
tion estimation optimizations which aim to reduce the total
encoding time, therefore we are not going into the details of
techniques for finding the best motion vectors possible, but
they can be found in [6], [16], [12], and [8]. It is important
to notice that all techniques for ME optimization must take
into consideration keeping the video quality of the generated
bitstream.
There are many strategies to optimize the time perfor-

mance of motion estimation: fast-search algorithms, mac-
roblock subsampling, sample truncation, multi-resolution ME,
subsampled motion-field estimation, and parallel and hard-
ware implementations of algorithms.
Fast-search algorithms are block-matching algorithms that

look only in specific positions of the search window, during
block-matching [13], [15], [23], [14], [20], [3]. Search window
is the region of the reference frame where a macroblock par-
tition similar to the current block is searched. The motion
vectors correspondent to the match with the lower motion
cost are chosen. The main drawback of this approach is
that, since some positions of search window are discarded,
it is possible to find suboptimal motion vectors.
Two other strategies to optimize ME during block-matching

are macroblock subsampling and sample truncation. Mac-
roblock subsampling means taking into consideration only
some samples of a macroblock, or macroblock partition, while
the matching for a specific position of the search window is
been made. Sample truncation is performed by ignoring the
least significant bits of a sample. These strategies have been
used separately in [11] (subsampling) and in [5], and [10]
(truncation). In this work we have combined these strate-
gies to optimize ME. Section 3 explains these strategies in
detail.
Multi-resolution motion estimation is the strategy where

the motion vectors are computed for distinct resolutions of
one same frame. Motion vectors computed in a more coarse
level can be successively refined until the finest level (higher
resolution). If the search is performed sequentially as in [9],
the time of ME can be increased due to the dependencies

between distinct levels. On the other hand, if the search
is executed in parallel for each resolution level, as in [10],
hardware functional units need to be replicated. A similar
technique is subsampled motion-field estimation [11]. This
technique is based on the assumption that motion vectors
of neighboring blocks are intent to be similar thus, for each
block, only a set of motion vectors (motion-field) is com-
puted and the others are interpolated.

Other strategies for optimizing motion estimation are based
on finding parallelism in ME stages, especially in the block-
matching algorithms, in order to execute them simultane-
ously. These parallel strategies commonly have hardware
implementations. The Sum of Absolute Differences (SAD) is
a metric of error used in the block-matching algorithms, that
is frequently parallelized using functional units in hardware
[10], and [2]. Hardware implementations of shared buffers
for reference picture data is also common [2], [22]. Although
these solutions can achieve the best time performance, they
come at the cost of using replicated or dedicated functional
units.

3. PROPOSED OPTIMIZATIONS
We envisioned two major opportunities to optimize match-

ing operations within block-based Motion Estimation al-
gorithms: macroblock subsampling and sample truncation.
Both were applied in the block-matching algorithm to speedup
the whole process of motion estimation. More specifically
they are applied in the SAD computation, which is the er-
ror metric used to compute the distortion term in the La-
grangian cost function used in H.264 [17, 4].

Equation 1 shows the bi-dimensional SAD used for block-
matching algorithms in video coding. C represents the cur-
rent NxN block that is being searched in the reference frame
and R is the NxN block of the reference where the BMA is
looked into.

SAD =

N−1
∑

i=0

N−1
∑

j=0

|Cij −Rij | (1)

The Lagrangian cost function used in H.264 motion esti-
mation is shown in equation 2. The Rate term of the equa-
tion is the product between the lagrangian multiplier and
the estimated number of bits necessary to encode the mo-
tion vectors and the motion predictors. The distortion term
(SAD) is computed as shown in equation 1.

MotionCost = Rate+ SAD (2)

Equations 3 and 4 details the Rate calculation. The la-
grangian multiplier (λmotion) depends on the quantization
parameter (QP) used in the video encoding. As higher the
QP is, more data is discarded on video encoding thus, in-
creasing the compression ratio. bits is a mapping function
converting the vector difference of (MV −MV P) into the
estimated bits. MV is the motion vector obtained for the
motion estimation, and MV P is the motion predictor. Mo-
tion predictors are derived from previously computed motion
vectors of the neighboring blocks in the past.

Rate = λmotion · bits(MV −MV P) (3)

λmotion =

√

0.85× 2
QP
3 (4)

199

3.1 Subsampling
Subsampling aims at reducing the time needed to compute

a matching criterion, like SAD, by applying the correspond-
ing operation only to a subset of the pixels in a macroblock.
The optimization relies on the assumption that neighboring
pixels in a macroblock should have similar values (spatial re-
dundancy) and thus computing the matching criterion from
a regular subset should yield comparable results. This as-
sumption is confirmed by the experiments presented in sec-
tion 4. Figure 1 illustrates the process of 4:1 subsampling
in a 16x16 macroblock. The dark pixels are the pixels taken
into consideration. Instead of comparing 256 pixels (16x16),
the algorithm compares only 64 pixels (8x8), speeding up
the process.

Figure 1: Illustration of 4:1 subsampling

3.2 Truncation
Similarly to subsampling, truncation also aims at reduc-

ing the computational cost of block matching by eliminating
redundant data. As basis for this optimization we took the
assumption that the main information of a sample is stored
in its most significant bits (MSB) thus ignoring the least
significant bits (LSB) should generate a small noise in the
encoded video sequence. The main information of a pixel in
YCbCr format means the light variation in the luminance
channel (Y) and color variation in the chrominance channels
(Cb and Cr).
Our experiments with the JM H.264 Reference Encoder

demonstrate that truncation can also improve software-im-
plemented algorithms, because the Full-Search block-match-
ing algorithm in JM features an early termination mech-
anism. The motion cost in H.264 is calculated using the
Lagrangian rate-distortion cost function shown in 2. The
Full-Search block-matching algorithm in JM first computes
the rate component of the motion cost for a specific position
in the search window. If the rate component value is greater
than or equal to the previous minimummotion cost (cost of a
previous compared block), the distortion component of mo-
tion cost (given by the SAD function) is not computed, and
the motion cost computation is abbreviated for that block.
When bits are truncated, numbers that once were slightly
different from each other become equal. Consequently, the
number of occurrences in which the previous minimum cost
and the rate component of the current cost are equal in-
creases and the SAD does not need to be computed. The

speedup is then caused by the reduction in the frequency of
calls to the SAD function.

4. IMPLEMENTATION IN THE JM H.264

REFERENCE ENCODER
We implemented the optimizations described in the pre-

vious section in the JM H.264 Reference Encoder [18] to
assess their impact on the final video quality. Being the
reference software implementation for the H.264 standard,
JM includes both encoding and decoding functionality. Our
experiments were carried out with JM version 14.2 and con-
sisted of encoding a set of reference video sequences with the
original encoder and subsequently with the modified one,
therefore enabling us to measure variations in the Peak Sig-
nal to Noise Ratio (PSNR) and in the encoding time.

For inter macroblock modes in H.264 (i.e. modes related
to the Motion Estimation), the motion cost for chrominance
components derives from the motion cost for luminance com-
ponents [4]. Consequently the PSNR for chrominance com-
ponents derives from the PSNR for luminance components.
For this reason, in this paper we focus on the PSNR varia-
tion of the luminance component.

The video sequences chosen for the experiments encom-
pass different resolutions and frame rates: Foreman QCIF,
Foreman CIF, Mobile & Calendar CIF, City 4CIF, Stock-
holm 720p, Sunflower 1080p, and Crown Run 1080p. These
are all raw video sequences in YCbCr format. Their key
features are summarized in table 1.

Subsampling was implemented in JM as proposed in sec-
tion 3. Samples are taken from macroblocks following a
regular, symmetrical pattern. For instance, a 4:1 subsam-
ple is obtained by having the iteration loop to skip columns
and rows as shown in Figure 1. Truncation was done in JM
by assigning zero to the least significant bits of each sample,
since actual register and memory truncation are meaningless
to software implementations. Both techniques, subsampling
and truncation, were implemented during the SAD compu-
tation. The block-matching algorithm used was Full-Search.

Modifications to JM were implemented so that subsam-
pling and truncation could be evaluated both in separa-
tion and together, thus rendering more detailed results. We
tested 2:1, 4:1, and 8:1 subsampling. And we tested trunca-
tion on 8-bit samples varying from 1 to 7 LSB. We took the
cases which had generated a small noise (0.5 dB) and tested
their combinations.

5. RESULT ANALYSIS
Our results show that subsampling and LSB truncation

both improve video encoding performance while degrading
quality, either deployed separately or in combination. Both
parameters: performance and quality vary proportionally to
the extending of the applied optimizations as can be seen
in figures 2 to 3b. Figure 2a shows the performance im-
provement for the chosen video sequences as a function of
a growing subsampling factor, while Figure 2b shows the
corresponding quality loss measured as a decrease in PSNR.
Figures 3a and 3b illustrate the facts for truncation.

The PSNR degradation as computed as the absolute PNSR
difference between the original encoder and the optimized
ones. In order to measure the PNSR variation we have fixed
the encoding bit-rate for all video sequences. We have cho-
sen values of bit-rate which result in a compression ratio

200

Sequence Resolution Frame rate (fps) Duration (s)
Foreman QCIF (176 x 144) 30 10
Foreman CIF (352 x 288) 30 10
Mobile CIF (352 x 288) 30 10
City 4CIF (704 x 576) 60 10

Stockholm 720p (1280 x 720) 60 10
Sunflower 1080p (1920 x 1080) 25 20
Crown Run 1080p (1920 x 1080) 50 10

Table 1: Video sequences used in the experiments

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1:1 2:1 4:1 8:1

S
p
e
e
d
u
p
 (

X
)

Subsampling scheme

ForemanQCIF
ForemanCIF

MobileCIF
City4CIF

Stockholm720p
Sunflower1080p
CrowdRun1080p

Mean

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

1:1 2:1 4:1 8:1

P
S

N
R

 D
e
g
ra

d
a
ti
o
n
 (

d
B

)

Subsampling scheme

ForemanQCIF
ForemanCIF

MobileCIF
City4CIF

Stockholm720p
Sunflower1080p
CrowdRun1080p

Mean

(b)

Figure 2: Impact of subsampling on encoding performance (a) and encoding quality (b)

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

S
p
e
e
d
u
p
 (

X
)

LSB Truncation (bits)

ForemanQCIF
ForemanCIF

MobileCIF
City4CIF

Stockholm720p
Sunflower1080p
CrowdRun1080p

Mean

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7

P
S

N
R

 D
e
g
ra

d
a
ti
o
n
 (

d
B

)

LSB Truncation (bits)

ForemanQCIF
ForemanCIF

MobileCIF
City4CIF

Stockholm720p
Sunflower1080p
CrowdRun1080p

Mean

(b)

Figure 3: Impact of truncation on encoding performance (a) and encoding quality (b)

201

Sequence Bit-rate (Mbit/s)
ForemanQCIF 1
ForemanCIF 2.4
MobileCIF 2.4
City4CIF 30

Stockholm720p 66.8
Sunflower1080p 66.8
Crown Run1080p 133.6

Table 2: Bit-rate used in the experiments

around 10:1. Table 2 shows the bit-rate used for each en-
coded sequence.
We have noticed that subsampling has more influence in

the encoding speedup than truncation. We have a mean
speedup of 2.07 times for subsampling against 1.80 times
from truncation, considering all subsampling and truncation
strategies tested and taking into account the valid cases (i.e.
cases where the quality loss is less than 0.5 dB).
Subsampling generates more noise than truncation. Again,

considering all subsampling and truncation strategies and
the valid cases we got a mean quality loss of 0.27 dB for
subsampling and a mean quality loss of 0.12 dB for trun-
cation. Although considering the mean and the worst case
only 8:1 subsampling exceeds 0.5 dB of noise. In the mean
case for truncation the noise becomes bigger than 0.5 dB
only after 4 LSB bit truncation, and after 3 bit truncation
considering the worst case.
From the obtained data, we noticed that a combination of

4:1 subsampling and 2 LSB truncation would result in the
bigger speedup while keeping relatively small quality loss.
Indeed, we looked into the obtained data for a combination
that would cause no more than 0.5dB decrease in PSNR
and has the highest speedup. Truncation of 2 LSB incurs
in an average PSNR reduction of less than 0.1dB, while 4:1
subsampling has a higher toll on quality, about 0.31db. Sub-
sampling, however, is the major speedup source for JM, since
3/4 of the data in each macroblock is simply ignored (as ex-
plained in section 3, speedups from truncation on software
ME implementations arise from early termination mecha-
nisms). This leads to speedups of up to 3.18 times (for the
Stockholm sequence). The charts in Figures 4a and 4b detail
the combination of 4:1 subsampling and 2 LSB truncation.
The average speedup for the combined approach was of 2.64
times, with an average impact on PSNR of less than 0.5db.
In order to evaluate in details the behavior of our proposal

for distinct values of encoding bit-rate, we have used the BD-
PSNR (Bjøntegaard Delta PSNR) metric using the following
values of QP (Quantization Parameter): 16,20,24,28, as de-
scribed in [1]. It is important to evaluate quality (PSNR)
for distinct bit-rates to test whether the approach can be
used in distinct scenarios of application. Figure 5a shows
the rate-distortions (RD) curves using the original JM en-
coder and the optimized encoder using our proposal. The
video sequence used for this curves was Crowd Run which
has a high quantity of motion and is a HD (1080p) sequence.
Lower values of bit-rate are obtained for higher values of QP
since using higher values for QP more data is discarded and
there is an increasing on the compression ratio. The two
curves are very near from each other which indicates the
proposal presents a good rate-distortion performance for all

(a)

(b)

Figure 4: Speedup (a) and PSNR degradation (b)
due to optimization on JM

202

the evaluated bit-rates. We have evaluated also the speedup
obtained in the encoding time while using our proposal for
the same QP values we used for BD-PSNR. Figure 5b shows
the obtained values. A speedup of near 3 times is obtained
for all bit-rate values.

 34

 36

 38

 40

 42

 44

0 70 120 2000 3500

P
S

N
R

 (
d
B

)

Bitrate (Mbit/s)

Original
Proposal

(a)

 2.86

 2.88

 2.9

 2.92

 2.94

70 120 2000 3500

S
p
e
e
d
u
p
 (

X
)

Bitrate (Mbit/s)

Proposal speedup

(b)

Figure 5: RD curve (a) and speedup vs bit-rate (b)
of 1080p sequence

The quality loss is small when compared to the speedup
mainly because of the spatial redundancy of photographic
video sequences. For the case of subsampling one would
think that decreasing the number of samples taken into con-
sideration in the block matching, would let escape similar
samples, worsening ME precision and increasing the gener-
ated noise. However because of the spatial redundancy this
increase of noise remains small. The truncation is applied to
all samples of the video sequence, thus it does not affect the
quality aspect of the matching algorithm. The noise gener-
ated by truncation is homogeneous and does not influence
in ME.

6. CONCLUSIONS
In this article, we combine two complementary optimiza-

tions for block-based Motion Estimation in video encoding:
macroblock subsampling and truncation of the two least sig-
nificant bits per sample. The proposed optimizations were

developed around the Full-Search block-matching algorithm
and the SAD matching criterion, yielding a block-matching
engine that was implemented in the JM Reference Encoder.

The evaluation of the proposed optimizations in the JM
H.264 Reference Encoder assess ME quality and good per-
formance gains. It also demonstrates the best combination
between subsampling and truncation. The combination of
4:1 subsampling and 2 LSB truncation presents a quality
loss of less than 0.5dB for all considered sequences and an
average speedup of 2.64.

Since the proposed strategies were implemented in a full-
search algorithm, the developed ME engine avoids the prob-
lem of finding suboptimal motion vectors originated by skip-
ping positions of the search window. However, the proposed
approach is independent of the BMA used, so it can also be
applied in fast-search BMAs.

The proposed approach was applied in a single-resolution
motion estimation, then there is no need of extra hardware
resources to compute ME for distinct levels of resolution.
Either way, it is possible to adapt subsampling and trunca-
tion together in any of the levels of resolution in a multi-
resolution ME strategy.

The proposed method is essentially algorithmic decreasing
ME complexity and freeing hardware resources. Although
it is possible to develop parallel versions of the proposed
method and implement those developing dedicated hardware
architectures.

The combination of the proposed approach with other
methods for ME optimization could be a matter for further
evaluations

7. ACKNOWLEDGMENTS
We would like to thank Ronaldo Husemann and Prof. Val-

ter Roesler for the prolific discussions about motion estima-
tion optimization.

8. REFERENCES
[1] G. Bjøntegaard. Calculation of average PSNR

differences between RD-curves, Mar. 2001. Avaliable
at: http://wftp3.itu.int/av-arch/video-
site/0104 Aus/VCEG-M33.doc. Access date: March
31, 2011.

[2] H. Chang, S. Kim, S. Lee, and K. Cho.
High-performance architecture of h.264 integer-pixel
motion estimation ip for real-time 1080hd video codec.
pages 419 –422, sep. 2009.

[3] L.-G. Chen, W.-T. Chen, Y.-S. Jehng, and T.-D.
Chiuch. An efficient parallel motion estimation
algorithm for digital image processing. Circuits and
Systems for Video Technology, IEEE Transactions on,
1(4):378 –385, dec. 1991.

[4] T. D. H. Du. Macroblock mode decision for h.264. In
MIR ’05: Proceedings of the 7th ACM SIGMM
international workshop on Multimedia information
retrieval, pages 167–172, New York, NY, USA, 2005.
ACM.

[5] Z.-L. He, C.-Y. Tsui, K.-K. Chan, and M. L. Liou.
Low-power vlsi design for motion estimation using
adaptive pixel truncation. IEEE Trans. Circuits Syst.
Video Techn., 10(5):669–678, 2000.

[6] Y.-W. Huang, B.-Y. Hsieh, S.-Y. Chien, S.-Y. Ma, and
L.-G. Chen. Analysis and complexity reduction of

203

multiple reference frames motion estimation in
h.264/avc. Circuits and Systems for Video Technology,
IEEE Transactions on, 16(4):507 – 522, apr. 2006.

[7] X. Li, E. Li, and Y.-K. Chen. Fast multi-frame motion
estimation algorithm with adaptive search strategies
in h.264. volume 3, pages iii – 369–72 vol.3, may. 2004.

[8] X. Li, E. Li, and Y.-K. Chen. Fast multi-frame motion
estimation algorithm with adaptive search strategies
in h.264. volume 3, pages iii – 369–72 vol.3, may. 2004.

[9] C.-C. Lin, Y.-K. Lin, and T.-S. Chang. A fast
algorithm and its architecture for motion estimation
in mpeg-4 avc/h.264 video coding. pages 1248 –1251,
dec. 2006.

[10] C.-C. Lin, Y.-K. Lin, and T.-S. Chang. Pmrme: A
parallel multi-resolution motion estimation algorithm
and architecture for hdtv sized h.264 video coding.
volume 2, pages II–385 –II–388, apr. 2007.

[11] B. Liu and A. Zaccarin. New fast algorithms for the
estimation of block motion vectors. Circuits and
Systems for Video Technology, IEEE Transactions on,
3(2):148 –157, apr. 1993.

[12] W. Ma, S. Yang, C. Pei, L. Gao, and Y. Lin. Fast
algorithm for multi-reference and variable block size
motion estimation in h.264/avc. In ICIMCS ’09:
Proceedings of the First International Conference on
Internet Multimedia Computing and Service, pages
151–154, New York, NY, USA, 2009. ACM.

[13] S. Ning-ning, F. Chao, and X. Xu. An effective
three-step search algorithm for motion estimation.
volume 1, pages 400 –403, aug. 2009.

[14] A. T. Oscar, O. C. Au, and M. L. Liou. Predictive
motion vector field adaptive search technique
(pmvfast) - enhancing block based motion estimation.
In in the Optimization Model 1.0,” in ISO/IEC
JTC1/SC29/WG11 MPEG2000/M6194, pages
883–892, 2001.

[15] L.-M. Po and W.-C. Ma. A novel four-step search
algorithm for fast block motion estimation. Circuits
and Systems for Video Technology, IEEE Transactions
on, 6(3):313 –317, jun. 1996.

[16] Y. Su and M.-T. Sun. Fast multiple reference frame
motion estimation for h.264/avc. Circuits and Systems
for Video Technology, IEEE Transactions on,
16(3):447 –452, mar. 2006.

[17] G. Sullivan and T. Wiegand. Rate-distortion
optimization for video compression. Signal Processing
Magazine, IEEE, 15(6):74 –90, nov 1998.

[18] K. Sühring. H.264/avc jm reference software, 2011.
Avaliable at: http://iphome.hhi.de/suehring/tml/.
Access date: February 07, 2011.

[19] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and
A. Luthra. Overview of the h.264/avc video coding
standard. Circuits and Systems for Video Technology,
IEEE Transactions on, 13(7):560–576, August 2003.

[20] H.-M. Wong, O. Au, C.-W. Ho, and S.-K. Yip.
Enhanced predictive motion vector field adaptive
search technique (e-pmvfast)-based on future mv
prediction. page 4 pp., jul. 2005.

[21] L. Yang, K. Yu, J. Li, and S. Li. Prediction-based
directional fractional pixel motion estimation for h.264
video coding. In IEEE International Conference on
Acoustics Speech Signal Processing, pages 901–904,

2005.

[22] H. Yin, H. Jia, H. Qi, X. Ji, X. Xie, and W. Gao. A
hardware-efficient multi-resolution block matching
algorithm and its vlsi architecture for high definition
mpeg-like video encoders. Circuits and Systems for
Video Technology, IEEE Transactions on, 20(9):1242
–1254, sep. 2010.

[23] S. Zhu, J. Tian, X. Shen, and K. Belloulata. A new
cross-diamond search algorithm for fast block motion
estimation. pages 1581 –1584, nov. 2009.

204

