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ABSTRACT
Subsequence identification consists in identifying real po-
sitions of a specific video clip in a video stream together
with the operations that may be used to transform the for-
mer into a subsequence from the latter. To cope with this
problem, we propose a new approach considering a bipartite
graph matching to measure video clip similarity with a tar-
get video stream which has not been preprocessed. We show
that our approach locates edited video clips allowing inser-
tion, removal and replacement operations. Experimental re-
sults demonstrate that our method performance achieve 93%
recall with 93% precision, though it has a low computational
cost since its classifications step is extremely simple.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess—multimedia and video streams; H.5.1 [Multimedia
Information Systems]: Video

General Terms
Algorithms, Experimentation, Performance

Keywords
Video retrieval, Graph bipartite, Video clip localization

1. INTRODUCTION
Traditionally, multimedia information has been analogically
stored and manually indexed. Due to advances in multime-
dia technology, techniques to video retrieval are increasing.
Unfortunately, the recall and precision of these systems de-
pend on the similarity measure that are used to retrieve
information. Nowadays, due to improvements on digital-
ization and compression technologies, database systems are
used to store images and videos, together with their meta-
data and associated taxonomy. Thus, there is an increasing
search for efficient systems to process and index image, audio
and video information, mainly for the purposes of informa-
tion retrieval.

The task of automatic segmentation, indexing, and retrieval
of large amount of video data has important applications
in archive management, entertainment, media production,
rights control, surveillance, and many more.

The complex task of video segmenting (mainly in presence
of gradual transitions and motion) and indexing faces the
challenge of coping with the exponential growth of the Inter-
net, that has resulted in a massive publication and sharing
of video content and an increase in the number of dupli-
cated documents; and the distribution across communica-
tion channels, like TV, resulting in thousands of hours of
streaming broadcast media. According to [5, 6, 7], one im-
portant application of video content management is broad-
cast monitoring for the purpose of market analysis. The
video clip localization, as it will be referred during this pa-
per, has arisen in the domain of broadcast television, and
consists of identifying the real locations of a specific video
clip in a target video stream. The main issues that must be
considered during video clip localization are: (i) the defini-
tion of the dissimilarity measures of video clips; (ii) the pro-
cessing time of the algorithms due to the huge amount of in-
formation that must be analyzed; (iii) the insertion of inten-
tional and non-intentional distortions; (iv) different frame
rates; and (v) edition of the videos. The selection of the
feature used to compute dissimilarity measure has an im-
portant role in content-based image retrieval and has been
largely explored [19]. [4] showed that the performance of the
features is task dependent, and that it is hard to select the
best feature for an specific task without empirical studies.
Low-complexity features and matching algorithms can work
together to increase matching performance.

Current methods for solving the video retrieval/localization
problem can be grouped in two main approaches: (i) com-
putation of video signatures after temporal video segmen-
tation, as described in [6, 11, 14]; and (ii) use of matching
algorithms after transformation of the video frame content
into a feature vector, as described in [1, 8, 12, 16, 20]. When
video signatures are used, methods for temporal video seg-
mentation must be applied before signature calculation [2].
Although temporal video segmentation is a widely studied
problem, it represents an important issue that has to be
considered, as it increases complexity of the algorithms and
affects matching performance. For methods based on string
matching algorithms, the efficiency of the these algorithms
must be taken into account, when compared to image/video
identification algorithms. [1] and [12] successfully applied
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Table 1: Comparison of some approaches for video clip localization (adapted from [18]).
Sliding Temporal order Vstring Multi-level Graph approach Dense BMH Our proposed

window [3] [10, 21] edit [1] [13] [18] [20] [8] method
Shot/Frame Matching shot shot shot shot shot frame frame frame
Temporal order no yes yes yes yes possible yes possible
Clip filtering no no no no yes no no no
Online Clip Segment. yes no no no yes yes no no
Preprocessing yes yes yes yes yes yes no no
Video edition no no no no no yes no yes

the longest common substring (LCS) algorithm to deal with
the problem. However, it requires a O(mn) space and time
cost, in which m and n represent the size of the query and
target video clips, respectively. In [8], it is proposed a mod-
ified version of the fastest algorithm for exact string match-
ing, the Boyer-Moore-Horspool (BMH) [9, 15], to deal with
the problem of video location and counting. In [16] we pro-
posed a new approach to cope with the problem of video
clip localization using the maximum cardinality matching of
a bipartite graph, however this approach copes only with ex-
act video matching. [20] also used bipartite graph matching,
however the first step of the algorithm is related to analyze
the video query and video target to identify frame similari-
ties and possible locations of the matching.

In the present paper, we present a modified version of our
previous approach [16], which is able to deal with general
case in video clip localization problem, allowing insertion,
removal and replacement operations on the video clip. Our
method not only solves the approximate video clip (or sub-
sequence) localization problem but also gives a precise de-
scription of the operation set that are necessary to trans-
form the query video into a clip of the target video stream.
Our approach copes with the problem of video clip localiza-
tion using the maximum cardinality matching of a bipartite
graph. It is important to note that we use this informa-
tion to shift the video query on video target in order to
identify the probable location of the matching. For a set of
frames from a query video clip and from a target video a
graph is constructed based on a similarity measure between
each pair of frames (illustrated in Fig. 1(a)). The size of
the maximum cardinality matching of the graph defines a
video similarity measure that is used for video identifica-
tion. This information together with the maximum distance
between any two frames of the target video which belong to
the maximum cardinality matching are used to analyze hit
occurrences and to identify precisely which operations are
necessary to transform the query video into the target video
content. Table 1 presents a comparison between some ap-
proaches found in the literature. The first difference between
our proposed approach and the others is associated with the
matching used to establish the video similarity. Most of the
works consider that the target video has been preprocessed
and online/offline segmented into video clips which are used
by the search procedure, while ours can be applied directly
to a target video stream without any preprocessing since it
uses frame-based similarity measures. With the exponential
growth of the Internet, the storage of segmented videos may
become an intractable problem. Our approach allows us to
perform video localization over a streaming media down-
loaded directly from the Internet, while the others need to
download, segment and store segmented video clips before
starting video clip localization.

Moreover, our approach can be applied without considering
temporal order constraints, which allows us to locate the
position of the query video even if the video has been edited
and its frames reordered (illustrated in Fig. 1(b)). Current
version of our algorithm also deals with insertion, removal
and replacement of frames/shots, and it also allows changes
in temporal order of query video clip frames/shots. However,
our approach can be applied to the traditional (exact) video
clip localization problem using dynamic programming and
temporal order similarity. On the other hand, clip editing
and reordering has become a desired feature on the new con-
text of online video delivery. As mentioned in [17], users ex-
pect to be able to manipulate video content based on choices
such as desired portions of video, ordering and “crop/stitch”
of clips. New coding schemes that consider this novel sce-
nario have been included in most recent standards such as
MPEG-7 and MPEG-21. Nevertheless, since our approach
is based on frame similarity measures, it may present an effi-
ciency problem. This issue has been addressed by employing
a shift strategy based on the size of the maximum cardinality
matching.

This paper is organized as follows. In Section 2, the prob-
lem of video subsequence identification is described, together
with some formal definitions of the field. In Section 3, we
present a methodology to identify the locations of a query
video clip using bipartite graph matching. In Section 4, we
discuss about the experiments and the setting of algorithm
parameters. Finally, in Section 5, we give some conclusions
and suggest future works.

2. PROBLEM DEFINITION
Let A ⊂ N2, A = {0, . . . ,W− 1} × {0, . . . ,H− 1}, where W
and H are the width and height of each frame, respectively,
and, T ⊂ N, T = {0, . . . , N − 1}, where N is the length
of a video. Frame, video, and video clip can be defined as
follows.

Definition 1 (Frame) A frame f is a function from A
to Z3, where for each spatial position (x, y) in A, f(x, y)
represents a color value1 at pixel location (x, y).

Definition 2 (Video) A video VN , in domain 2D × T,
can be seen as a temporally ordered sequence of frames f . It
is described by

VN = ( f ) t∈T (1)

where N is the number of frames contained in the video.

1without loss of generality, a frame can be defined by a func-
tion from A to Z to represent a grayscale value at location
(x, y).
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(a) query video without edition (b) edited (frame-reordered) query video

Figure 1: Frame similarity graph.

Definition 3 (Video clip) Let VN be a video. A j-sized
video clip Ck,j is a temporally ordered subsequence of frames
from VN which starts at frame k with j frames. It can be
described by

Ck,j = ( ft | ft ∈ VN )t∈[k,k+j−1]. (2)

in which k ≤ N − j.

It is obvious that Ck,0 = ∅,∀k, and C0,N = VN . Moreover,
from two distinct videos one can produce distinct video clips,
so a superscript will be used to indicated which video is the
frame source. Therefore video clip CX·,· contains frames f Xt
from video VX

N , and, CX0,N = VX
N .

A dataset may contain an altered version of a specified video
clip, in which some frames may have been added, removed,
or even replaced by others. Consequently, we can define a
distance between two video clips based only on the number
of frame insertions, removals, and replacements, as follows.
It is important to note that frame reordering is permitted
without changing the video edit distance.

Definition 4 (Video clip edit distance – d(CX1
k1,i

,CX2
k2,j

))

Let CX1
k1,i

and CX2
k2,j

be two video clips of size i and j from

videos VX1 and VX2 , respectively. Then the edit distance
between CX1

k1,i
and CX2

k2,j
is equal to the minimum number of

operations (insertions, removals and replacements) needed

to transform CX1
k1,i

into CX2
k2,j

, and vice-versa, regardless of
frame temporal ordering.

Let VX1
4 be the original video Y1 presented by Fig. 2(a), so

CX1
0,4 = VX1

4 . Let Y2 = VX2
5 , Y3 = VX3

3 , Y4 = VX4
4 , and

Y5 = VX5
5 be the altered versions presented by Fig. 2(b),

2(c), 2(d), and 2(e), respectively.

The edit distance between Y1 and Y2 is equal to 1 since
both videos contain the same frames except by f X2

2 , which

is not present in the original video Y1, i.e., CX1
0,2 = CX2

0,2

and CX1
2,2 = CX2

3,2 . Therefore, d(CX1
0,4 ,C

X2
0,5) = 1 because

only one insertion is need to transform Y1 into Y2. Anal-
ogously, the edit distance between Y1 and Y3 is also equal to
1 since both videos contain the same frames except by f X1

0 ,

which is not present in altered video Y3, i.e., CX1
1,3 = CX3

0,3 .

So, d(CX1
0,4 ,C

X3
0,3) = 1 because only one removal is need

to transform Y1 into Y3. The edit distance between Y1

and Y4 is equal to 1 since frame f X1
1 has been replaced

by f X4
1 , i.e., CX1

0,1 = CX4
0,1 and CX1

2,2 = CX4
2,2 . Therefore,

d(CX1
0,4 ,C

X4
0,4) = 1 because one replacement is need to trans-

form Y1 into Y4. Finally, the edit distance between Y1 and

Y5 is equal to 0 since there is only a temporal reordering
of frames without any insertion, removal or replacement.
Therefore, d(CX1

0,4 ,C
X5
0,4) = 0 because no insertion, removal

and replacement is need to transform Y1 into Y5.

In the previous example, two frames were considered equal if
they were exactly alike, but this may not be always true due
to minor differences in vector quantization used in digital
representation for both videos. In order to establish if two
distinct frames of two distinct video clips are similar, we
define frame similarity as follows.

Definition 5 (Frame similarity) Let f X1
t1

and f X2
t2

be two

video frames at locations t1 and t2 from video clips CX1
k1,i

and CX2
k2,j

, respectively. Two frames are similar if a distance

measure D(f X1
t1

, f X2
t2

) between them is smaller than a speci-
fied threshold δ. The frame similarity is defined as

FS(f X1
t1

, f X2
t2

, δ) =

{
1, if D(f X1

t1
, f X2
t2

) ≤ δ;

0, otherwise.
(3)

There are several choices for D(f X1
t1

, f X2
t2

), i.e., the distance
measure between two frames, e.g. histogram/frame differ-
ence, histogram intersection, difference of histograms means,
and others. In our experiments, we have adopted histogram
intersection as the distance measure between frames. After
selecting one, it is possible to construct a frame similarity
graph based on a query video VQ

M and a (M+λ)-sized video
clip of target video CTk,M+λ, in which λ is the maximum
allowed edit distance, as follows.

Definition 6 (Frame similarity graph – Gδ
k,λ) Let

VQ
M and VT

N be a query video with M frames and a tar-

get video with N frames, respectively, and let CTk,M+λ be
a (M + λ)-sized video clip which starts at frame k of tar-
get video with (M + λ) frames. A frame similarity graph
Gδ
k,λ = (NQ ∪ NT

k,λ,E
δ
k,λ) is a bipartite graph. Each node

vQt1 ∈ NQ represents a frame from the query video f Qt1 ∈ CQ0,M
and each node vTt2 ∈ NT

k,λ represents a frame from the target

video clip f Tt2 ∈ CTk,M+λ. There is an edge e ∈ Eδk,λ between

vQt1 and vTt2 if frame similarity of associated frames is equal
to 1, i.e.,

Eδk,λ = { ( vQt1 , v
T
t2

) | vQt1 ∈ NQ, vTt2 ∈ NTk,λ,

FS(fQt1 , f
T
t2
, δ) = 1}. (4)

As illustrated in Fig. 1, in order to allow up to λ operations
of insertion into the query video clip, we match the query
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(a) Original sequence – VX1
4 (b) Insertion – VX2

5

(c) Removal – VX3
3 (d) Replacement – VX4

4 (e) Reordering – VX5
5

Figure 2: Video clip modifications.

video to a video clip of the target video stream whose size
(number of frames) is equal to the query video size plus the
maximum allowed edit distance (λ). Conversely, in order to
allow up to λ operations of removal from the query video
clip, we match the query video to a video clip of the target
video stream whose size (number of frames) is equal at least
to the query video size minus the maximum allowed edit
distance (λ). Thus, the size of the target video clip must
vary in range [M − λ,M + λ]. And, in order to ensure
that we consider all insertions, removals and replacements
allowed by the maximum edit distance, we need to match
the query video clip (of size M) to a target video clip (of
size M + λ).

In this paper, video subsequence identification problem with
(or without) any changes in the video content (including
changes in its temporal ordering) will be addressed using
maximum cardinality matching. To do so, we define match-
ing and maximum cardinality matching as follows.

Definition 7 (Matching – Mδ
k,λ) Let Gδ

k,λ = (NQ ∪
NT
k,λ,E

δ
k,λ) be a frame similarity graph. A subset Mδ

k,λ ⊆
Eδk,λ is a match if any two edges in Mδ

k,λ are not adjacent.

The size of matching Mδ
k,λ is the number of edges in Mδ

k,λ,

written as |Mδ
k,λ|.

Definition 8 (Maximum cardinality matching – Mδ
k,λ)

Let Mδ
k,λ be a matching in a frame similarity graph Gδ

k,λ.

So, Mδ
k,λ is the maximum cardinality matching (MCM) if

there is no other matching Mδ
k,λ in Gδ

k,λ such that |Mδ
k,λ| >

|Mδ
k,λ|.

During the search, a hit can be associated with the size of

the MCM, i.e., if M − λ ≤ |Mδ
k,λ| ≤M then a hit may have

been found. However, in order to prevent false positives,
we need to evaluate the largest distance between any two
frames of the target video clip which belong to the MCM
found. This evaluation is necessary to cope with insertions
and replacements since the size of MCM may be smaller
than the video query size M .

Let F be the set of frames associated with the MCM Mδ
k,λ

and it contains frames from the query and the target video
clips, i.e., F = FQ ∪ FTk,λ, in which FQ and FTk,λ are frame
sets from the query and the target video clips, respectively.
So, FQ = ( f Qt | f Qt ∈ CQ0,M , t ∈ [0,M − 1]), while FTk,λ =

( f Tt | f Tt ∈ CTk,M+λ, t ∈ [k, k + M + λ − 1]). It is also easy

to verify that |Mδ
k,λ| = |FQ| = |FTk,λ|. So, the maximum

distance between any two frames of the target video clip
which belong to the MCM found could be defined as follows.

Definition 9 (Maximum MCM distance – D(Mδ
k,λ))

Let Mδ
k,λ be the MCM in a frame similarity graph Gδ

k,λ and

F = FQ∪FTk,λ be the set of frames associated with the MCM.
Let tf and tl represent the locations of the first and the last

frames of the target video clip that belong to the MCM Mδ
k,λ,

so tf = min{ t | f Tt ∈ FTk,λ} and tl = max{ t | f Tt ∈ FTk,λ}.
The maximum distance between any two frames of the target
video clip which belong to the MCM is defined as

D(Mδ
k,λ) = tl − tf + 1. (5)

Using the maximum MCM distance together with the size
of the MCM, we can identify not only a hit occurrence but
also its type. The type of a hit occurrence represents which
operations that are necessary to transform the query video
into the target video clip. Therefore, we can define 06 (six)
types of hit occurrence as follows:

• T1 – Exact hit (ExHit): represents an exact match
between the query video and the target video clip, so

|Mδ
k,λ| = M in order to guarantee that every frame of

the query video appears in the target2, and D(Mδ
k,λ) =

|Mδ
k,λ| to prevent that any additional frame has been

inserted among the target frames;

• T2 – Insertion hit (InsHit): represents a match
between the query video and the target video clip in
which additional frames have been inserted into the
target, so |Mδ

k,λ| = M in order to guarantee that every
frame of the query video appears in the target video

clip, and |Mδ
k,λ| < D(Mδ

k,λ) ≤ M + λ to ensure that
no more than λ additional frames have been inserted
among the target frames;

• T3 – Removal hit (RemHit): represents a match
between the query video and the target video clip in
which some frames have been removed, so M − λ ≤
|Mδ

k,λ| < M in order to guarantee that some frames
of the query video do not appear in the target, and

D(Mδ
k,λ) = |Mδ

k,λ| to prevent that any additional frame
has been inserted among the target frames;

2i.e., every frame of the query video is similar to at least one
distinct frame of the target video clip.
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Table 2: Examples of hit occurrence with λ = 2.
Query Target Hit type |Mδ

k,λ| D(.)

1 2 3 4 . . . 1 2 3 4 - - . . . ExHit 4 4
1 2 3 4 . . . 1 2 3 5 4 - . . . InsHit 4 5
1 2 3 4 . . . 1 2 3 5 5 4 . . . InsHit 4 6
1 2 3 4 . . . 1 2 - - - - . . . RemHit 2 2
1 2 3 4 . . . 1 2 3 - - - . . . RemHit 3 3
1 2 3 4 . . . 1 2 5 4 - - . . . RepHit 3 4
1 2 3 4 . . . 1 5 5 4 - - . . . RepHit 2 4
1 2 3 4 . . . 1 5 4 - - - . . . RepRHit 2 3
1 2 3 4 . . . 1 2 5 5 4 - . . . RepIHit 3 5
1 2 3 4 . . . 1 2 5 5 5 4 . . . No hit 3 6

• T4 – Replacement hit (RepHit): represents a
match between the query video and the target video
clip in which some frames have been replaced, so M −
λ ≤ |Mδ

k,λ| < M in order to guarantee that some
frames of the query video do not appear in the tar-

get, and D(Mδ
k,λ) = M to ensure that every missing

target frame has been replaced by another one;

• T5 – Replacement and Removal hit (RepRHit):
represents a match between the query video and the
target video clip in which some frames have been re-
placed and others have been removed, so M − λ ≤
|Mδ

k,λ| < M in order to guarantee that some frames
of the query video do not appear in the target, and

|Mδ
k,λ| < D(Mδ

k,λ) < M to ensure that some of the

frames have been removed since D(Mδ
k,λ) < M (it is

not only a replacement) but also that some frames have

been replaced since D(Mδ
k,λ) > |Mδ

k,λ| (it is not only a
removal);

• T6 – Replacement and Insertion hit (RepIHit):
represents a match between the query video and the
target video clip in which some frames have been re-
placed and others have been inserted, so M − λ ≤
|Mδ

k,λ| < M in order to guarantee that some frames of
the query video do not appear in the target (they have

been replaced), and M < D(Mδ
k,λ) ≤ |Mδ

k,λ|+λ to en-
sure that additional frames have been inserted among

the target frames since D(Mδ
k,λ) > M (it is not only

a replacement) but also to limit the edit distance to a

maximum of λ operations, i.e., D(Mδ
k,λ)− |Mδ

k,λ| ≤ λ.

Table 2 presents examples of hit occurrences with a maxi-
mum edit distance λ = 2. Without loss of generality, each
frame is represented only by a single feature value (an integer
one) and two frames are similar if their features are exactly
the same. First column shows the sequence of frames from
a query video clip, while the second column presents the se-
quence of frames from the target video associated with a hit
occurrence. Hit type is presented at the third column, fol-
lowed by MCM size and maximum MCM distance at forth
and fifth columns, respectively. Therefore, using MCM size
and maximum MCM distance, a function to detect a hit
occurrence can be defined as follows.

Definition 10 (Hit function – H(Mδ
k,λ)) Let Mδ

k,λ be

the MCM in a frame similarity graph Gδ
k,λ. So a function

H(Mδ
k,λ) to detect a hit occurrence can be defined as

H(Mδ
k,λ) =



1, if |Mδ
k,λ| =M and D(Mδ

k,λ) = |M
δ
k,λ|;

2, if |Mδ
k,λ| =M and

|Mδ
k,λ| < D(Mδ

k,λ) ≤M + λ;

3, if M − λ ≤ |Mδ
k,λ| < M and

D(Mδ
k,λ) = |M

δ
k,λ|;

4, if M − λ ≤ |Mδ
k,λ| < M and

D(Mδ
k,λ) =M ;

5, if M − λ ≤ |Mδ
k,λ| < M and

|Mδ
k,λ| ≤ D(Mδ

k,λ) < M ;

6, if M − λ ≤ |Mδ
k,λ| < M and

M < D(Mδ
k,λ) ≤ |M

δ
k,λ|+ λ;

0, otherwise.

(6)

The hit function returns a value greater than zero for a
hit occurrence, while zero corresponds to a miss. More-
over, the hit function value corresponds to the type of the

hit occurrence, i.e., H(Mδ
k,λ) = 1 for a T1 hit (or ExHit),

H(Mδ
k,λ) = 2 for a T2 hit (or InsHit), and so on. As de-

scribed before, the proposed hit function ignores the tempo-
ral reordering of frames since we are interested in identifying
video subsequence with similar content.

Finally, video subsequence identification problem can be
stated.

Definition 11 (Video subsequence identification) Let

Mδ
k,λ be a MCM of a frame similarity graph Gδ

k,λ with a
maximum edit distance λ and a threshold δ. The video sub-
sequence identification (VSI) problem corresponds to iden-

tify the locations of a query video VQ
M at the target video

VT
N together with the operations necessary to transform the

former into a subsequence from the latter. A hit at location
k is found if there is a (M + λ)-sized video clip CTk,M+λ of

VT
N that matches with CQ0,M according to the hit function

H(Mδ
k,λ). Thus, this problem can be stated as

VSI(VQM ,V
T
N , δ, λ) = { k ∈ [0, N − 1] | H(Mδ

k,λ) 6= 0 }. (7)

3. METHODOLOGY
As described before, the main goal of the video subsequence
identification problem is to identify occurrences of a query
video in a video target stream together with the operations
necessary to transform the former into a subsequence from
the latter, see Fig. 3. One of the key steps of the process
is feature extraction. Choosing an appropriate feature that
enhances performance of a matching algorithm is not a triv-
ial task. Therefore, empirical studies are the best way to get
insights of which feature should be used for each case.

3.1 Identification procedure
Fig. 4 presents our identification procedure. It scans over
target video stream, looking for a video clip that matches
the query video, i.e., one that generates a frame similarity
graph (line 3 ) which has a MCM that corresponds to a hit

occurrence according to the hit function H(Mδ
k,λ) (lines 4-

6 ). If a hit is found, its location, size and type are saved
(lines 7-11 ).
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Figure 3: Workflow for subsequence identification.

It also important to describe the shift strategy adopted (at
line 12, line 16 and line 18 of algorithm described in Fig. 4).
After locating a hit occurrence, the procedure ensures a
jump to the location after the last frame of the target video
clip that belongs to the MCM (line 12 ) since one should
not expect to find the query video inside itself. In this case,
minimum shift value is M because it corresponds to the min-
imum value of maximum MCM distance for a T1 or a T2
hit. Moreover, tl+1 = D(Mδ

k,λ)+ tf and tf is equal at least
to the previous value of k. Therefore, line 12 could also be

written as k = k + D(Mδ
k,λ). This not only contributes to

accelerate the search but it also helps reducing the number
of false positives.

In case of a mismatch, shift value depends on MCM size. If
MCM size is equal to zero, i.e., there is no match between
query and target frames, so the a maximum shift value (M+
λ) is employed (line 16 ). But, if MCM size is greater than
zero, the shift value is set to the difference between M − λ
and the size of the MCM, i.e., the number of unmatched
frames necessary to detect a hit occurrence (line 18 ). In
order to ensure positive shift value, the value of k is set
to tf at least. In spite of being a conservative approach,
this setting allows our search procedure to perform better
than the naive (brute force) algorithm and it could result in
a great improvement depending on query content and size,
e.g., the search would be faster for videos that are more
dissimilar and/or for lower values of edit distance (λ) – see
experiment results for more about that. It is also important
that the search procedure does not miss a hit position.

Table 3 presents an example of subsequence identification
procedure for a maximum edit distance λ = 1 (≡ 30%).
In this example, three hit occurrences were found with an
average shift value of 2 (≡ 66%).

Generation of frame similarity graph (line 3 ) and calculation
of the MCM (line 4 ) are the most time consuming steps of
algorithm in Fig. 4. Thus, our search procedure has a time
complexity of O(NM2) since it is dominated by total time
spent on the graph generation step. A detail analysis is
omitted due to length limitations for the manuscript.

3.2 Retrieval validation
After query location candidates are selected, they may be
validated to ensure other assumptions, like temporal order-
ing. To verify this assumption, we can use the dynamic pro-
gramming (DP), as proposed by [18]. We define a temporal
order similarity as follows.

Definition 12 (Temporal order similarity – TSδk) Let

i be i-th frame of the query video VQ
M ,and j be j-th frame

of a M-sized video clip CT
k,M

of the target video, in which

M = D(Mδ
k,λ). Temporal order similarity TSδk(VQ

M ,C
T
k,M

)

between the query video and a M-sized target video clip is
equal to Tδ(M,M + k) which is calculated using DP and a
specified frame similarity threshold δ as follows

Tδ(i, j) =


0 if i = 0 or j = 0;

Tδ(i− 1, j − 1) + 1 if FS(i, j, δ) = 1;

max{Tδ(i, j − 1),

Tδ(i− 1, j)} otherwise.

(8)

Using the temporal order similarity TSδk, we can validate
location candidates by ensuring that its value is greater than
a threshold, i.e., TSδk(VQ

M ,C
T
k,M

) ≥ ∆. ∆ represents the

minimum number of similar frames in correct temporal order
needed to accept a location candidate. No temporal order

changes are allowed, if ∆ = |Mδ
k,λ| (i.e., the MCM size).

Require: Videos (VT
N ,VQ

M ), threshold (δ), distance (λ)
{pos = hit locations at the target}
{size = hit occurrence size}
{type = hit types at the target}

1: count = 0; k = 0;
2: while (k < N −M) do
3: “Construct Gδ

k,λ”;

4: “Calculate Mδ
k,λ and F for Gδ

k,λ”;
5: “Calculate tf and tl for F”;

6: if H(Mδ
k,λ) 6= 0 then

7: “Query video was found at location k”
8: pos[count] = tf ;

9: size[count] = D(Mδ
k,λ);

10: type[count] = H(Mδ
k,λ);

11: count = count + 1;
12: k = tl + 1;
13: else
14: “Query video was not found at location k”

15: if |Mδ
k,λ| = 0 then

16: k = k + (M + λ);
17: else
18: k = max{k + M − (|Mδ

k,λ|+ λ), tf};
19: end if
20: end if
21: end while
22: return pos, size, type

Figure 4: Identification procedure.
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Table 3: Example of subsequence identification procedure.
Video Information |Mδ

k,λ
| D(.) Shift Iteration Hit

Target video 1 5 6 2 4 2 1 3 5 1 2 3 7 6 1 4 2 - - - -

λ = 1

1 2 3 - 2 4 1 1 no
1 2 3 - 1 1 1 2 no

1 2 3 - 1 1 1 3 no
1 2 3 - 2 4 1 4 no

1 2 3 - 3 3 4 5 ExHit
1 2 3 - 3 3 4 6 ExHit

1 2 3 - 1 1 2 7 no
1 2 3 2 3 - 8 RepHit

Average 1.87 - 2.00 -

4. EXPERIMENTS
In this section, we present experiments with a video corpora
that consist of TV broadcast, recorded directly and con-
tinuously from a brazilian cable TV channel, and Internet
retrieved video. Table 4 shows some information about the
dataset (including video length and the number of queries).
The experiments searched for 86 occurrences of video clips
in our dataset (54 for TV broadcast and 32 for Internet re-
trieved video).

Table 4: Video corpora
Video Time Video Frame
dataset length queries rate

TV Broadcast 1 1h 00m 04s 8 30 fps
TV Broadcast 2 35m 02s 2 30 fps
TV Broadcast 3 31m 50s 3 30 fps
TV Broadcast 4 33m 13s 5 30 fps
TV Broadcast 5 30m 27s 8 30 fps

Internet Retrieved Video 19m 52s 17 25 fps
Total 3h 30m 29s 43 -

In order to evaluate the results, it is necessary to define
some measures. We denote by #Occurrences the number of
query video occurrences, by #Video clip identified the num-
ber of query video occurrences that are properly identified
and by #Falses the number of video occurrences that do
not represent a correct identification. So, we consider the
following quality measures.

Definition 13 (Recall and precision rates) The recall
rate represents the ratio of correct and the precision value
relates correct to false detections. They are given by

R =
#Video clip identified

#Occurrences
; (recall) (9)

P =
#Video clip identified

#Falses+ #Video clip identified
. (precision) (10)

Definition 14 (F measure) The F measure is a weight
harmonic mean of recall and rate, and it is given by

F =
2× P ×R
P +R . (11)

Table 5 shows the quality measures related to precision and
recall rates, together with F measures for different values of
edit distance (λ) and threshold (δ). Fig. 5 illustrates the
precision-recall curves. Best results are associated with δ =
20% and our method achieves 93% recall with 93% precision
(see Table 5 for δ = 20% and λ = 30%), which is similar to
(and even better than) the one proposed by [20] with low
computational cost without preprocessing of target video.
One of the features of the algorithm that contributes to those
results is the size of the MCM. Using the size of the MCM
prevents the algorithm from finding versions of query video
that have additional frames/shots, or target video clips with

Figure 5: Precision-recall curves.

suppressed parts (frames/shots) of the query video, when
we search for exact video, i.e., λ = 0. A relaxation of the
edit distance may imply in finding edited video clips, but it
may also contribute in rising the number of false positives.
Another parameter that is related to high precision detection
is the threshold (δ), which was kept very low.

Table 5: Precision and recall rates
Video edit Threshold value (δ)
distance 10% 20% 30%

(λ) R P F R P F R P F
10% 51% 100% 68% 85% 99% 91% 92% 92% 92%
20% 59% 100% 74% 91% 93% 92% 93% 81% 86%
30% 64% 100% 78% 93% 93% 93% 95% 76% 84%
40% 71% 98% 83% 92% 88% 90% 94% 73% 82%

The recall and precision rates are directly influenced by
video edit distance. As showed in Table 5, recall rate in-
creases together with high distance values. This should be
expected since a relaxation of the edit distance may imply
in finding a great number of query video occurrences (with
or without editions). Conversely, precision rate decreases
for high edit distance values since more false positives may
be identified. With respect to the shift value (see Table 6),
for high edit distance values, the shift value decreases since
we need less frames to find a hit occurrence. The recall and
precision are also directly influenced by threshold value. As
showed in Table 5, recall rate decreases as threshold value
becomes lower. That should be expected since we impose
more restrictions on the similarity between frames. Con-
versely, precision rate increases for low threshold values since
less false positives are identified. With respect to the shift
value (see Table 6), for low threshold values, the shift value
increases since we need more frames to find a hit occurrence.

The algorithm performance is related to the shift applied
during identification procedure. Table 6 shows the average
shift values for different parameter settings. A number of
100% means that the shift value is equal to the query video
length. It can be seen that, at lower values of δ the average
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Table 6: Average shift value percentage.
Video edit
distance (λ)

Threshold value (δ)
10% 20% 30%

10% 96% 83% 58%
20% 96% 79% 49%
30% 102% 71% 36%
40% 106% 71% 29%

shift value is higher for the same edit distance. This effect
is expected since a higher value of δ increases the number of
(mis)matched frames. Another observation is related to the
shift and the edit distance. The shift is higher for lower edit
distance. This effect is also expected due to conservative
approach since to find a hit, we need only to shift enough
frames to find it.

5. CONCLUSIONS
In this work, we present an approach which is able to cope
with a general video clip localization problem, allowing in-
sertion, removal and replacement operations on the video
clip. Our method not only solves the approximate subse-
quence localization problem but also gives a precise descrip-
tion of the operation set that are necessary to transform the
query video into the target content. In order to do that, it
uses a bipartite graph matching to identify query location
candidates. Main contributions of our work is the applica-
tion of a simple and efficient distance to solve subsequence
identification problem along with the definition of a hit func-
tion that identifies precisely which operations were used in
query transformation.

According to experimental results, our method performance
(93% recall with 93% precision) is similar to (and even bet-
ter than) the one proposed by [20] with low computational
cost and without preprocessing of target video. However,
subsequence identification results can be highly dependent
on the testing material, which is usually scarce and not espe-
cially representative. So, as a future work, we plan to apply
our approach to a large and representative video database.
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