
A Service Oriented Approach for Synchronous
Collaborative RIAs Development

Tiago C. Gaspar
Federal University of Sao

Carlos
Sao Paulo, Brazil

tiago_gaspar@dc.ufscar.br

Cesar A. C. Teixeira
Federal University of Sao

Carlos
Sao Paulo, Brazil

cesar@dc.ufscar.br

Antonio F. do Prado
Federal University of Sao

Carlos
Sao Paulo, Brazil

prado@dc.ufscar.br

ABSTRACT
The concepts and technologies that define Web 2.0 have
revolutionized and extended computer assisted collaborati-
ons. Collaborative applications with synchronous multime-
dia communication, rich interfaces and using the Web as
platform are examples of such revolution. Experiences in
that domain allow the identification of commonalities among
these applications. A service oriented architecture might be
a good choice to lower coupling between platforms and incre-
ase software reuse. Based on practical experience, this paper
presents a software reuse approach. Web Services and GUI
components are proposed to aid development of synchronous
multimedia collaborative RIAs in a systematic manner.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.8 D.2.13 [Reu-
sable Software]:

General Terms
Languages, Design

Keywords
SOA, RIA, Collaboration, Web 2.0, Multimedia

1. INTRODUCTION
Web 2.0 [16] is a term that had origin in the concepts and te-
chnologies employed by a set of companies during the ”Dot-
Com bubble”in 2000. That set of companies excelled by
employing services and applications that had some charac-
teristics in common such as rich interfaces, Web as platform,
harnessing collective intelligence, multi-device software and
others. Usually, a Web 2.0 application does not need to
comply with all these characteristics simultaneously, but at
least a subset of them.

Human relations and knowledge production are changing
quickly. That is partially due to new forms of information

production and consumption created by the Web 2.0. Colla-
borations play a key role in such changes and are fundamen-
tal to content production. Although the collaboration prac-
tice has become popular, synchronous collaborations are not
as popular as the asynchronous ones through blogs, social
networks, wikis, and others. This is due to many factors,
mainly because of technological barriers such as software
and broadband network availability. Some of these factors
are changing and it would not be a surprise if in a couple
years most of our meetings with bank managers, help desk
support or guitar teachers would be online through Web ap-
plications.

Nowadays, bandwidth for Internet is not a constraint any
more for rich media content traffic. Sites like YouTube,
Flickr and Justin.tv are examples of growing rich media con-
tent availability on the Web. Only in January 2009, 139
millions or 75% of US’s Internet users had access to online
multimedia content [4]. Despite the large amount of rich
media content being produced and consumed today, most of
collaborations in the Web are still text based.

Synchronous collaborations might evolve adopting richer me-
dia. The ideal scenario is to collaborate remotely in the
same way it’s done face to face, so that geographic barriers
would become less restrictive. Computer aided collaborati-
ons offer possibilities not found in face to face collaborations
like database information persistence, content search, con-
tent production support or remote collaboration. Some of
these possibilities can be made available by Web applicati-
ons that use technologies such as HTML, CSS, Javascript
and AJAX. These kind of applications are known as RIAs
(Rich Internet Applications) and they support user collabo-
ration as much as desktop applications, although they are
on the Web and available by browsers.

Synchronous collaborations usually have some elements in
common such as audio, video or text interaction. These
basic collaboration elements can be seen as synchronous in-
teraction units. Each of these synchronous interaction units
provides a way to exchange information between partici-
pants. GUI (Graphical User Interface) components and Web
Services can support these synchronous interaction units al-
lowing software reuse among different synchronous collabo-
rative applications as they share basic characteristics.

The Tidia-Ae (Information Technology for Development of
Advanced Internet - Electronic Learning) [20] project, in

115



which this works’ authors contribute, is an initiative that
aims the construction of an open source web electronic lear-
ning environment. The Ae is a portal that has a set of tools
and functionalities to support learning activities. Part of
this project is dedicated to research and develop multimedia
synchronous collaborative applications with rich interfaces.
Ae has been used as a learning platform in many universi-
ties. As a consequence, there is a demand to expand the
existing set of applications.

However, developing rich interface synchronous collabora-
tive applications can be costly and difficult. Compared to
desktop applications, RIAs must fulfill non-functional requi-
rements related to security, fast responses, elaborated user
interfaces, browser history, and so on. Technological barri-
ers lead development teams to spend long hours addressing
these non-functional requirements. Heterogeneity of brow-
sers, platforms and programming languages are problems
concerning development teams’ productivity. This complex
scenario makes it harder to compose teams, predict project
costs and maintain existent applications. Therefore, efforts
in software reuse might be an important issue.

Mili et al. state that software reuse would improve the ove-
rall quality of a system if quality components were used in
system’s construction. With a reuse process, productivity
increases in the same ratio as the process is automated and
quality increases in the same extent as quality-enhancing
processes are systematized [12].

Reducing software components coupling to platforms can
improve software reuse as these components can be availa-
ble to a larger number os systems. SOA (Service Oriented
Architecture) is good alternative to expose these compo-
nents as platform agnostic services. SOA is a paradigm for
realization and maintenance of business processes that span
large distributed systems. It is based on three major te-
chnological concepts: services, interoperability through an
enterprise service bus and loose coupling [11]. From a col-
laborative perspective, where there are a large number of
collaboration environments and many of the collaborative
applications reside inside these environments, developing ap-
plications that are loosely coupled can be an advantage. In
the e-learning area, for instance, there are many collabo-
ration environments such as Sakai, Moodle or BlackBoard.
Developing collaborative applications that adopts a SOA al-
lows these applications to be compatible with any of these
environments even though they might be in JAVA, PHP or
.NET platforms.

This paper proposes a reuse approach based on a SOA, and
a set of GUI components, to develop synchronous collabo-
rative RIAs. The purpose of the approach is to aid domain
application developers to build applications reusing software
artifacts in a systematic manner. The reuse approach is di-
vided in to two parts: Domain Engineering and Application
Engineering. Domain Engineering builds software artifacts
to be reused such as a set of Web Services, GUI compo-
nents and an architecture. Application Engineering guides
application’s assemble connecting existent Web Services and
using UI components to provide key functionalities. All ap-
plications resulted from this approach share same architec-
ture, although they might use different sets of Web Services

or GUI components according to the it’s requirements.

2. SYNCHRONOUS COLLABORATIVE DO-
MAIN

Face to face collaborations such as business meetings or clas-
sroom lessons can have a correspondence in the computer
mediated collaboration domain. Interactive elements pre-
sent in a meeting, for instance, such as sight, hearing, or a
piece of paper can be represented in a computer mediated
scenario with video, audio, and whiteboard representation
respectively. One could use these computer mediated re-
presentations to build applications that support the same
functionalities that are available in common collaborations
without computer support. The idea is to bring these colla-
borations to the computer mediated domain so it could be
possible to have a remote business meeting, attend a class-
room or talk to a bank manager using the Web as platform.

Collaborations supported by computational systems may of-
fer possibilities not found in regular collaborations without
computer aid. Functionalities like database information per-
sistence, content search, content production support and re-
mote collaboration are a few examples. In order to make
these functionalities accessible for most users, the web envi-
ronment sounds appropriate due to the large availability of
browsers.

The synchronous collaborative applications with rich inter-
face domain is characterized by intense demand for effici-
ent communication services, user management services and
complex rich web interfaces. These characteristics can be
very expensive to develop for each application. In order
to lower costs and development complexity, Web Services
and components are proposed throughout this paper. The
components provide GUI support to a set of synchronous in-
teraction units such as text, audio, video, whiteboard. The
business logic are offered in terms of Web Services and sup-
ports tasks such as synchronous communication, authenti-
cation, authorization and session management.

From the applications users perspective, the applications
constructed from this approach are OS independent and
don’t require specific software installation. To take advan-
tage of synchronous interaction offered by these applications,
the user must have softwares that are already available in
most personal computers like a browser and Flash plugin.
Other devices such as smartphones or PDAs that have brow-
ser and Flash plugin support are also able to make use of
rich interfaces and synchronous interactivity.

From the applications’ developers perspective, the proposed
architecture and Web Services are also agnostic to specifics
platforms. The architecture is designed to make the most of
existent Web Services allowing application’s business logic
to compose it’s self using these Web Services.

3. REUSE APPROACH
The proposed reuse approach was motivated by the deve-
lopment of synchronous collaborative applications for the
Tidia-Ae project. The first application developed was an
instant messenger tool with text, audio and video support.
As others synchronous collaborative applications were been

116



designed and developed, it became clear that they all sha-
red some set of functionalities. Some of these commonalities
were identified during the analysis phase, such as a commu-
nication service for message exchange. Others were identi-
fied as late as the final stages of development like some GUI
components. After the identification of commonalities, the
common parts were refactored, documented, packaged in to
software components and Web Services . As other appli-
cations were been developed, some of the existent services
and components were improved and others created. After
two years of this process and seven applications developed,
a more stable approach, as described next, was reached.

The proposed reuse approach is based on the building blocks
reuse approach with separate activities defined in [12]. The
activities are divided in Domain Engineering and Applica-
tion Engineering as shown in Figure 1.

Figure 1: Reuse process.

Domain Engineering identifies common aspects of a domain
and makes them available for posterior reuse by domain ap-
plications. The view is broad, centered not in one particular
application but in a set of them. In this activity, it’s im-
portant to foresee requirements and tendencies for future
applications. Web Services resulted from the Domain Engi-
neering are stored as UDDI registries [13] and, analogously,
components are stored in a components library.

Differently from the Domain Engineering, that aims a bro-
ader universe, the Application Engineering addresses appli-
cations development reusing an architecture, Web Services
and GUI components created in the Domain Engineering.
Applications make use of these software artifacts in order to
compose part of its functionalities.

3.1 Domain Engineering
Domain Engineering is characterized by development of ar-
tifacts in order to provide reuse to domain applications. The
development model of Domain Engineering follows the evo-
lutionary prototype paradigm aided by the spiral develop-
ment model proposed by Boehm [2]. In each increment, four
phases takes place: Analysis, Design, Implementation and
Tests.

Developing several applications for this domain pointed that
most of these applications require some common functiona-
lities. These common functionalities are represented by a
set of Web Services and GUI components as can be seen in
Figure 2.

Figure 2: Synchronous Collaborative Web Services
Domain

The following sections describe in details the available Do-
main Engineering’s Web Services and GUI components.

3.1.1 Authentication/Authorization
Collaborative applications must authenticate and authorize
it’s users in order to provide secured and controlled access.
Often, in corporate or educational environments there are
authentication/authorization services already deployed such
as LDAP or Microsoft’s Active Directory . SOA allows
these services to be exposed and used seamlessly by diffe-
rent applications. Makes sense that synchronous collabora-
tive RIAs also access these services to provide authentication
and authorization functionalities. If the developer chooses to
use proprietary authentication/authorization services, these
services can be exposed in the same manner, using the same
WSDL interface.

Table 1 lists the most relevant authentication/authorization
services in the synchronous collaborative applications do-
main.

Table 1: Authentication/Authorization services
Authentication/Authorization services

Service Parameters
authenticate login, password
addUser login, password, name, email, ..., role
isAuthorized operation id, role
isAuthorized operation id, login
authorize operation id, role
authorize operation id, login

Authentication/Authorization Web Services provides a WSDL
interface published as UDDI registries and supports SOAP
messages. SOAP allows messages to pass through firewalls

117



using HTTP communication protocol. Corporate or edu-
cation environments are frequently complex due to secure
related issues. Using SOAP to make requests can simplify
network setups and increase interoperability.

3.1.2 Session Management
Session management is essential to synchronous collabora-
tive applications. That might not be true to asynchronous
collaborations. In a social network or blog there’s no need
to know if a participant is online, therefore schedule a ses-
sion is not an issue. But in synchronous collaborations it is
important to know which participants are members of a ses-
sion and if they are available or not to receive synchronous
messages.

A synchronous collaborative session is about scheduling a
meeting between a group of participants. Synchronicity re-
quires that all participants are collaborating simultaneously
in a defined time, during a defined period. Another impor-
tant aspect is defining collaboration roles. Different synch-
ronous collaborative applications might need different roles
to fulfill it’s needs. In a simple meeting application, two ro-
les might be necessary: a Maintain and an Access role. The
Maintain role can create a meeting, include/exclude users
and choose applications that will be used in a particular
session. A classroom application might need a different se-
tup with 3 roles: Teacher, Teacher Assistant and Student.
Each role having different sets of permissions.

Synchronous collaborative applications accesses session ma-
nagement functionalities analogously to Authentication/Autho-
rization Web Services using SOAP, WSDL and UDDI.

Table 2 shows the most relevant session management servi-
ces in the synchronous collaborative applications domain.

Table 2: Session Management services
Session Management services

Service Parameters

addSession
site id, title, description,
begin date, end date, participant ids

getSession session id
removeSession session id

updateSession
session id, title, description, begin date,
end date, participant ids

listSessions site id, partipant id

addSessionTool
session id, tool id, tool description,
tool topic

Most of the services in Table 2 are straight forward, except
for the last one. addSessionTool service requires a tool topic
parameter in order to reserve a communication channel to
exchange messages. Synchronous collaborative RIAs might
be composed of several tools such as a text tool for text com-
munication and an audio/video tool for multimedia commu-
nication. All tools are ultimately rendered in the client, so
it must know how to exchange messages to its peers. A tool
topic allows a tool to send and receive messages to similar
tools active on the other client’s machines.

3.1.3 Synchronous Communication Service (SCS)

Synchronous communication functionalities are perhaps one
of the most common and important commonalities of this
domain. Every synchronous application needs to exchange
messages between two or more participants. In order to
provide that functionality, a set of communication Web Ser-
vices were developed to allow simple and efficient message
exchange.

Synchronous communication through Web Services require
a different approach compared to traditional Web Service
communication. The most common use of Web Services is
the request/response communication paradigm. However,
a message originated by a synchronous application might
need to delivered without a previous request. When a syn-
chronous text message is sent by an application, it needs
to notify its destination, other applications, that there’s a
message to be consumed. The Publish-Subscribe [6], also
known as Observer, design pattern is appropriate to provide
that behavior.

Web Service Publish-Subscribe is supported by a set of OA-
SIS specifications known as Web Service Notification (WSN)
[14]. WSN is tightly integrated to Web Service Resource
(WSR) [15], another OASIS standard. WSR allows state-
full services supporting WSN to maintain states in order
to notify subscribers about any changes in the subscribed
subject.

Figure 3 shows a Publisher, a Subscriber, an application ser-
ver with a notification broker and a messaging engine. In
the figure, the Subscriber subscribe itself to a given topic,
the Publisher notifies the application server about a modi-
fication in the topic and the NotificationConsumer receives
a notification message about the change made by the Pu-
blisher.

Figure 3: Web Service Notification [9].

Another approach is to query regularly a particular Web
Service for any changes. That method is called polling and
could possibly lead to a scalability issue. If there are a large
number of Subscribers, the constant querying might cause
heavy processing and a large network traffic. Unless appli-
cations present regular content changes, a large portion of
the queries will be in vain, since is not possible to predict
when an application has it’s state changed.

SCS provides a semantic layer to synchronous collaborative
applications using the underneath Publish-Subscribe pat-
tern. Table 3 shows the most relevant services provided by

118



SCS.

Table 3: Synchronous Communication Services
Synchronous Communication Services

Service Parameters
createTopic
deleteTopic topic id
connectToTopic user id, topic id, listener
disconnectFromTopic user id, topic id
sendMessage user id, topic id, message id
getTopicUsers topic id
getTopicOnlineUsers topic id
getHistoryMessages topic id, start date, end date

Notice that there’s no receiveMessage service. The Subscri-
ber, or application, must implement the NotificationConsu-
mer interface to receive messages. So, it is necessary that
the application publishes a Web Service to be receive noti-
fications. This is not a problem to Web applications, most
of the Web containers such as Tomcat, WebSphere or JBoss
provide functionalities to expose Web Services.

3.1.4 Media Streaming Service (MSS)
A media streaming service is necessary in order to support
high quality audio and video streaming. Although SOAP is
a very flexible way to provide communication, it’s not ap-
propriate to live streaming audio and video. In fact, the
HTTP protocol adds an overhead to multimedia streaming.
Instead, the RTMP (Real Time Messaging Protocol) proto-
col1[1] is used by the Media Streaming Service to support
audio and video live streaming. RTMP servers can also per-
sist media streamings.

3.1.5 GUI components
Develop RIAs has proved to be difficult and time consuming.
The first Tidia-Ae applications pointed that roughly 60% of
all development effort was devoted to that topic. To tackle
this problem, GUI AJAX enabled window components were
developed.

To show how straight forward those components can be used
by applications, Listing 1 shows a JSF file that displays
a Web page with a synchronous text interaction window.
That simple application allow users, represented by the lo-
gicBean’s participants property, to exchange text messages.

<%@ taglib uri=”http://br.fapesp.tidia.ae.ccsw2 0/jsf/
rwic” prefix=”rwic” %>

<f:view><h:form>
<rwic:textWindow participants=#{logicBean.

participants} style=”...”>
</h:form></f:view>

Listing 1: Simple synchronous text interaction
application.

The developed GUI components were grouped in to two
taglibs: RWIC (Rich Window Interface Components) and

1The Flash media streaming server used in this work is the
open source project Red5. MSS is also compatible to Flash
Media Server.

RISCOM (Rich Interactive Synchronous Components) [7].
RWIC components were designed to provide basic functio-
nalities, such as audio, video and text support. RISCOM
offers a set of more meaningful components like an Instant
Messenger, Chat, List of Participants and Whiteboard.

RWIC - Rich Window Interface Components

RWIC provides support to synchronous updates through
AJAX2, window actions (minimize, maximize, resize, po-
pup, drag, and others), layout management and integration
with messaging services SCS (Synchronous Communication
Service) and MSS (Media Streaming Service).

Figure 4 shows an UML class diagram of the RWIC’s tags
internal objects. Abstract classes like GenericCommWin-
dow and AudioVideoWindow encapsulates rich interfaces
and communication complexities. TextWindow is a JSF tag
that can be used for text exchange. PublishVideoWindow
is a JSF tag that can be used for audio and video capture
and streaming. PlayVideoWindow is also a JSF tag that
displays a multimedia stream.

Figure 4: RWIC class model.

RISCom - Rich Interactive Synchronous Components

GUI components reuse is also available through a more func-
tional set of components. The tag library RISCom provides
components that can be combined in several ways. Some of
these components are:

• Instant Messenger : GUI component for synchronous
instant n-to-n participants interaction that supports
audio, video, text, emoticons and file exchange.

• List of Participants: GUI component that exhibits
present participants in a collaboration. It allows con-
tact list selection actions to be customized in order to

2Although AJAX is by definition asynchronous, the user has
the impression of synchronous updates due to the server’s
short answer periods (Reverse AJAX [3]).

119



activate other applications such as Instant Messenger
or Whiteboard.

• Mosaic: GUI component that exhibits multiple video
panels of participants. This component is actually a
layout manager that has many instances of PlayVide-
oWindow.

• Chat : GUI component to text communication that of-
fers content moderation functionalities.

• Whiteboard : GUI component of a synchronous shared
whiteboard. Free hand annotations, geometric figure
drawings and slides changes made on the whiteboard
are synchronously updated and can be persisted for
later reference [10].

3.2 Application Engineering
Application Engineering provides developers with an appro-
ach to build synchronous collaborative RIAs aided by the
Web Services and GUI components described in previous
sections.

Developing synchronous collaborative RIAs differs from de-
veloping desktop applications due to the previously men-
tioned non-functional requirements such as security, rapid
responses, browser related issues, elaborated GUIs and so
on. In order to address these non-functional requirements,
the GUI component library was developed. RWIC and RIS-
Com provides functionalities that can be useful to most of
the synchronous collaborative RIAs. Text, audio and video
interactions are most basic forms of information exchange in
a synchronous computer mediated collaboration.

Another aspect of this domain is rapid prototyping. Clients
often require small deliverables, maybe due to risks related
to porting tasks that are usually done by desktop applicati-
ons, or not even computer mediated, to Web applications.

As shown in Figure 1, applications are developed by the
same Domain Engineering disciplines: Analysis, Design, Im-
plementation and Tests. The specific activities that takes
place in each of theses disciplines, regarding Application En-
gineering, are:

• Analysis: the application’s requirements are identified,
as well as a set of existent Web Services and GUI com-
ponents candidates that might fulfill part of the requi-
rements.

• Design: the set of candidate Web Services and GUI
components are refined and attached to a defined ar-
chitecture. The remaining requirements are designed
guided by the application’s specifics requirements (not
fulfilled by domain’s artifacts), architecture, selected
Web Services and GUI components.

• Implementation: specific application’s functionalities
are implemented, GUI Components and Web Services
are connected to the application’s code.

• Tests: after unit testing application’s specific func-
tionalities, integration, system, and acceptance tests
takes place with the selected Web Services and GUI
Components already in place.

After all those disciplines, a small deliverable should be avai-
lable for appraisal. If the deliverable is not approved by the
client, than a new cycle must begin with the feedbacks from
the previous increment. After the client’s approval, a new
set of requirements will be addressed in the next increment.
The process goes on until the application is considered com-
plete and accepted by the client.

Figure 5 shows an application architecture. It’s instantiated
to an example, that will be detailed later, but it’s important
to emphasize that all applications in the proposed approach
follow the same architecture. The internal application struc-
ture is divided in to three tiers: View, Logic and Persistence.
Each tier defines set of responsibilities and depends only of
the direct lower tier. Messages are exchanged without jumps
between tiers.

Figure 5: Application standard architecture.

Meeting, a proof of concept application, whose architecture
is shown in Figure 5, was designed to support online me-
etings so that participants can see, hear, text each other,
scribble on the whiteboard and at the end of the meeting,
compose a minute with the discussed points. This exam-
ple was selected emphasize how the proposed architecture
supports reuse of domain artifacts and application’s speci-
fic requirements. Notice that most of the requirements of
Meeting are covered by the existent GUI components and
Web Services except for the minute requirement. The pro-
posed reuse approach allows developers to focus mostly on
the application specific requirements.

Main JSF page gathers all GUI components reuse while Mi-
nute JSF page is responsible for the minute GUI. Meetin-
gLogic and MeetingDAO are devoted to the minute’s func-
tionalities only, accessing Session Management Services to
access users informations. Notice that application’s develo-
pers don’t need to acknowledge reused internal GUI compo-
nents complexities related to audio, video, text or whitebo-
ard. Internally, these GUI components uses the previously
described Web Services to provide its functionalities.

Figure 6 shows how the Meeting application calls a Session
Management Web Service to access participants information

120



for a given session.

Figure 6: Authentication/Authorization Web Ser-
vice request.

Listing 2 shows the use of the GUI components by the Mee-
ting application in the Main JSF page3.

<%@ taglib uri=”http://br.fapesp.tidia.ae.ccsw2 0/jsf/
rwic” prefix=”rwic” %>

<%@ taglib uri=”http://br.fapesp.tidia.ae.ccsw2 0/jsf/
riscom” prefix=”riscom” %>

<f:view><h:form>
<h:commandLink value=”sair” action=”finish” style=”

...”>
<riscom:whiteboard participants=#{MeetingLogic.

participants} editAll=”true” style=”...”>
<rwic:textWindow participants=#{MeetingLogic.

participants} moderate=”false” style=”...”>
<rwic:publishAV serverUrl=#{MeetingLogic.

MSSServerUrl} stream=#{MeetingLogic.userId}
moderate=”false” debug=”true” style=”...”>

<riscom:mosaicAV serverUrl=#{MeetingLogic.
MSSServerUrl} streams=#{MeetingLogic.
participantsId} moderate=”false” debug=”true”
style=”...”>

</h:form></f:view>

Listing 2: Main JSF page code.

Figure 7 shows a screenshot of the Main JSF page.

Most of the proposed services described in this work pro-
vides semantic layer to other services and frameworks that
are commonly used in software development, particularly
in JAVA. Some of these services used in developed applica-
tions, including Meeting, are: JSF and ZK framework for
GUI, Apache Axis for SOAP communication, Hibernate as
ORM framework, MySQL as DBMS, Red5 for audio and vi-
deo streaming service, Tomcat as application container and
Spring as IoC manager.

3The code listed has been simplified to emphasize the use of
RWIC and RISCom tags.

Figure 7: Meeting application’s screenshot.

4. RELATED WORK
Web 2.0 synchronous collaborative works are still hard to
find. However, many synchronous collaborative develop-
ment approaches were proposed in the past, particularly in
the groupware toolkits category. Some of them are Group-
kit [18], COAST [19], Clockworks [8] and Redezvous [17].
Although these toolkits are elaborated (some of them pro-
posing languages for domain specification) they lack more
practical approach in technological terms. They tend to
propose custom services and components that does not take
advantage of the scalability and robustness that frameworks
and services already available can offer. Another issue is
that they are mostly desktop applications.

PowerMeeting [21] is a recent work and does proposes a Web
environment for rich user interface synchronous collabora-
tion using GWT and AJAX. It supports whiteboard, brain
storming and chat tools. PowerMeeting also provides a plu-
gin oriented framework in order to allow developers to build
plugin applications. However, despite the reuse concern like
it’s framework and plugin facilities, it doesn’t offer a defined
reuse process. It’s structure doesn’t support much intero-
perability leading all developed applications to reside inside
it’s web portal.

5. CONCLUSIONS AND LEARNED LESSONS
This work presents an approach, motivated by real needs,
to reuse software in the development of synchronous colla-
borative RIAs. The experience in the Tidia-Ae project was
fundamental to the proposal conception, providing a realistic
view of the domain and associated risks in the development
of applications.

Some applications were developed using the described Web
Services, GUI components library and architecture such as a
remote teaching application (REFACE), a video conference
application with teleprompters (Tete-a-Tete) and a thesis
defense application (Viva). In order to give the reader an
idea of the approach’s results in the application develop-
ment process, an experienced Java developer, with the de-
velopment environment set, took approximately 5 hours to
develop the case study Meeting, described in section 3.2.
The number of code lines written exclusively for the Mee-
ting application compared to the total code lines used by the

121



Meeting application (including components) showed 83% of
code reuse.

Adopting a SOA provided the applications constructed from
the proposed reuse approach with loose coupling, separation
of concerns and a well defined architecture. Such characte-
ristics adds value to applications and increases interopera-
bility between platforms.

6. FUTURE WORK
Due to increasing popularity of smartphones and new gene-
ration tablets, in a near future most of the collaborations
could happen through such devices. This work might evolve
the proposed approach to improve support for mobile de-
vices. Specific mobile GUI components could be developed
to allow data communication between the described compo-
nents. The proposed WebServices could evolve and include
REST support to some of its services which could simplify
development.

7. ACKNOWLEDGEMENTS
FAPESP provided support to the development of this work
through the project TIDIA-Ae, process 2005/60653-1.

8. REFERENCES
[1] Adobe. Real-time messaging protocol.

http://www.adobe.com/devnet/rtmp/, May 2009.

[2] B. Boehm. A spiral model of software development
and enhancement. ACM SIGSOFT Software
Engineering Notes, 11(4):14–24, 1986.

[3] E. Bozdag, A. Mesbah, and A. van Deursen. A
comparison of push and pull techniques for ajax.
ArXiv e-prints, June 2007.

[4] ComScore. Youtube.com accounted for 1 out of every
3 u.s. online videos viewed in january.
http://www.comscore.com/Press Events/-
Press Releases/2008/03/YouTube Usage, Jul
2009.

[5] Fapesp. Fundação de amparo à pesquisa do estado de
são paulo. http://www.fapesp.br/, January 2010.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addision-Wesley, 1995.

[7] T. C. Gaspar, A. F. Prado, and C. A. Teixeira. Linha
de produtos de software para colaboração śıncrona na
web 2.0. In Anais do Simpósio Brasileiro de Sistemas
Multimı́dia e Web (Webmedia), 2009.

[8] T. Graham, C. Morton, and T. Urnes. Clockworks:
Visual programming of component-based software
architectures. Journal of Visual Languages and
Computing, 7(2):175–196, 1996.

[9] IBM. Web service notification overview.
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1-
/index.jsp?topic=/com.ibm.websphere.pmc.express.doc/-
ref/rjwsn ex sub.html,
2008.

[10] C. Jardim, A. Martelini Jr, J. Freire, E. Silva, S. Lara,
F. Santos, T. Kudo, R. Fortes, and M. Pimentel.
Whiteboard: uma ferramenta de apoio ao ensino e
aprendizado com uso de anotação eletrônica. XVI
Simpósio Brasileiro de Informática na Educação
(SBIE), 2005.

[11] N. Josuttis. Soa in practice. O’Reilly, 2007.

[12] H. Mili, F. Mili, and A. Mili. Reusing software: Issues
and research directions. IEEE Transactions on
Software Engineering, pages 528–562, 1995.

[13] OASIS. Specification tc.: Uddi version 3.0.2
specification.
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm, 2004.

[14] OASIS. Web service notification standard.
http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsn,
2006.

[15] OASIS. Web service resource standard.
http://www.oasis-
open.org/committees/tc home.php?wg abbrev=-
wsrf#technical,
2006.

[16] T. OReilly. What is web 2.0: Design patterns and
business models for the next generation of software.
http://oreilly.com/web2/archive/what-is-web-20.html,
September 2005.

[17] J. Patterson, R. Hill, S. Rohall, and S. Meeks.
Rendezvous: An architecture for synchronous
multi-user applications. In Proceedings of the 1990
ACM conference on Computer-supported cooperative
work, page 328. ACM, 1990.

[18] M. Roseman and S. Greenberg. Building real-time
groupware with groupkit, a groupware toolkit. ACM
Transactions on Computer-Human Interaction
(TOCHI), 3(1):66–106, 1996.

[19] C. Schuckmann, L. Kirchner, J. Sch
”ummer, and J. Haake. Designing object-oriented
synchronous groupware with coast. In Proceedings of
the 1996 ACM conference on Computer supported
cooperative work, pages 30–38. ACM New York, NY,
USA, 1996.

[20] Tidia-Ae. Tecnologia da informação para o
desenvolvimento da internet avançada - aprendizado
eletrônico.
http://tidia-ae.incubadora.fapesp.br/portal, May
2009.

[21] W. Wang. Powermeeting: gwt-based synchronous
groupware. In Proceedings of the nineteenth ACM
conference on Hypertext and hypermedia, pages
251–252. ACM New York, NY, USA, 2008.

122




