NuGinga Playcode: A web NCL/NCLua authoring tool for
Ginga-NCL digital TV applications

Dina Nogueira, Lois Nascimento, Michael Mello, Rodrigo Braga
SIDIA: Instituto de Ciéncia e Tecnologia
Manaus, Amazonas
{dina.nogueira,lois.nascimento,michael.bittencourt,rodrigo.braga}@sidia.com

ABSTRACT

Entering the world of Interactive Digital Television (iDTV) appli-
cations can lead to an exhaustive process that involves reading
extensive standards and may need a robust middleware solution
to run Ginga-NCL applications, which is a subset of Ginga and
the standard for interactivity of digital television adopted in Latin
America countries. Even though there are some open and commer-
cial solutions for development of Ginga applications available on
the market, most of these solutions present downsides such as deep
dependency of Ginga engine implementation, need of complex en-
vironment setup and they are not very intuitive NCL/NCLua coding
platforms.

To solve these issues, we created an IDE developed in web tech-
nology that makes possible for students and professionals to learn
how to develop Ginga-NCL applications. With this tool, developers
can write, validate and experiment their applications entirely on
the web environment, with no software installation required.

KEYWORDS

Ginga, coding platform, NCL coding tool, interactivity, digital tele-
vision, NCL, Lua, IDE

1 INTRODUCTION

With the advance of Digital Television, broadcasting television
(TV) companies have the possibility to send interactive applications
within the channel so the user can play a game or answer a quiz
while watching a journal or get the details of a soccer match, all
on TV. And, Ginga is the middleware specification that made this
interaction possible.

In order to write a software, such as a Ginga application, a de-
veloper could use a simple code editor or even an integrated devel-
opment environment (IDE) that facilitates the writing by having
features like syntax highlighting and auto complete. Generally, a
IDE has a source code editor, build automation tools and a debugger.

Ginga-NCL is a subset of Ginga [16] and as a particular standard
for Latin digital television, learning how to implement Ginga ap-
plications may be a challenging and laborious process since many
requirements could be necessary to run applications, and there
are only few IDEs and open tests suites available for the Ginga
community.

In: XIX Workshop de Ferramentas e Aplicagdes (WFA 2020), Sao Luis, Brasil. Anais
Estendidos do Simpdsio Brasileiro de Sistemas Multimidia e Web (WebMedia). Porto
Alegre: Sociedade Brasileira de Computagéo, 2020.

© 2020 SBC - Sociedade Brasileira de Computagcao.

ISSN 2596-1683

75

There are some open and closed source solutions available for
development of Ginga applications on the market, however most
of these solutions have a deep dependency of middleware imple-
mentation, require a complex environment setup and are not very
intuitive NCL/NCLua coding platforms [20].

In some of the available solutions, the common process to create
and test Ginga applications could have up to five steps. First, users
would have to setup their environment and then install a Ginga
middleware. These two steps by themselves might present issues
and require some level of understanding of the Ginga middleware
involved. After that, users would create an application and to exe-
cute it, may need to embed the application in the required system
or device that contains the middleware, so they could finally run it.

Due to these reasons, a web-based IDE was developed aiming a
simple coding interface where any developer could easily experi-
ment some preloaded Ginga applications, adapting these examples
or even coding a new application. The platform runs entirely on
the browser, compiling the application on the client side, therefore
it can run regardless of internet connection.

2 RELATED WORKS

There are numerous tools designed to introduce developers to new
technologies, making it easy to get started quickly.

An online tool for Web development is JSFiddle [6] that allow
developers to create and get started with their own application,
allowing to code in HTML, JavaScript and CSS. Besides that, users
can develop more complex projects, being able to add 3rd party
libraries, such as, ReactJs [7], Vue.js [10], Lodash [1], etc. It can be
used as a complete IDE to Web development and make it easy to
prototype and test snippets of code, entirely on the web browser.

Other interesting tool is Rust Playground [8] that is simpler than
JSFiddle and provides an environment to code and test using Rust
language. Users can write, compile and execute Rust code in a web
browser. It is similar to C++ Shell [3], which is focused on C++
language.

Regarding Ginga-NCL development, the NCL Eclipse [12] is a
plugin to Eclipse IDE [4] that validates if NCL code is in compliance
with the ABNT standard and provides a Ginga-NCL Emulator to
test code. The main feature gap of NCL Eclipse plugin is that it does
not have support to NCLua code, and it only works with NCL code.
Another proposal is Gingaway [13] plugin to Eclipse, that combines
the NCL Eclipse and Lua Eclipse (plugin that configure Eclipse to
Lua development), providing a way to create NCL/NCLua projects,
with syntax error feedback. Users can set other middleware runners
in order to execute their application, for example Ginga-NCL Virtual
set-top box.

Anais Estendidos do WebMedia’2020, Sao Luis, Brasil

The NCL composer [18] is a expansible IDE to create Ginga-
NCL applications that allows create graphic interfaces using drag
and drop, but this feature is just available to define regions. This
IDE enables extensions through plugins to add features to it as
media creation by dragging and dropping. This IDE also allows to
create NCL applications that define the components behaviour, the
structural and temporal organization.

The Dr. Nau [15] is another approach that allows high-level
abstractions, with it, users can create diagrams to design relation-
ship between NCL components and tags allowing structural design
where it is possible create interactivity applications or prototypes
without write any code and then export the result the XML on NCL
format.

3 NUGINGA PLAYCODE

This section presents the NuGinga Playcode ! tool in further details.
On section 3.1 an overview of the tool is presented, pointing out
its main advantages, on section 3.2 the key features and finally, on
section 3.3 details of the architecture are presented along with the
main components and their interactions

3.1 Overview

NuGinga Playcode is a web-based IDE which is designed to allow
users to edit and run NCL and Lua code on the web page. It allows
developers to prototype and test their ideas with quick preview.
Similar to other IDEs focused on Web code, such as JSFiddle.

The code written by the user is executed through NuGingaJS
[14] engine, which is a full portable Ginga middleware that pro-
vides support to Ginga NCL and can run Lua code in the browser
environment using Emscripten [5], that allows to compile C/C++
code to asm.js [2] or WebAssembly [11]. This way users can code
from anywhere, just needing a web browser.

In addition, since it is a non-dependent platform, the NuGinga
Playcode enables Ginga developers to execute applications without
having to understand about the middleware involved, as it is embed-
ded in the web platform and transparent to the final user. Therefore,
developers can easily run NCL and NCLua code with no middleware
background knowledge, no requirement of environment setup, mid-
dleware installation or need to embed the application on a system
that runs the Ginga middleware.

3.2 Key Features

The NuGinga Playcode interface was thought to be minimalist and
easy-to-use. It is splitted in three main components highlighted on
Figure 1:

e NCL Code Editor (label A): provides a XML-based editor to
user, where it can identifies any XML syntax error.

o Lua Code Editor (label B): provides an colored editor to write
Lua code, it can be accessed on NCL editor as main.lua file.

o Interactive Application Frame (label C): shows the interactive
application resulting from the combination of NCL/Lua codes
executed in NuGingaJS engine.

1A demonstration video is available on https://bit.ly/3nyHizH.

76

Dina Livia, et al.

nuginga: 27.0.2
Begin of Validation error:
NCL ERROR:

ERROR: Element

"{http://www.ncl.org.br/NCL3.0/BDTVProfile }port’, attribute 'idd": The attribute
'idd' is not allowed.

NCL ERROR:
ERROR: Element

"{http://www.ncl.org.br/NCL3.0/BDTVProefile }port’: The attribute 'id' is required
but missing.

End errors.

Figure 2: NCL validation error
nuginga: 27.0.2
Lua ERROR:

[ERROR] NCLualnterpreter::startLuaScript(): ./sample/main.lua: 12: attempt to
call method 'Color’ (a nil value)

End errors.

Figure 3: Lua validation error

During the coding process, an important feature available on
some coding editors and IDEs is the code validation. This feature
consists of checking if the code is in compliance with the stan-
dards and recommendations. The [17] proposes a model-driven
approach that verifies the structural and behavioral properties of
NCL document in order to guarantee its conformance with Ginga-
NCL standard. In the NuGinga PlayCode, we have XSD schema
validation in order to check if NCL code is according to Ginga-NCL
standard, the user receives this feedback every time the code is
executed through the run button (Figure 1 label D) as shown in
Figure 2. Besides that, we show the interpreter outputs information
regarding errors of the Lua script execution as demonstrated in
Figure 3.

The interaction between viewers and an Interactive Digital TV
(iDTV) application is made via remote control [19]. In this context,
the PlayCode handles the user input by mapping the remote control
events into keyboard events (Figure 11abel E), therefore, the user can
test Ginga applications with these events successfully on the web
application. Finally, on label F is located a search input where the
developer can select, modify and test Ginga applications examples
that are preloaded on the platform.

3.3 The Architecture

This platform was developed as a full web application owing to
the use of the NuGingaJS middleware, which is the core engine
that enables to run Ginga applications entirely on the browser.
The Figure 4 shows the architecture used on the NuGinga Playcode
development. The project uses Vue Framework and has the following
components: navigation bar, keyboard Map, NCL Editor, Lua Editor
and the main app component.

Vue is a progressive framework for building user interfaces,
which is focused on the view layer only and easy to integrate with
other libraries or existing projects. Besides that, Vue is also capable
of powering Single-Page Applications combined with supporting

NuGinga Playcode: A web-based Ginga-NCL DTV app editor

@B NuGinga PlayCode

Key Map

. Lua/canvas/0.
Lua/canvas/0

Lua/canvas/0!

Lua/canvas/0

Ly, step, step);

Anais Estendidos do WebMedia’2020, Sao Luis, Brasil

Figure 1: NuGinga coding platform

tools and libraries. Furthermore, Vue uses the concept of a compo-

nent system, allowing to build large-scale applications composed
of small, self-contained, and reusable components. [10].

(N\
Main App
(N
4 N\ ' N\
Navigation Bar [€«—T>» Keyboard Map
\ J J
'd
NCL Editor PR Lua Editor
"~ L
(main.ncl) (main.lua)

g J N\ J

Interactivity App Frame

\ A A y
- m e e e == == =
NuGingaApi 1
1
1
! Platform Interface 1
1
o— 1
\————————————'
NuGingaJS Engine
\ J’

77

Figure 4: NuGinga Playcode architecture

The main app defines the NuGinga Playcode template, that splits
the components into the areas highlighted on Figure 1. The Nav-
igation bar template defines the run button, keyboard map and
search bar items. The keyboard map has its own component and is
imported to the Navigation bar.

The search bar uses a set of Ginga-NCL samples, which titles
are available to the user. When the user selects a title, an event is
emitted to the code editors via Event Bus, a communication bus
that connects all Vue components, represented in black arrows on
Figure 4. NCL and Lua editors wait for this event and then load the
code on their edition area.

The code editors use a Vue component called Code Mirror, a ver-
satile open-source Javascript editor for the browser. It is specialized
for editing code, and comes with a number of language modes and
addons that implement more advanced editing functionality [9].
Other assignments of editors components are to resize the edition
areas and save code changes.

The Main App incorporates all Vue components and contains the
Interactivity App Frame. On this frame, the Ginga application is ren-
dered using the NuGinga]JS engine in the background through the
integration layer represented as the dashed area in the architecture
Figure 4.

The engine requires the implementation of a Platform Interface
to configure some Ginga modules that are restricted to the platform.
The interface handles Short Message Service (SMS) and Transmis-
sion Control Protocol (TCP) communications, file system access

Anais Estendidos do WebMedia’2020, Sao Luis, Brasil

and Ginga platform Settings. Furthermore, to run applications, the
Playcode platform uses the following NuGingaApi methods:

o setConfiguration: This function is called to apply required
settings from the platform, such as language, screen size,
channels, among others.

o createFilelnSandbox: The platform uses this function to push
NCL and Lua code files into the browser sandbox.

o loadAppByRawNCL: This function is called to load and exe-
cute the Ginga-NCL application.

Another duty handled by the integration layer is the error vali-
dation display. The Figure 5 shows a sequence diagram of the code
validation error process.

Interactivity App
Frame

Text editing ' onCodeChange() |

User Code Editor Main App

nel,| :
'Inr_MLw\)». loadAppByRawNCL()

.
1 onValidationError()

|j Error presentation '
[j User . PlayCode

Run code

. Integration Layer C] NuGingaJS Engine

Figure 5: Sequence diagram of the code validation

First, when the user modify the code in the edition area, the Code
Editor components notify the Main App, that saves the new content.
Then, when the user clicks the run button, the Main App sends the
code strings to the Interactivity App Frame via postMessage(ncl,lua).
The frame then calls NuGingaApi createFileInSandbox() method to
push the files into the sandbox and calls load AppByRawNCL(), that
loads, processes and runs the Ginga application to the user. If there
is an error in code validation, the Platform Interface receives it from
the engine output as JavaScript object notation (JSON), parses and
display it on the frame to the user, as shown on Figure 2 and 3.

4 FUTURE WORKS

The PlayCode aims to facilitate the learning, developing and testing
processes of Ginga applications and also contribute to DTV and
Ginga community. We intend as future work to expand the features
currently available in our tool, introducing file upload and folder
trees, improve code validation, among other features. In addition,
we plan to collect usability evaluation from Ginga developers in
order to improve the user experience for this tool and also adding
the evaluating for this interface through tests to measure user
acceptance, experience, and usability.

5 CONCLUSION

The NuGinga Playcode is web-based tool created for rapidly devel-
opment of Ginga-NCL applications, concentrating NCL and Lua
editors, application rendering, and compilation debugger. It aims
to facilitate the ramp up of new iDT application developers by pro-
viding a built-in Ginga engine to run NCL applications entirely on

NuGingaAPI

78

Dina Livia, et al.

the browser, dispensing environment setups and internet connec-
tion. With this tool developers can create new tests and experiment
sample applications available on the web-based IDE.

6 ACKNOWLEDGMENT

This work was partially supported by Samsung Eletronica da Amaz6-
nia Ltda, under the informatics law no 8.387/91.

REFERENCES

[1] 2013. Lodash. lodash.com. [Online; accessed 01-October-2020].

[2] 2020. asm.js. http://asmjs.org/. [Online; accessed 10-September-2020].

[3] 2020. C++ Shell. http://cppshell.com/. [Online; accessed 10-September-2020].

[4] 2020. Eclipse Foundation. https://www.eclipse.org/. [Online; accessed 10-
September-2020].

[5] 2020. Emscripten. https://developer.mozilla.org/pt-BR/docs/Mozilla/Projects/

Emscripten. [Online; accessed 10-September-2020].

2020. JSFiddle - Code Playground. https://jsfiddle.net/.

10-September-2020].

[7] 2020. reactjs. https://pt-br.reactjs.org/docs/getting-started.html.
accessed 10-September-2020].

[8] 2020. Rust Playground. https://play.rust-lang.org/.
September-2020].

[9] 2020. This is CodeMirror. https://codemirror.net/index.html. [Online; accessed

10-September-2020].

2020. vue.js. https://vuejs.org/v2/guide/. [Online; accessed 10-September-2020].

2020. WebAssembly. https://webassembly.org/. [Online; accessed 10-September-

2020].

Roberto Gerson Azevedo, Carlos Soares Neto, Mario Teixeira, Rodrigo Santos,

and Thiago Gomes. 2011. Textual authoring of interactive digital TV applications.

EuroITV’11 - Proceedings of the 9th European Interactive TV Conference. https:

//doi.org/10.1145/2000119.2000169

M. F. DE H BELTRAO FILHO. 2008. GingaWay-Uma Ferramenta para Criacéo de

Aplicacdes Ginga NCL. , 62 pages.

Rodrigo Braga et al. [n.d.]. NuGingaJS: a full portable ITU-T H. 761 Ginga

middleware for DTV and IPTV. https://doi.org/10.1145/3323503.3360301

Sandra Casas, Franco Herrera, Fernanda Oyarzo, and Franco Trinidad. 2019. Dr.

Nau, a Web Generator of Interactive Applications for Digital TV. 71-86. https:

//doi.org/10.1007/978-3-030-23862-9_6

Associacao Brasileira de Normas Tecnicas. 2018. Televisdo digital terrestre -

Codificacao de dados e especificacdes de transmisséo para radiofusao digital.

Parte 2: Ginga-NCL para receptores fixos e moveis - Linguagem de aplicac¢do

XML para codifica¢do de aplicagdes.

[17] Joel dos Santos, Christiano Braga, and Débora Muchaluat-Saade. 2013. Automat-

ing the analysis of NCL documents with a model-driven approach. WebMedia

2013 - Proceedings of the 19th Brazilian Symposium on Multimedia and the Web,

193-200. https://doi.org/10.1145/2526188.2526214

Gomes Soares L.F Laiola Guimaraes R., Monteiro de Resende Costa R. [n.d.].

Composer: Authoring Tool for iTV Programs. Springer, Berlin, Heidelberg. https:

//doi.org/10.1007/978-3-540-69478-6_7

R Rodrigues and R Soares. 2006. Producién de Contenido Declarativo para TV

Digital. XXXIII SemiSH, Brasil (2006).

Franco Trinidad. 2019. Dr. Nau, a Web Generator of Interactive Applications

for Digital TV. In Applications and Usability of Interactive TV: 7th Iberoamerican

Conference, JAUTI 2018, Bernal, Argentina, October 16—18, 2018, Revised Selected

Papers, Vol. 1004. Springer, 71.

[6

o=

[Online; accessed
[Online;

[Online; accessed 10-

(10]
(1]

[12]

[13]
[14]

[15]

[16]

(18]

[19]

[20]

