
On the Challenges of Using Large Language Models for
NCL Code Generation

Daniel de Sousa Moraes
TeleMídia/PUC-Rio

danielmoraes@telemidia.puc-rio.br

Polyana Bezerra da Costa
TeleMídia/PUC-Rio

polyana@telemidia.puc-rio.br

Antonio J. G. Busson
BTG Pactual

antonio.busson@btgpactual.com

José Matheus Carvalho Boaro
TeleMídia/PUC-Rio

boaro@telemidia.puc-rio.br

Carlos de Salles Soares Neto
TeleMídia-MA/UFMA
carlos.salles@ufma.br

Sergio Colcher
TeleMídia/Departamento de

Informática/PUC-Rio
colcher@inf.puc-rio.br

Abstract
A significant concern raised in the domain of authoring tools
for interactive Digital TV (iDTV) has been their usability
when considering the target audience, which typically con-
sists of content creators and not necessarily programmers.
NCL (Nested Context Language), the declarative language
for developing interactive applications for Brazilian Digi-
tal TV and an ITU-T Recommendation for IPTV services,
is a simple declarative language but not an easy tool for
non-technical authors. The proliferation of Large Language
Models (LLMs) has recently instigated substantial transfor-
mations across several domains, including synthesizing code
with remarkable potential. This paper proposes an investi-
gation into the challenges of using LLMs to aid automatic
NCL code generation/synthesis in authoring tools for iDTV
content production. It shows initial evidence that current
pre-trained LLMs cannot synthesize NCL code with satisfac-
tory quality. In this context, we raise the main challenges for
NCL code generation using LLMs and some issues related to
the good practices for engineering prompts and integrating
pre-trained LLMs into multimedia authoring tools.
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1 Introduction
Authoring tools [3, 6, 11, 12, 18, 21, 23, 25, 26] have been
the subject of extensive study when addressing the develop-
ment of applications in NCL (Nested Context Language), the
declarative language for developing interactive applications
for the Brazilian Digital TV and ITU-T IPTV systems.
A significant concern within this domain has been the

usability of these tools for their target audience, which typi-
cally consists of content creators rather than programmers.
Consequently, these tools have focused on creating visual
abstractions, rather than textual, to facilitate their utilization.
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However, these abstractions can introduce inherent limita-
tions and a certain level of complexity, requiring users to
invest time in learning and adapting to the provided func-
tionalities.

The proliferation of Large LanguageModels (LLMs) has re-
cently instigated substantial transformations across several
domains. These models have facilitated the creation of chat-
bots capable of appropriately responding to diverse requests
within diverse contexts, such as chatGPT1 and Google Bard2.
LLMs have been applied to program or code synthesis tasks
and presented remarkable potential [8, 9, 14, 19, 22]. Thus,
it seems that, if embedded in a multimedia authoring tool,
LLMs could facilitate the development of interactive NCL ap-
plications, allowing authors to intuitively define application
requirements in natural language.

This paper shows initial evidence that current pre-trained
LLMs cannot synthesize NCL codes with satisfactory qual-
ity. It mainly fails with syntax and language rules while not
generating content that meets specific application require-
ments. In this context, we raise the main challenges for NCL
code generation using LLMs. We also raise challenges related
to good practices for engineering prompts and integrating
pre-trained LLMs into multimedia authoring tools.

2 NCL Code Generation
We conducted experiments employing current LLMs to as-
sess whether their performance in the NCL code generation
task is satisfactory or whether it is necessary and plausible to
fine-tune a pre-trained model to generate NCL code. For this,
we wrote three different prompts for NCL code generation
and conducted tests with 4 LLM-based services: chatGPT,
Bard, Llama-v2 [28], and PaLM2 [2]. These prompts are as
follows in Listing 1.
We utilize these prompts as inputs for each model and

subsequently compare their respective outputs. Following
this, the responses were manually evaluated by two NCL
experts based on a rating scale of 0 to 4, which signifies the
code generation quality. Each response score was given in

1https://openai.com/blog/chatgpt
2https://bard.google.com/
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mutual agreement by both evaluators. Results are presented
in Table 1.

Prompt 1: Write an NCL (Nested Context Language)
code that starts a video file named "video.mp4".

Prompt 2: Write an NCL code to start a video in full
screen using a port, and after 10 seconds, using
a link, it starts an image in the top-right
corner of the screen.

Prompt 3: Write an NCL code to start a video in full
screen using a port, and after 10 seconds, using
a link, it starts an image in the top-right
corner of the screen. The following code
exemplifies a basic application where a video is
initiated using a port element:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ncl id="exemplo01"

xmlns="http://www.ncl.org.br/NCL3.0/EDTVProfile">
<head>

<regionBase>
<region id="rgVideo1" zIndex="1" />

</regionBase>
<descriptorBase>

<descriptor id="dVideo1"
region="rgVideo1" />

</descriptorBase>
</head>
<body>

<port id="pVideoAbertura"
component="videoAbertura" />

<media id="videoAbertura"
src="media/abertura.mpg"
descriptor="dVideo1" />

</body>
</ncl>

Listing 1. Experiments prompts to evaluate generic LLM on
NCL code generation

LLM Prompt 1 Prompt 2 Prompt 3
ChatGPT (GPT-3.5) 0 2 1
Bard 1 1 1
Llama-v2 70B 0 0 0
PaLM2 (Bison) 1 1 3

Table 1. LLMs rating for each prompt. (0) Can not generate
code; (1) Invalid NCL code; (2) NCL code with many errors;
(3) NCL code with few errors; (4) NCL code as expected.

In Prompt 1, the task was to define an application code
with one element media referring to a video and start it. The
ChatGPT answered that it could not generate an NCL code
response, alleging that "...there is no widely known or standard-
ized programming language called "Nested Context Language"

(NCL)..". Conversely, the Bard and PaLM2 models demon-
strated the ability to generate code-form responses. However,
they hallucinated, producing responses in languages other
than NCL. Bard generated a Python response referencing an
inexistent API named "ncl," while PaLM2 just generated a
JSON object defining attributes of a video.
Prompt 2 demands a slightly more elaborated task. It

explicitly says that the video presentation must be initialized
using a port element. Also, after 10 seconds of playing the
video, an image on a specific screen region must be started
using a link. ChatGPT was able to generate NCL codes but
with many syntactic errors and semantically far from the
expected response. Bard and PaLM2 suffered from halluci-
nations again. This time, PaLM2 generated what looks like
Python code. Bard generated a Python code similar to the
previous task, using a made API named "ncl".

Lastly, in Prompt 3, we used the same task of Prompt 2,
but this time adding an example of an NCL code, in which a
video media is defined and initiated through a port element.
In this round, the PaLM2 model performed better than oth-
ers, generating a code close to the expected response. Both
GPT-3.5 and Bard generated invalid NCL codes. For all the
prompts, the Llama-v2 model could not generate a response
code in any programming language.

This experiment shows early signs that even LLMs trained
on large amounts of data still cannot be adequately used
for NCL code generation tasks. We hypothesize that this
happens because NCL is a domain language for a particular
niche. Thus, it is necessary to fine-tune such LLMs for the
proper generation of NCL codes.

3 Challenges of Using LLMs for NCL code
generation

Generally, LLMs denote Transformer-based language models
that contain hundreds of billions of parameters or even more
[16]. These models undergo training on extensive textual
datasets. With this in mind, we can identify a set of specific,
though not unique, challenges that need to be addressed to
implement LLMs for the generation of NCL codes success-
fully.

3.1 Adjusting the LLMs
Using LLMs trained on generic data and task-agnostic has
demonstrated strong performances across a wide range of
tasks [5, 10, 28]. However, NCL code generation tasks might
perform differently than desired, as demonstrated in the
experiment in section 2.

For instance, Listing 2 shows that even the best response
for the prompts, using natural language, fails to generate
a correct code in the experiment. This code was acquired
as a response to the Prompt3 by the PaLM2 model in the
experiment, and even though it is the most coherent and
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closest response to the desired code, it still fails to complete
the task.
The link created does not correspond to the prompt, it

is starting the image presentation after the video stops. In
the prompt, we ask to start an image ten seconds after the
video begins. Besides, the connector used is not declared or
imported.

<?xml version="1.0" encoding="ISO-8859-1"?>
<ncl id="exemplo02"

xmlns="http://www.ncl.org.br/NCL3.0/EDTVProfile">
<head>

<regionBase>
<region id="rgVideo1" zIndex="1" />
<region id="rgImagem1" zIndex="2" top="0"

right="0" width="200" height="200" />
</regionBase>
<descriptorBase>

<descriptor id="dVideo1"
region="rgVideo1" />

<descriptor id="dImagem1"
region="rgImagem1" />

</descriptorBase>
</head>
<body>

<port id="pVideoAbertura"
component="videoAbertura" />

<media id="videoAbertura"
src="media/abertura.mpg"
descriptor="dVideo1" />

<link xconnector="onEndStart">

<bind role="onEnd"

component="videoAbertura" />

<bind role="start" component="imagem1" />

</link>

<media id="imagem1" src="media/imagem.jpg"
descriptor="dImagem1" />

</body>
</ncl>

Listing 2. PaLM2 generated code for Prompt 3

Many factors can explain the results in section 2, but
mainly because the model was not trained for code genera-
tion. Thus, the models may sometimes suffer from hallucina-
tions and include inaccurate information in their responses
[16]. To mitigate this, some works adapt generic LLMs, fine-
tuning them to specific tasks, such as code generation. There
are works for particular languages such as Codex [8], a GPT-
3 LLM fine-tuned to generate Python functions from doc
strings. Also, phi-1 [14], a smaller LLM, which is also trained
to generate Python functions from doc strings. There are
also models trained for multiple languages, such as CodeGen
LLMs [22] that use C, C++, Go, Java, JavaScript, and Python
code datasets, and the AlphaCode LLM [19], pre-trained on
a C++, C#, Go, Java, JavaScript, Lua, PHP, Python, Ruby,

Rust, Scala and TypeScript source code dataset collected
from GitHub.
All the works mentioned positively impact the perfor-

mance of their specific tasks. Thus, it is clear the necessity
of experiments to confirm the need to train LLMs with spe-
cific examples of NCL code, comparing their performance
with that of generic LLMs. Such an experiment demands the
creation of a dataset with examples of NCL code.

One of the main challenges is the creation or use of a suffi-
ciently extensive dataset for training the LLM or fine-tuning
a pre-trained model, as done in [8, 9, 14, 19, 22]. This entails
defining and collecting a substantial number of code exam-
ples that effectively represent the core characteristics of the
NCL language and its potential applications. By assembling a
diverse set of code samples, we enable the model to grasp the
intricacies of the language and adopt coding best practices
specific to NCL. It is essential to recognize that the more
exposure the model has to pertinent examples, the better
equipped it becomes to produce high-quality code.
Moreover, in the experiment of specifying an LLM for

NCL code generation, we can also highlight questions about
what type of adaptation in the LLM would be feasible, given
the context of available data about the language and the
resources available for model implementation and execution.

We can mention two widely used methods (among many
others) [30], fine-tuning and few-shot training. The fine-
tuning, used in several works already mentioned, is a process
of re-training on a task-specific dataset, a pre-trained model,
updating all parameters, which, depending on the model
architecture, will require significant memory resources to
store parameters, model activations, etc. [16]. Besides, it also
requires a fair amount of task-specific data to optimize its
performance, adding to the need for dataset construction.

There are also the Parameter-efficient fine-tuning (PEFT)
methods, such as Adapters [15], that add learnable layers into
the Transformer architecture to be updated during the fine-
tuning, keeping the rest of the network from change. Another
method is prefix-tuning, when token embeddings are added
to an input to be learned during the fine-tuning without
changing the rest of the model’s parameters. These methods
can reduce resource usage while maintaining competitive
performance to a full fine-tuning.

Another promising approach is using zero, one-or-few shot
training [29]. In this method, a small set of examples is given
along with a prompt query. The LLM uses the information
received to teach itself to complete the demanded task. Ac-
cording to Ahmed and Devanbu [1], this method does not
require weight adjustments. This method enables the special-
ization of a generic LLM for NCL code generation without
the need for ample labeled examples and the availability of
many computing resources.
Lastly, after defeating all the challenges above, we must

evaluate the performance of the chosen methods and models.
In this stage, we ensure the model effectively generalizes
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to new data and performs proficiently. We may adjust large
models using PPO (Proximal Policy Optimization) based on
a reward model trained to align the models with human
preferences [24]. ChatGPT also employed this approach. The
reward model is trained using comparison data generated
by human labelers who rank the model outputs manually.
Based on these rankings, the reward model or a machine
labeler calculates a reward that is then utilized to update the
FM through PPO.

3.2 Prompt Engineering and User Interaction
Regarding the challenges of embedding an LLM for NCL gen-
eration in an authoring tool. Our attention must also include
investigating mechanisms within the authoring tool that will
enable developers to interact with the model, ensuring the
highest level of response accuracy.

The process of designing prompts is challenging in itself,
as the performance of the LLM is highly dependent on the
quality of the prompt informed [31]. Since natural language
is highly expressive and imprecise at times, it can lead to am-
biguous prompts, making it difficult for the model to capture
user intent [17]. Zhou et al. [31] claim that even though most
effective prompts have been human-engineered, using LLMs
accurately for more complex tasks is not straightforward
since it requires careful development.
One potential way to overcome this is by using formal

specifications when designing prompts, as suggested by [4].
However, this approach is not practical if we intend to cater
to a broader audience, especially people unfamiliar with
programming languages.
Therefore, many other works have explored ways of fa-

cilitating human-LLM interaction by either automatizing
prompts creation [20, 31]; improving prompts by enforcing
specific reliability rules [27]; or providing a prompt editing
interface with standard IDE features, such as syntax high-
lighting and refactoring [13]; or even visual interactions
combined with pre-defined workflow operations [7].
Thus, finding the most effective way to allow the user

to interact with the LLM without compromising the perfor-
mance of NCL code generation constitutes another great
challenge. The central goal of this challenge revolves around
whether to adopt natural language prompts, employ lower-
level prompts through the decomposition of tasks into more
straightforward, fundamental commands, or leverage visual
abstractions to simplify and automate the prompt construc-
tion process. We will need to experiment with adapting the
mentioned approaches to this specific task and design a dif-
ferent one that suits the requirements well.
Besides, as we are talking about a multimedia author-

ing tool, we also need to understand how this new para-
digm can be combined with the existing and well-established
paradigms and how we can make the best use of well-known
abstractions used by previous multimedia authoring tools,

such as Composer [18], or STEVE [12], allowing the visual-
ization and editing of the generated applications.

Furthermore, aside from our efforts to enhance the LLM’s
performance through user interactions, we must also priori-
tize the practical usability of the authoring tool. To achieve
this, it becomes necessary to conduct evaluations involving
the intended audience. These evaluations will provide valu-
able insights to determine the most appropriate approach
for refining the tool’s usability.

4 Risks and Limitations
Besides the challenges in prompt design/engineering, the
sole use of LLMs for code generation already brings potential
risks. In a hazard assessment article for Codex [17], an LLM
for code synthesis, the authors noted that such a tool has the
potential for misuse and may offer technological, social, and
economic risks. The potential risks/hazards include:

• Inefficient Code: Generated code may not be opti-
mized for performance or resource usage, leading to
suboptimal results in terms of speed and efficiency;

• Lack of Creativity: Models can only generate code
based on the examples they were trained on. They
may struggle with tasks or languages that were not
well-represented in their training data, so they may
not be able to come up with innovative solutions or
creative problem-solving;

• Debugging Challenges: Code generated by LLMs
can contain bugs or vulnerabilities. Identifying and
fixing these issues can be challenging, especially if the
codebase is large;

• Misleading Solutions: LLMs can produce code that
appears correct but does not perform the intended task
accurately. This can lead to unreliable software that
does not meet the functional requirements, risking
user satisfaction and trust;

• Lack of Context: LLMs may not have access to the
full context of a project or its requirements, leading
to code that does not fully align with the intended
functionality;

• Maintenance Issues: Code generated by LLMs may
be hard to maintain and update over time, especially
if the original developers are not familiar with the
model-generated code;

• Vulnerable Code: Automated code generation may
result in vulnerabilities and security flaws if not ade-
quately reviewed. Code generated by these models
might contain vulnerabilities that compromise the
safety and security of the application, leaving it sus-
ceptible to attacks;

• Legal and Licensing Issues: There could be legal
and licensing challenges when using code generated
by LLMs, mainly if the code includes proprietary or
copyrighted content;
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• Ethical Concerns: The use of LLMs for code genera-
tion may raise ethical concerns related to plagiarism,
copyright infringement, or the unintended use of third-
party code without proper attribution;

• Overreliance on Models: Developers may become
overly reliant on language models, potentially neglect-
ing their programming skills and critical thinking abil-
ities. Relying on language models for code generation
depends on their availability and maintenance. If the
model becomes obsolete or is discontinued, it can dis-
rupt ongoing projects;

• Quality Control: Ensuring the quality of code gen-
erated by LLMs requires careful review and testing,
which can be time-consuming and resource-intensive;

• Training Data Bias: The biases present in the train-
ing data used for LLMs can lead to code that reflects
these biases, potentially impacting the inclusivity and
fairness of software projects.

• Environmental Impact: Training and running LLMs
require significant computational resources, leading
to high energy consumption. This energy-intensive
process contributes to environmental harm, including
increased carbon emissions, which is a concern given
the need for sustainability in technology.

• Digital Divide: Using code generation tools necessi-
tates access to appropriate hardware, stable internet
connections, and technical expertise. This can exclude
economically vulnerable groups who may lack access
to these resources, exacerbating disparities in the tech
industry and limiting opportunities for underprivi-
leged individuals.

5 Conclusions
This paper proposes utilizing LLMs to generate NCL codes.
Initially, we empirically find indications that pre-trained
LLMs exhibit suboptimal performance when tasked with
generating NCL code using natural language prompts. Sub-
sequently, we outline a non-exhaustive list of challenges that
must be addressed to effectively adapt an LLM to the specific
task of NCL code generation.
Furthermore, we highlight the potential challenges of

achieving user-centric usability while maintaining robust
model performance for task resolution. Lastly, we enumerate
the inherent risks and limitations of using LLMs for code
generation. Through this article, we aspire to lay the ground-
work for developing an authoring tool capable of seamlessly
merging well-established functionalities from previous au-
thoring tools with the untapped potential offered by LLMs
in NCL application development.

In future work, we plan to perform a robust evaluation us-
ing current LLMs to properly attest to the efficiency of these
models in automatically generating NCL code. Furthermore,

we will also test the adaptation of LLMs using a large dataset
of NCL codes.
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