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Abstract
Several significant studies in the existing literature have relied
on network models to gain insights into various collective
behavior phenomena. Nevertheless, a facet that has been criti-
cally overlooked is the presence of numerous irrelevant edges
that may obscure a more meaningful underlying topology,
representing the targeted phenomenon. In fact, the litera-
ture provides ample evidence that overlooking these noisy
edges may result in inaccurate and misleading interpretations.
Nonetheless, employing these solutions presents various chal-
lenges, prominently the absence of foundational formalization
regarding the appropriate application and expected outcomes.
In this context, our focus centers on extracting salient edges,
exploring backbone extraction methods, for the purpose of
modeling and analyzing collective behavior. To address the
gaps in the current literature regarding the use of such meth-
ods for modeling collective behavior, we undertake a compre-
hensive series of efforts. These include formalizing, analyzing,
discussing, applying, and validating existing methods, many
of which are drawn from parallel fields of study to computer
science, and finally introducing novel methods to advance
the state-of-the-art. We also demonstrate the effectiveness of
these methods as fundamental tools for uncovering relevant
patterns, applying them across diverse phenomena each with
distinct requirements. Our contributions are multifaceted, in-
cluding innovative methods, case studies yielding specific
insights, and a comprehensive methodology for the selection,
application, and validation of these methods. Moreover, our
outcomes wielded a substantial impact on both the scientific
community and society. They not only unveiled numerous
opportunities for fellow researchers but also catalyzed the
initiation of new and impactful research.
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1 Introduction
Network science has emerged as a valuable field for modeling
and studying the collective behavior of individuals in complex
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systems [31, 36]. It provides a range of theoretical tools to de-
scribe and analyze phenomena that are of great interest to our
society. For instance, network science helps us understand
how users spread ideas and information through content shar-
ing on social media platforms [11, 23, 24, 26, 32], how voting
behavior of House of Representatives members forms ideolog-
ical groups that better represent a country’s political scenario
beyond traditional political parties [13], co-authorship pat-
terns in publications [5], people’s mobility between places
using social web data [21, 38], among others.

However, many complex systems are structured by interac-
tions that occur simultaneously among multiple individuals
(or even components), which we refer to as co-interactions or
many-to-many interactions, such as multiple users sharing
the same piece of information in an information dissemi-
nation network, or a set of co-authors in a co-authorship
network. Recent studies have highlighted the impact of these
co-interactions on the topological structure of the network,
especially when projected into undirected and weighted net-
works, as they exhibit rich and diverse patterns at different
levels, including sequentiality, periodicity, and sporadicity
[3, 20]. As a result, such networks tend to contain a large
number of edges representing random, sporadic, and spurious
interactions that are only weakly related, if at all, to the phe-
nomenon under study. The large number of these noisy edges
adds even more complexity to the analysis of network models,
including the study of collective behavior, and requires the
identification of co-interactions that are truly relevant to the
target phenomenon. Moreover, most metrics and algorithms
used for network analysis (e.g., community detection and
recommendation systems) assume that the network struc-
ture derived from the interactions accurately represents the
phenomenon under study [4, 29, 36]. Consequently, these al-
gorithms take into account all available edges, including noisy
and sporadic ones, potentially leading to misinterpretations
and misleading conclusions. Hence, the presence of noisy
edges highlights the importance of identifying the significant
edges that are essential to understanding the phenomenon
under study. Surprisingly, this critical step has been largely
overlooked in the network models used for studying such
phenomena.
The selection and extraction of salient edges, also known

as backbone, from complex networks is tackled by extraction
methods. These methods aim to filter out noisy edges and pro-
vide a reduced version of the network that captures the most
important edges for the target phenomenon [18]. However,
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despite the importance of these methods, they are still un-
derused. One of the challenges in using backbone extraction
methods is to select themost appropriate method for a particu-
lar study, considering a predefined definition of edge salience.
Each method relies on assumptions, revealing a unique under-
lying structure, requiring careful examination of properties
and statistical models [6, 9, 10, 18, 25, 28, 35, 37]. Although
this task is challenging, it provides an opportunity to explore
different methods and improve results for many interesting
phenomena. It also provides the opportunity to propose new
approaches for backbone extraction, especially in the study of
novel phenomena. Another major challenge is the evaluation
and validation of backbone extraction methods. Since the ac-
tual structure of the network is by definition unknown, it is
difficult to assess the quality of the extracted backbone using
conventional assessment methods [30]. Therefore, unsuper-
vised assessment strategies should be considered to overcome
this limitation. In summary, backbone extraction methods
provide a way to identify salient edges in complex networks.
However, their application, selection, proposal, and evalua-
tion have gaps in the literature, which we aimed to fill with
our dissertation. The full dissertation is accessible in [12].

1.1 Goals
In this context, our dissertation was driven by the following
guiding question: Given a particular phenomenon of interest to
be studied in the light of collective user behavior in a complex
system, and given the (noisy) many-to-many network model
built from a set of user co-interactions collected from that sys-
tem, how can we reveal structural (topological), contextual and
temporal properties of cohesive groups of users (communities)
that can help shed light into how collective behavior emerges
and evolves, driving the phenomenon under investigation?

The challenges associated with our guiding question have
led to the definition of the following research goals:
RG1: Uncovering topological and contextual properties
of communities in many-to-many networks: Our first
goal was to identify communities that are representative of
collective behavior in a target system and to characterize their
structural and contextual properties that are fundamentally
related to the phenomenon under study. As mentioned earlier,
one of the main challenges is to identify the salient edges that
form the backbone of the network for a given target system.
Therefore, it is important to explore different methods for
extracting the backbone, both existing and new, that fit the
characteristics of the system and the phenomenon under
study.
RG2: Modeling the temporal dynamics of communities
in many-to-many networks:We were interested in analyz-
ing the temporal dynamics of the identified communities by
examining how the structural and contextual properties of the
backbone evolve over time. From the structural perspective,
we were interested in understanding and quantifying the dy-
namics at the individual member and community levels. With
the contextual perspective that we tackled in our RG1, we can
also examine the contextual properties of the phenomenon

behind these communities (e.g., the topics of discussion, the
patterns of co-interactions) as they evolve over time.
RG3: Establishing a methodology for selecting and eval-
uating network backbone extraction methods in the
face of a phenomenon modeled in many-to-many net-
works: We found that some methods of extracting the back-
bone extraction may be used for our purposes in RG1 and
RG2. However, it is challenging to select and evaluate the
most appropriate method in scenarios for which there is of-
ten no ground truth. This largely depends on a comprehensive
knowledge of the assumptions of both methods and phenom-
ena. Our ultimate research goal, therefore, was to survey the
key properties of such methods and potential phenomena to
guide the selection, use, and evaluation of methods for the
study of a particular phenomenon.

2 Results and Contributions
RG1: To model collective behavior in many-to-many net-
works, we relied on some phenomena focused on groups of
users representative of communities. Through a range of case
studies, we quantified the presence and impact of noise in
these networks, uncovering structural and contextual (related
to phenomena) patterns not previously observed in the litera-
ture. Given the need to deal with noise in the phenomena, we
applied and proposed new methods for extracting backbones.
First, we combined two threshold-based and neighborhood-
based approaches and showed the importance of contextual
information to identify salient edges in modeling and ana-
lyzing political ideologies in a network modeled from roll
call votes [13, 17]. Our study not only demonstrated the im-
portance of using contextual information derived from the
phenomenon to assist the backbone extraction process, but
also, unlike previous ideological analyses in the political con-
text, compared the characteristics of collective behavior in
fragmented and non-fragmented party systems over a long
period of time.
In studying another phenomenon, notably, online discus-

sions in social media applications, we found that social media
applications have characteristics that challenge the model-
ing and analysis of collective behavior. Most notably, these
include the heavy tail nature of content popularity and user ac-
tivity, leading to many edges that are not necessarily relevant
to the study. We then proposed to study this phenomenon
on Instagram by modeling a tripartite network. Nevertheless,
we did not find any backbone extraction techniques in the
literature that explicitly exploit this type of structure to iden-
tify salient edges. Thus, we proposed TriBE, a probabilistic
backbone extraction method that takes into account this type
of structure and can be explored for any domain modeled
by a tripartite network [14, 16]. Some important examples
include co-authorship networks, co-developers networks in
the context of software engineering, among others.

It is also important to highlight that this research goal was
explored in other research projects we collaborated. Among
the most important are: i) an analysis in the first case study
conducted as part of a research project by an undergraduate
student [27]; ii) a project conducted by a Master’s student on
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the spread of misinformation on WhatsApp [33, 34], whose
project was awarded by the 2022 Google Latin America Re-
search Awards; iii) an analysis of Twitter discussions about
allegations of fraud in the United States elections conducted
in a bachelor’s thesis supervised by the dissertation author
[7]; iv) and finally, a study of coordinated actions on Twitter
around the election and attack on the United States Capitol,
conducted in a bachelor’s thesis also supervised by the disser-
tation author [22]. Notably, the latter study also proposed a
new method for backbone extraction that combines two other
strategies from the literature examined in our dissertation,
therefore, advancing the state of the art in backbone extrac-
tion. These results validate our concern that it is important
to consider network noise when modeling and analyzing col-
lective behavior, which is mostly neglected in the literature.
Moreover, all of these studies explored different network struc-
tures in the context of complex networks that are common in
several other domains, demonstrating their applicability and
importance.

RG2: We applied several metrics to the temporal analysis on
the phenomena studied to capture individual-level dynamics
and noted some important limitations with the method most
commonly used in the literature. We then explored the use of
machine learning methods, specifically network embedding
techniques, to obtain latent representations of networks. How-
ever, we encountered an issue known as the alignment prob-
lemwhen applying static embedding techniques to successive
networks representing different time windows. This problem
arises because the resulting embeddings are not mapped to
the same latent space, making it difficult to track node-level
dynamics over time.

To overcome this challenge, we then proposed a technique
for mapping network sequences into a time-aligned latent
space. By combining state-of-the-art approaches like node2vec
and dynamicWord2vec [19, 39], we jointly learned temporal
node embeddings for successive networks, enabling consis-
tent tracking of individual nodes over time. This advance-
ment in modeling dynamics in temporal networks based
solely on structural information is a significant contribution.
Our method offers advantages over temporal dynamic anal-
ysis. We demonstrated its effectiveness and generalizability
through two case studies, including the analysis of political
and mobility networks. Thus, our approach builds upon previ-
ous studies that have demonstrated the efficiency of temporal
embedding techniques across various domains.

RG3: In our last research goal, we addressed the challenge
of selecting and evaluating backbone extraction methods in
the absence of ground truth in a studied phenomenon. We
reviewed ten state-of-the-art methods from reputable publi-
cations in computer science fields, such as [10, 18, 28, 35, 37],
including prestigious venues like Proceedings of the National
Academy of Sciences and Nature Communications. We pro-
vided a detailed description of their assumptions, advantages,
and disadvantages, considering their statistical and structural

properties for practical applicability. Furthermore, we identi-
fied network properties utilized by these models to capture
collective behavior across different domains.
Our methodology explicitly considers both method and

phenomenon properties for effective selection. It incorpo-
rates metrics that capture structural and contextual aspects,
often overlooked in the literature, to evaluate the resulting
backbone’s emergent structure and its relevance to the stud-
ied phenomenon [15]. Our investigation surpasses the ex-
isting literature in terms of comprehensiveness and thor-
oughness when compared to similar attempts [8, 28], as it
encompasses a larger number of methods and evaluation
metrics. The results highlight the substantial variation in
backbones obtained using different methods, underscoring
the importance of method selection for gaining meaningful
insights into the phenomenon under investigation. Finally,
we have assembled all applied and developed backbone ex-
traction methods, datasets, and details in a single data reposi-
tory to ensure the reproducibility of our studies and enable
their use in future research. The repository is accessible at:
https://github.com/chgferreira/backbone_extraction.

2.1 Scientific and Social Impacts
The results of our dissertation have been disseminated through
prestigious journals and conferences [13–17], including the
International Conference on Social Informatics, The Journal of
Web Science, ACM Conference on Web Science, Elsevier Online
Social Networks and Media Journal, and PlosOne.

Furthermore, our involvement in parallel endeavors closely
aligned with our dissertation has yielded significant contri-
butions and consequential publications [2, 7, 22, 27, 33, 34],
such as the BrazilianWorkshop on Social Network Analysis and
Mining, International Conference on Social Informatics, Else-
vier Information Processing & Management, ACM SIGMETRICS
Performance Evaluation Review, International Conference on
Advances in Social Network Analysis and Mining, and once
again, the International Conference on Social Informatics. These
works demonstrate that our dissertation has not only con-
tributed to research but has also inspired new avenues for
investigation. Most importantly, it has catalyzed numerous
projects among undergraduate and graduate students, fos-
tering the author’s personal and professional development
during and after the PhD journey.
Moreover, our work extends beyond the academic realm

to have a tangible social impact. This is notably evident
through our collaborative research initiative with the Min-
istério Público do Estado de Minas Gerais [1]. By applying our
dissertation findings, we have effectively identified electoral
irregularities on social media platforms, transcending tradi-
tional academic boundaries.

3 Final Considerations
For many years, network-based models have been widely em-
ployed to study various phenomena in numerous domains by
representing the interactions between agents or components
through an undirected and weighted graph. However, despite
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their wide applicability, network models also bring some chal-
lenges that have received little attention, even though they
may provide more accurate results. Our dissertation sheds
light on this aspect by focusing on the modeling and analysis
of collective behavior in many-to-many networks, drawing
attention to the impact of noise on the network and its effects,
which are often overlooked in network-based modeling ef-
forts. Our results demonstrate the importance of considering
noise in network-based models to improve their effective-
ness. We hope that extracting the network backbone will
be a crucial step for many-to-many network modeling and
analysis.
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