
A multiturn recommender system with explanations
Luan Soares de Souza

Institute of Mathematics and Computer Sciences
University of São Paulo

São Carlos, Brazil
luanssouza@usp.br

André Levi Zanon
Institute of Mathematics and Computer Sciences

University of São Paulo
São Carlos, Brazil

andrezanon@usp.br

Lucas Padilha Modesto de Araújo
Institute of Mathematics and Computer Sciences

University of São Paulo
São Carlos, Brazil

padilha.lucas@usp.br

Marcelo Garcia Manzato
Institute of Mathematics and Computer Sciences

University of São Paulo
São Carlos, Brazil

mmanzato@icmc.usp.br

Abstract
Recommendations engines use interactions between users
and items to predict the preferences of the users and gen-
erate recommendations for them. However, because they
rely on historical data, the user’s interest at the moment
may not be captured. In this context, Conversational Rec-
ommender Systems (CRSs) have been proposed in order to
provide recommendations that provide suggestions based
on the user’s current interests by eliciting information from
the user in turns in which the system can ask for the user
to understand more about the current interest in the time or
recommend. In that regard, we propose CRSs for cold-start
users as a Knowledge Graph search. The system also employs
a Natural Language Processing module to explain the recom-
mendations, bringing transparency to the recommendation
algorithm.

Keywords: Conversational Recommender Systems, Explain-
able Recommendation, Multi-turn Recommendation

1 Introduction
Recommender Systems (RSs) provide suggestions to users by
finding relations between underlying similarities between
interactions [1]. However, despite the success of methods
such as factorization machines and deep neural networks to
provide recommendations, these recommendation engines
are ’static’, meaning that they are trained offline on historical
behavior [4]. As a result, they fall short regarding users’
current needs since historical data may be noisy considering
the real user interests in items [2].

To overcome such problems, Conversation Recommender
Systems (CRSs) have been defined as eliciting user informa-
tion dynamically and taking actions in real-time multi-turn

In: XXII Workshop de Ferramentas e Aplicações (WFA 2023), Ribeirão Preto,
Brasil. Anais Estendidos do Simpósio Brasileiro de Sistemas Multimídia e
Web (WebMedia). Porto Alegre: Sociedade Brasileira de Computação, 2023.
© 2023 SBC – Sociedade Brasileira de Computação.
ISSN 2596-1683

interactions using natural language, to achieve recommen-
dation related goals [2, 3, 9]. Therefore, CRSs are based on
turns, in which the system chooses whether to ask the user
for information about items of the user’s preference or to
recommend based on the system’s current knowledge of the
user’s information.
Current approaches to CRSs are modeled based on the

tasks of (1) deciding if the system should ask or recommend,
(2) ranking properties to know user preferences, and (3) rank-
ing items to recommend to users [2, 5–8, 11]. Nevertheless,
there are still some open issues regarding side information
used in order to ask questions to users and recommendations
[2, 3]. Furthermore, most works rely on pre-trained data to
generate recommendations, which may not be the case for
cold start, in which no information is known about the users.
Therefore, we propose a multiturn recommender system

based on Linked Open Data (LOD) to leverage contextual in-
formation from cold-start users such as the genre, actors, and
directors of movies the user is interested in at the moment,
to recommend items as Knowledge Graph (KG) interactive
search. Considering these three tasks of conversational rec-
ommender systems discussed in this section, in task (1) we
used a Multi-Armed Bandit (MAB) algorithm to adaptatively
choose between asking about new information or recom-
mending. In task (2) we used a scoring metric based on the
KG that considers the relevance of the property in the total
KG and based on the properties previously chosen, and, in
task (3) we used the Personalized PageRank algorithm as
a recommendation algorithm. When a recommendation is
made, the user may need additional information to make de-
cisions [12]. To provide supporting information about items
in the decision making process, our proposal also offers ex-
planations.
The manuscript is organized as follows: in section 2, we

explain the recommendation engine and how each of the
three tasks of CRSs was developed algorithmically and how
the explanations are generated. Then, in section 3 the archi-
tecture of the deployed chatbot is described. Finally, section
4 addresses conclusions and future works.

77



Anais Estendidos do WebMedia’2023, Riberão Preto, Brasil Souza et al.

2 Recommendation Engine
The proposed multiturn recommender system uses LOD to
generate recommendations to cold-start users by building a
profile of properties through turns. At every turns the system
is faced with a decision: to ask about characteristics that the
user is searching for in a movie or to recommend. Therefore,
the system has three main tasks: (1) rank properties relevant
to the user based on previous interactions to ask for user
opinion; (2) provide recommendations based on the movie
characteristics that the user liked; and (3) decide whether
the system should recommend or ask.
Considering task (1), given a property (e.g. genre, actor,

music composer, director), and a value (e.g. drama, Viola
Davis, Bill Conti, Quentin Tarantino), of the Wikidata1 KG,
the system offers ranked properties and asks the users about
their preferences.

As the interaction starts, the user informs his/her age and
selects a property/value tuple of interest. Based on these
pieces of information, our algorithm reduces the original
graph into a subgraphwith themovies that contain the initial
tuple chosen and are adequate to the user age, in order to
reduce the search space. Then, the system ranks the property/
value tuples of movies that had the previously chosen tuple
considering: the entropy of the properties; the relevance of
values in the current subgraph; and the relevance of values
in the full KG, as in Equation 1.
𝑠𝑐𝑜𝑟𝑒(𝑝, 𝑣𝑎𝑙𝑢𝑒) = 𝛼 ∗ 𝑧𝑠𝑐𝑜𝑟𝑒(𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ, 𝑝)) + 𝛽

∗ 𝑧𝑠𝑐𝑜𝑟𝑒(𝑝𝑎𝑔𝑒𝑟𝑎𝑛𝑘(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ, 𝑣𝑎𝑙𝑢𝑒)) + 𝛾
∗ 𝑧𝑠𝑐𝑜𝑟𝑒(𝑝𝑎𝑔𝑒𝑟𝑎𝑛𝑘(𝑓 𝑢𝑙𝑙𝑔𝑟𝑎𝑝ℎ, 𝑣𝑎𝑙𝑢𝑒))

(1)
Each of the three terms in Equation 1 represents the rele-

vance of the property in the current subgraph, the local rele-
vance of the value considering the current subgraph, and the
global relevance considering the entire graph, respectively.
Therefore, the first term is the entropy of the property (actor,
director, genre, etc) 𝑝 in the current graph (𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ). The
second term is responsible to compute the local relevance
of the value (𝑣𝑎𝑙𝑢𝑒) based on the Personalized PageRank
of the current graph (𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ) with 80% of the weight to
movies and values that the user liked and 20% to the rest of
the nodes. The final term is the global relevance based on
the Non-Personalized PageRank of the full Wikidata graph.
All the terms are normalized with a z-score and weighted in
order to transpose them into the same interval from 0 to 1.
The weights set were 0.33 for each term. To choose a movie
to recommend (task (2)) the same Personalized PageRank is
used with the same 80% of the weight to movies and values
that the user chose interacting in task (1) and 20% to the rest
of the nodes.

If the user chooses a property/value tuple, then the current
graph is reduced to a subgraph with the movies connected
1https://www.wikidata.org/

Figure 1. Aplication conversational flow.

to the chosen tuple and all the other property/value tuples
related to those movies. The user can also not like any of
the provided tuples, and as a result, the current graph is
reduced by removing all the property/value tuples shown
to the user. Finally, in task (3), the system chooses between
asking for more preferences from the user and making a
recommendation based on the interactions, with a Multi-
Armed Bandit (MAB) algorithm.

Because MAB algorithms can learn in an online setting, if
the user is constantly choosing a property, MAB approaches
can use this implicit signal as positive feedback to continue
to ask for more information, since the system is constantly
displaying relevant property/value tuples. In contrast, if the
users does not like any of the properties displayed, the system
uses the user’s negative feedback. It starts recommending
movies that have the information provided in past turns.
When the system recommends a movie that the user has
already watched and liked, then the system considers it as
positive feedback to the system to recommend anothermovie,
since a relevant recommendation, despite repeated, was pro-
vided. Otherwise, if the user did not like the recommendation,
then the system uses this as a negative reward to continue
asking for property/value tuples in order to understand more
about the user and build the profile.

Questions about the preferred properties are made to the
users until the system has no other properties to ask, about
and only movies to recommend or the user can also ask for
a recommendation. The recommendation process finishes
when the user accepts the suggestion or when there are
no more movies with the properties informed by the user.
Figure 1 displays the conversational loop in which diamonds
represent user input, the graph icon a reduction on the graph,
and the algorithm icon represents the Explanation algorithm,
the MAB algorithm and the PageRank algorithm that will
rank movies and properties in order to recommend an item
or aks the user about a tuple.

78



A multiturn recommender system with explanations Anais Estendidos do WebMedia’2023, Riberão Preto, Brasil

In the beginning, the user informs the age and only the
movies rated above the informed age are maintained, then
the system ranks the properties of the graph and displays to
the user, that chooses the favorite, reducing the graph again.
The interaction loop starts with the MAB algorithm choos-
ing between displaying properties or recommending. If it
displays properties the graph is reduced considering the user
choice, bymaintaining only the itemswith the properties pre-
viously chosen. If it shows a recommendation, two outcomes
can occur, the user can accept the recommendation, ending
the conversation with the system, or it can inform that the
movie was already watched and then the loop continues
with the MAB choosing between recommending or asking
a question to the user. An example of the recommendation
process is shown in Figure 2.

(a) Interaction 1. (b) Interaction 2.

Figure 2. System interaction.

When a recommendation is made, the system offers an
option to the user for an explanation to the reason why
the movie suggested is appropriate. These explanations are
generated has two main steps: (1) preprocessing of movies’
reviews; and (2) real-time explanation generation.
Our explanations are aspect-based extractive summaries

that use positive sentences from reviews to describe a rec-
ommendation. To enables, that, we have a preprocessing
phase (1) to prepare the reviews to real-time explanations.
Our preprocessing steps, applies a Part-Of-Speech Tagging
to identify possible aspects. After that, the sentiments and
embeddings of each aspected are extracted with pretrained
models. Only positive aspects candidates are considered in
to filter the sentences that can compose the summary. After
this process, each movie has its own aspects and sentences
that we use to generate the explanation.

Figure 3. Aplication architecture.

In the real-time explanation generation step (2), the em-
beddings of the properties chosen during the interaction are
extracted and then used as a centroid to generate our sum-
mary. Therefore, the sentences with the embeddings most
similar to the embedding of the properties appear in the ex-
planation. After reading the explanation, the user can accept
or reject the recommendation if he/she wants to continue
with its interaction.

3 Architecture
Our architecture is composed of three main modules: 1)
Dialoguer2; 2) Recommender3; and 3) Explainer4. The Di-
aloguer is in charge of getting messages from the users and
deciding what to do. For instance, if a user sends a message
to start a conversation, the Dialoguer will call the Recom-
mender to start a multi-turn recommendation process. The
Recommender is responsible for generating recommenda-
tions based on the user’s responses. Besides, the Recom-
mender reduces the graph and decides when to make a rec-
ommendation or to ask for more information. The MAB
algorithm chosen to decide when the system should ask
about properties or recommend was the Thompson Sam-
pling algorithm [10]. The Explainer, if the user requires it,
will provide a post-hoc explanation for the recommendation
using the properties that the user prefers as a reference. An
architecture overview of our application is presented in the
Figure 3.
The core of our recommendation process is the Recom-

mender, which is responsible for recommending and decid-
ing when to recommend or to ask for more preferences.
This module was developed with Python and hosted on the
Heroku Cloud Platform5. The Properties used in the recom-
mendation process were extracted from WikiData and the
states of the KG is persisted in a bucket in the Amazon S36
after each interaction.

2https://github.com/luanssouza/crs-api-dialoguer
3https://github.com/luanssouza/crs-api-recommender
4https://github.com/luanssouza/crs-api-explainer
5https://www.heroku.com/
6https://aws.amazon.com/s3/

79



Anais Estendidos do WebMedia’2023, Riberão Preto, Brasil Souza et al.

The Dialoguer module is hosted on Heroku Cloud Plat-
form and is in charge of receiving a message from the users,
processing it, making requests to other services, and then
answering requests from users, besides controlling the inter-
action turn of the chats. Some interactions are persisted in a
bucket and others in a PostgresSQL7 database.
The Explainer receives properties of the user profile and

generates summaries based on them to explain a recommen-
dation. It is hosted on Heroku Cloud Platform with a bucket
in the Amazon S3 with filtered sentences. To get the prop-
erties embeddings, the explainer uses a pretrained model
hosted in the Amazaon SageMaker8.
Dialogs with a users are based on the interactions pre-

sented in Figure 1. The first kind of interaction is the greet-
ing, when the user sends a message to start a conversation.
Then, the Dialoguer asks the user about his age range. As
the user answers, the Dialoguer starts the interaction with
the Recommender, informing the age range of the user and
receiving a list of properties. These properties are presented
to the user, who is asked to select the one they prefer. Based
on the user response, the Dialoguer informs the preferred
property of the user to the Recommender, which shrinks
the graphs of properties and ranks those that remain. These
ranked properties are presented to the users by the Dialoguer
and they are requested to select the preferred one. In this
step, which repeats until the Recommender decides to make
a recommendation or the user requests for one, the user
can browse for properties to find one that interests them.
When a recommendation is made, the Dialoguer searches
for a trailer of the movie in the YouTube API9 and presents
it to the user. In this stage, the user can request for an ex-
planation provided by the Explainer or inform them if they
will take the suggestion or not. If the user doesn’t accept the
recommendation, more properties are presented to the users
and all the following steps repeat until the user accepts a
suggestion.

4 Conclusion
In this paper we described an explainable movie CRS for
cold-start users using KG and NLP to provide explanations
to users. Our source code is available under the MIT license
for academic and social use.
The CRS initially filters movies that are rated below the

user’s age, then it initially asks the user for the initial prop-
erty that the user is interested in to start the conversational
loop. In this step, a MAB algorithm chooses whether the sys-
tem should ask for more properties or recommend a movie.
If the system asks for a property then the graph is limited
only to the movies that contain the current and previous
properties that the user has chosen in addition to the other

7https://www.postgresql.org/
8https://aws.amazon.com/sagemaker/
9https://developers.google.com/youtube/v3

properties that these movies have. If the system recommends
amovie that the user already watched then the system begins
the flow by choosing to ask or recommend again. Finally,
if the user accepts the recommendation, then the loop is
finished. Every time that a recommended movie is shown,
the user can also choose to see an explanation that provides
additional information about the recommendation.

As future work, we intend on testing different recommen-
dation and reinforcement learning algorithms that can be
trained with offline data obtained in order to compare with
the cold-start approaches.

Acknowledgments
This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -
Finance Code 001. The authors would like to thank the finan-
cial support from FAPESP, process number 2022/07016-9.

References
[1] Charu C Aggarwal et al. 2016. Recommender systems. Vol. 1. Springer.
[2] Chongming Gao, Wenqiang Lei, Xiangnan He, Maarten de Rijke, and

Tat-Seng Chua. 2021. Advances and challenges in conversational
recommender systems: A survey. AI Open 2 (2021), 100–126.

[3] Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and Li Chen. 2021.
A survey on conversational recommender systems. ACM Computing
Surveys (CSUR) 54, 5 (2021), 1–36.

[4] Wenqiang Lei, Xiangnan He, Maarten de Rijke, and Tat-Seng Chua.
2020. Conversational recommendation: Formulation, methods, and
evaluation. In Proceedings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. 2425–2428.

[5] Wenqiang Lei, XiangnanHe, YisongMiao, QingyunWu, RichangHong,
Min-Yen Kan, and Tat-Seng Chua. 2020. Estimation-action-reflection:
Towards deep interaction between conversational and recommender
systems. In Proceedings of the 13th International Conference on Web
Search and Data Mining. 304–312.

[6] Wenqiang Lei, Gangyi Zhang, Xiangnan He, YisongMiao, XiangWang,
Liang Chen, and Tat-Seng Chua. 2020. Interactive path reasoning on
graph for conversational recommendation. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data
mining. 2073–2083.

[7] Kai Luo, Scott Sanner, Ga Wu, Hanze Li, and Hojin Yang. 2020. La-
tent linear critiquing for conversational recommender systems. In
Proceedings of The Web Conference 2020. 2535–2541.

[8] Anna Sepliarskaia, Julia Kiseleva, Filip Radlinski, and Maarten de Rijke.
2018. Preference elicitation as an optimization problem. In Proceedings
of the 12th ACM Conference on Recommender Systems. 172–180.

[9] Yueming Sun and Yi Zhang. 2018. Conversational recommender sys-
tem. In The 41st international acm sigir conference on research & devel-
opment in information retrieval. 235–244.

[10] William R Thompson. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two samples.
Biometrika 25, 3-4 (1933), 285–294.

[11] Ivan Vendrov, Tyler Lu, Qingqing Huang, and Craig Boutilier. 2020.
Gradient-based optimization for bayesian preference elicitation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
10292–10301.

[12] Yongfeng Zhang, Xu Chen, et al. 2020. Explainable recommendation: A
survey and new perspectives. Foundations and Trends® in Information
Retrieval 14, 1 (2020), 1–101.

80


