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ABSTRACT
This scoping review explores the application of Semantic Web tech-
nologies in healthcare, focusing on enhancing Electronic Health
Records (EHRs). The review synthesizes research from various
databases, identifying the role and impact of technologies such as
RDF, OWL, and SPARQL in improving data interoperability and
management within healthcare systems. Through a systematic clas-
sification and analysis of the literature, significant advancements
and existing gaps in current research are highlighted. The findings
suggest that while Semantic Web technologies have facilitated sub-
stantial improvements in data handling and system interoperability,
challenges remain in full integration across diverse health infor-
mation systems. This review underscores the potential of these
technologies to transform healthcare practices by enabling more
effective data integration, discovery, and management.
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1 INTRODUCTION
The vision of the Semantic Web, as initially articulated by Berners-
Lee et al. [17], promised a revolutionary transformation of the
Internet into a space where data would not only connect through
hyperlinks but would also describe objects, their properties, and
relationships in a manner that machines could effectively under-
stand and process. This paradigm envisioned agents that could au-
tonomously read, interpret, and act upon web data to perform tasks
on behalf of humans. Even though the full realization of the Seman-
tic Web as a ubiquitous artifact remains elusive, the development
and definition of its underlying technology stack—often visualized
as a "wedding cake" model—have led to significant advancements.
These technologies extend the current web by enhancing its se-
mantic capabilities and machine-readability, marking crucial steps
towards realizing interoperable systems that harness linked data
for diverse applications. This article reviews the scope and impact
of these technologies, particularly in how they have reshaped data
interaction in healthcare.

Following the foundational perspectives established by Berners-
Lee, Hendler e Lassila[17], the field of Semantic Web has been
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explored through various lenses. As discussed by Hitzler [32], the
Semantic Web can be understood not only as an ambitious overhaul
of the currentWorldWideWeb but as a multi-faceted domain where
data becomes machine-understandable by adopting sophisticated
metadata schemas. This narrative has been important in promot-
ing the development of technologies like RDF, OWL, and SPARQL,
which serve as the backbone for creating, maintaining, and apply-
ing ontologies. These technologies enable data sharing, discovery,
integration, and reuse beyond the confines of the Web, proving ben-
eficial even in non-web contexts. This broader applicability hints
at the Semantic Web’s potential to revolutionize data handling by
fostering deeper connectivity that transcends traditional hyperlinks
to create a network of semantically rich and interconnected data
entities.

Since the end of the DARPA DAML program in 2006, Semantic
Web technologies have increasingly been applied to healthcare, sig-
nificantly enhancing Electronic Health Records (EHRs). Technolo-
gies like OWL have advanced the interoperability of EHRs through
ontologies such as Gene Ontology and SNOMED CT, which predate
the Semantic Web’s formalization and have evolved considerably.
The MediBot chatbot developed by Avila et al. [16] exemplifies
these technologies’ practical uses in healthcare by fetching drug
information and comparing prices, demonstrating the Semantic
Web’s broad impact on medical data management and usability
across various healthcare systems.

A scoping review is defined as a type of research synthesis that
provides an initial assessment of the size and scope of available
research literature, identifies knowledge gaps, and clarifies con-
cepts. According to Munn et al. [42], this approach is particularly
useful when systematic reviews cannot meet the specific objectives
or requirements of the knowledge users. Specifically, the primary
objective of our scoping review in this context is to offer a com-
prehensive overview of how the technologies of the Semantic Web
are applied in healthcare, particularly to improve Electronic Health
Records (EHRs). It involves exploring the use of these technolo-
gies in health data management and identifying potential research
gaps in existing literature. The scoping review aims to lay the
groundwork for subsequent systematic investigations by defining
key concepts and mapping out the extent and focus of the current
research landscape.

This article is structured in amanner that gives a general overview
and analysis of the application of Semantic Web technologies in
healthcare. Section 2 provides the background knowledge required
for the review, which is the basis for comprehending Semantic Web
technologies’ technical and theoretical aspects. The third section
discusses related works, highlighting previous studies and existing
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literature that inform and contextualize this research. The fourth
section details the research methodology employed to gather and
analyze the data. The fifth section reports the findings from the
review, presenting an empirical evaluation of how these technolo-
gies are currently utilized in healthcare settings. The sixth section
discusses such findings by interpretation and brings out the impli-
cations of this for future technology development and application
within the context of healthcare. The last section draws conclusions
from the study, summarizes key insights, and suggests directions
for further research.

2 BACKGROUND
This section defines key terms and assets foundational to our scop-
ing review, particularly focusing on Semantic Web technologies
in healthcare. By clarifying these concepts, we establish a unified
understanding and ensure consistent communication throughout
the review.

EHRs include a broad, shareable collection of a patient’s records
across many healthcare settings, such as medical history, medica-
tion, allergies, laboratory results, and others. Sharing important
information about a patient in thismanner becomes easywith EHRs;
hence, the delivery of health services becomes efficient and effective
for one to view the patient’s general health status. The technology
supports better decision-making to increase coordination among
healthcare providers, thereby improving overall outcomes. They
support individual and population health management, enhancing
coordinated care and patient outcomes[2, 11].

In contrast, Electronic Medical Records (EMRs) are confined
to specific healthcare provider encounters and do not typically
transfer between systems. They focus on documenting clinical and
administrative data for use within individual practices[11].

Health Information Systems include EHRs, EMRs, and those sys-
tems that manage the billing, scheduling, and patient management
of information. HIS works to improve healthcare efficiency and
quality by providing various data sources so that decisions can be
made through integration[51].

RDF (Resource Description Framework), RDF Schema (RDF-S),
and OWL (Web Ontology Language) are critical components of the
Semantic Web stack, which facilitate advanced data representation
and interoperability. The primary objective of RDF is to deliver a
generic model for describing the meaning or semantics of infor-
mation resources on the web. This structure is key in integrating
diverse data sources, enhancing datamerging capabilities regardless
of differing underlying schemas[4, 6].

Expanding on RDF, RDF-S offers a semantic vocabulary that
helps define and categorize properties and classes of RDF resources,
such as establishing class hierarchies that increase the complexity
and usability of the data models. For example, RDF-S allows for the
specification of class relationships, making it possible to express
that a Dog is a type of Animal, thus linking the classes Dog and
Animal in a meaningful way[3].

Building upon RDF and RDF-S, OWL provides a more expres-
sive framework for detailed ontology development. It supports
richer descriptions and reasoning about the data, incorporating
advanced features like class equivalence, property characteristics,
and complex class hierarchies. OWL’s capabilities are crucial for

applications that require deep knowledge representation and rea-
soning, such as those in artificial intelligence and semantic web
services[3, 6].

SWRL (Semantic Web Rule Language) enhances OWL (Web
Ontology Language) by integrating rule-based reasoning capa-
bilities through its combination with RuleML. Introduced by the
W3C in 2004, SWRL extends OWL’s ontology frameworks with
Datalog-style rules, enabling complex reasoning and knowledge
inference[33]. This powerful language allows for the expression
of rules that facilitate dynamic inference, making it particularly
suitable for applications requiring sophisticated data analysis and
manipulation.

Rules in SWRL are expressed as implications, where specific
conditions lead to certain conclusions, thereby supporting applica-
tions that need to derive new knowledge from existing data under
predefined conditions[33, 47]. Its integration with OWL ontologies
allows for leveraging structured knowledge representation along-
side dynamic rule-based processes, making SWRL an important
tool for advancing capabilities in the Semantic Web.

SWRL is particularly valuable in scenarios requiring complex
inference and dynamic knowledge representation, where the knowl-
edge base needs to evolve based on new rules or information. This
makes it a key tool for developers and researchers working within
the Semantic Web framework, providing a mechanism for detailed
and extensible knowledge management [47].

Therefore, RDF, RDF-S, OWL, and SWRL together make a strong
infrastructure for the Semantic Web. This infrastructure allows one
to create interlinked data structures, ensuring semantic interoper-
ability across applications. It also allows more effective data sharing
and use between systems in areas such as health, finance, and edu-
cation. These technologies have advanced capabilities to support
complex data relationships and optimize the overall efficiency and
effectiveness of information management.

SPARQL is the query language designed for RDF data, so it repre-
sents one of the most important tools with respect to dealing with
and querying data in the context of the Semantic Web framework.
SPARQL allows one to easily query diverse, interlinked datasets,
find various information, and derive new knowledge from these
data. Its capability to handle difficult queries and output accurate
results is beneficial for applications that manipulate semantically
integrated and analyzed data. Developed by the W3C and officially
recommended in 2008, SPARQL enables the manipulation of data
stored in RDF format and supports a variety of operations, from
basic data retrieval to complex queries across multiple datasets[57].
Its ability to integrate and query data from diverse sources makes
SPARQL indispensable for applications requiring sophisticated data
management, such as knowledge graphs and semantic searches[1].

Beyondmere data retrieval, SPARQL’s role extends to supporting
advanced search capabilities that consider the semantic relation-
ships inherent in RDF data. This functionality is essential in fields
like artificial intelligence, where understanding data relationships is
key, and business analytics, where insights are drawn from complex
interconnected data sets[27].

In summary, SPARQL facilitates robust data integration and
quality management across heterogeneous sources and leverages
Semantic Web technologies for more dynamic and context-aware
data handling.
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3 RELATEDWORKS
The Semantic Web provides promising solutions for integrating
and managing healthcare data, addressing challenges like inter-
operability, knowledge sharing, and decision support across di-
verse systems[31, 43]. By enhancing context-based information
searching and integration, Semantic technologies significantly con-
tribute tomedical research[34]. These technologies also bolster Elec-
tronic Health Record (EHR) systems, improving healthcare quality
through context-aware searches and rule creation[34]. However,
strong security mechanisms are essential when handling sensitive
health data, with various strategies developed for authentication,
authorization, privacy, and other security aspects in Semantic Web
applications[21]. The use of Semantic Web technologies is on the
rise in healthcare and life sciences, particularly in disease-causal
gene analysis, drug efficacy assessment, and building knowledge
bases for biomedical research[19]. Despite some challenges, these
technologies hold promise for managing healthcare big data and
extracting valuable insights[30].

The systematic review by Haque et al. [31] explores the use of Se-
manticWeb (SW) technology in healthcare, focusing on its potential
to address data management challenges like information exchange,
interoperability, and decision support. Analyzing 65 papers, the au-
thors identify five key themes: e-service, disease, information man-
agement, frontier technology, and regulatory conditions. The study
highlights how SW technology aids in developing e-healthcare sys-
tems that support decision-making for medical practitioners and
provide patients with vital information and automated services.
The review also emphasizes the importance of SW in improving
knowledge exchange and data interoperability in healthcare, while
noting research gaps and proposing future directions for advancing
SW-based medical systems.

The semantic web is an emerging technology that improves
information representation and connectivity, enabling AI-driven
applications[43]. Central to this technology are ontologies, which
allow for standardized sharing and reuse of concepts across different
data sources. The paper highlights the growing use of semantic web
technologies in healthcare, virtual communities, and information
retrieval systems, emphasizing the need for appropriate ontologies
to resolve ambiguities and ensure accurate interpretation of tex-
tual content. Narayanasamy et al. [43] provide a detailed review of
semantic web applications in these fields, underscoring the tech-
nology’s potential to transform them. As the world advances into
the fourth industrial revolution, the semantic web’s importance
in connecting users, generating content, and enhancing computer
understanding of information becomes increasingly critical[43].

This scoping review by Costa Lima et al. [21] explored security
approaches formanaging electronic health data using SemanticWeb
technologies. Analyzing 26 studies, the authors identified security
mechanisms addressing key attributes like authentication, autho-
rization, confidentiality, and privacy. These mechanisms support
frameworks for access control and privacy compliance in healthcare.
The review emphasizes the growing use of Semantic Web technolo-
gies in healthcare and points out the need to understand technical
requirements tomitigate risks inmanaging personal health informa-
tion, contributing to secure health information system integration.

In our scoping review, we explore how Semantic Web technolo-
gies like RDF, OWL, and SPARQL enhance data interoperability
and management in healthcare, focusing specifically on Electronic
Health Records (EHRs). Compared to broader studies by Haque et al.
[31] and Narayanasamy et al. [43], our work is more specialized,
emphasizing the technological impact on EHRs and identifying
research gaps. While all reviews highlight the transformative po-
tential of these technologies in healthcare, our analysis provides a
more focused view on their practical integration into existing health
systems, suggesting future directions like real-time data processing
and dynamic ontology management.

4 MATERIALS AND METHODS
Scoping reviews are most efficient when it comes to identifying
the extent of the literature that deals with a particular subject, and
this helps to understand the amount of information available for
research. Such reviews are applicable in summarizing information
on a wide range of data and identifying research gaps. The scoping
review methodology is adopted with a structured approach follow-
ing the work of Arksey and O’Malley [14], further developed in
guidelines provided by the Joanna Briggs Institute [39], and later
by Munn et al. [42] and Peters et al. [45]. Such guidelines propose
a five-stage framework for conducting the review process, as elabo-
rated in the following subsections, to ensure the completeness of
the procedure.

4.1 Stage 1: Identifying the Research Question
The initial stage of our scoping review aimed to systematically ex-
plore integrating SemanticWeb technologies with Electronic Health
Records. The research questions designed to guide this inquiry were
as follows:

(1) Which Semantic Web technologies are commonly ap-
plied in conjunction with Electronic Health Records?
The question identifies and describes the main tools and
frameworks of the Semantic Web that are currently being
used to upgrade the functionality and interoperability of
EHRs. These tools and frameworks are described to see how
they contribute to the health system’s betterment of data
management, sharing, and integration.

(2) What data management perspectives are addressed by
these technologies? This involves how Semantic Web tech-
nologies participate in health data management practices
related to sharing, discovery, integration, and reuse. An anal-
ysis of these aspects will determine the role of technologies
in enhancing effectiveness and efficiency in healthcare data
management.

(3) What are the existing knowledge gaps regarding han-
dling health data through Semantic Web technologies?
Identification of where research is needed, especially the lim-
itations and challenges healthcare providers face in adopt-
ing these technologies. This includes the identification of
specific barriers to implementation, both technical and or-
ganizational, and how these can affect overall uptake and
impact the effectiveness of Semantic Web technologies in
healthcare.
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So, these questions structured the approach to gathering and
analyzing literature for the review, with a view to ensuring there
was a full understanding of the state of Semantic Web technologies
in healthcare data management. By addressing these questions, the
review systematically covered different facets of applications of the
Semantic Web to point out their progress, the challenges they faced,
and the opportunities for further research.

4.2 Stage 2: Identifying Relevant Studies
A thorough search strategy was executed to gather relevant lit-
erature from major databases, including IEEE Xplore Digital Li-
brary, Scopus, Embase, PubMed/MEDLINE, and Web of Science.
The search string employed was:
("Semantic Web" OR "Web Ontology Language" OR "OWL" OR
"SPARQL" OR "RDF" OR "SWRL") AND ("Electronic Health
Records" OR "EHR" OR "electronic medical records" OR
"EMR" OR "health information systems")

This query was designed to capture all pertinent studies discussing
the integration of Semantic Web technologies with various health
information systems.

Eligibility Criteria. Inclusion criteria included reports from
research studies, literature reviews, full conference papers, and
non-research content, including editorials and letters if they were
published in English between January 2000 and July 2024. Studies
were excluded if they did not include the text words "Electronic
Health Records," "semantic web," and at least one more related
term in the title or abstract or only described theoretical frame-
works/models without any implemented model applied to Semantic
Web.

Forward and Backward Searching. To ensure comprehensive-
ness, the reference lists of each selected article were hand-searched
to identify additional studies not caught in the initial database
search for inclusion. We followed references of articles by using
the forward and backward search methods to include appropriate
studies that met these selection criteria.

4.3 Stage 3: Study Selection
Article Screening and Review Process. Three researchers and
an AI-driven robot based on the GPT-4 Turbo model independently
screened each retrieved article by title and abstract for eligibility.
After this initial screening, the entire text of these articles was
obtained for a more comprehensive review. In-depth discussions
within the research team resolved any reviewer discrepancies. It
is important to note that during the review process, the review-
ers were aware of the journal title, authors, and their affiliated
institutions.

This scoping review is not designed to strictly adhere that of a
systematic-review format, however guidelines from the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRIS-
MA) have been used to ensure transparencywith study selection[41].

4.4 Stage 4: Charting the Data
Data Extraction Strategy. A planned data extraction method
from selected studies was utilized to obtain relevant information,
ensuring that collected data adequately responded to the research

questions specified in Stage 1. A breakdown of precise data pulled
from each investigation is shown in the table below:

Table 1: Data extraction strategy

Scope Data to be Extracted

Summary Title, authors, publication type, year of publication,
periodic/journal, aims/objectives

Q1 List of Semantic Web technologies used
Q2 Data management perspectives addressed
Q3 Proposed method, approach, or technology;

advantages and drawbacks.

This strategic approach ensured that all relevant facets of each
article were thoroughly analyzed, from basic bibliographic informa-
tion to specific details concerning the implementation and impact
of Semantic Web technologies in healthcare.

4.5 Stage 5: Collating, Summarizing, and
Reporting the Results

Data Synthesis and Analysis. In line with the objectives of scop-
ing studies to provide a comprehensive overview of the reviewed
literature, as described by Arksey and O’Malley [14], data from
Stage 4 had been systematically organized. The classification was
meticulously done and presented in tables categorized by the first
author of the publication and by the semantic web technologies uti-
lized. This organization helped visually summarize the data trends
over time and across different research themes.

Other tables present the methodology, approach, or technology
utilized in each study, along with their advantages and disadvan-
tages. It includes a narrative synthesis that aims to delineate and
analyze the similarities and differences observed among the studies.
This synthesis explores emerging patterns, themes, and relation-
ships, critically examining the data. The goal is to identify coherent
strands of evidence and areas requiring further investigation.

5 RESULTS
This chapter details the process and outcomes of the scoping re-
view conducted. Initially, a comprehensive search across selected
databases yielded a total of 313 articles, with an additional 10 ar-
ticles identified from other sources, summing up to 323 articles.
After removing 147 duplicates, 176 articles remained for further
screening. The distribution of articles by year and database can be
seen in Table 2.

Upon screening titles and abstracts, the number was further
reduced to 127. Subsequent full-text assessments for eligibility led
to the exclusion of 32 articles due to accessibility issues (lacking free
or institutional access). After applying eligibility criteria rigorously,
25 articles met all the requirements and were included in the final
review. The list of accepted articles can be seen in the table 3:

The PRISMA flow diagram, presented in Figure 1, visualizes the
sequential stages of the review process. This diagram provides a
detailed breakdown of each step, from identifying records to the
final inclusion in the review.

174



Semantic Web Technologies in Healthcare WebMedia’2024, Juiz de Fora/MG, Brazil

Identified records (n=323)
PubMed: 47
Scopus: 133

Web of Science: 50
IEEE: 37

Embase: 46
Others: 10

Records after duplicates removed (176)

Records screened (127)

Full-text articles assessed for eligibility (95)

Studies included in review (25)

Figure 1: PRISMA Flow Diagram of the study selection process.

Table 2: Publication Counts by Source and Year

Source 2019 2020 2021 2022 2023 2024
Web of Science 7 11 10 11 8 3
IEEE - 10 11 6 9 1
PubMed - 7 9 12 11 8
Scopus - 26 38 31 26 12
Embase - 6 6 18 10 6
Total 7 60 74 78 64 30

5.1 Which Semantic Web technologies are
commonly applied in conjunction with
Electronic Health Records?

In the realm of healthcare informatics, integrating Semantic Web
technologies with Electronic Health Records (EHRs) has emerged
as a pivotal strategy to enhance data interoperability and function-
ality. This subsection delves into the prevalent Semantic Web tools
and frameworks that have been identified from the comprehensive
review of the selected articles. These technologies are key in ad-
vancing the capabilities of EHR systems, thereby facilitating more
effective data sharing and integration across diverse healthcare
platforms. The findings, presented in Table 4, highlight the specific

technologies employed and the corresponding studies that utilize
these advancements in the context of EHRs.

Table 4: Semantic Web Technologies (SWT) Utilized in EHRs

SWT Reference

RDF/RDF-S [9, 10, 13, 18, 20, 23, 26, 28, 37, 46, 48, 50, 52–56]
OWL [7–10, 13, 20, 25, 26, 28, 35, 46, 48, 50, 52–55]
SPARQL [7, 10, 13, 20, 25, 26, 28, 35, 37, 44, 46, 48, 53, 55]
Prova [37]
SHACL [37]
SWRL [9, 28]
N3 [50]
EYE [50]
SPIN [35]
Linked Data [13, 20, 35]
Knowledge Graph [53, 54]

In the scope of healthcare, the analysis reveals a significant re-
liance on foundational Semantic Web technologies such as RDF,
OWL, and SPARQL across various studies. These technologies, con-
stituting the core layers of the Semantic Web stack, have been
predominantly utilized to enhance the functionality and interoper-
ability of Electronic Health Records (EHRs). The widespread adop-
tion of RDF, OWL, and SPARQL underscores their robustness in
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Table 3: Summarized Article References

Ref Title First Author Year Publisher

[8] Semantic architecture for interoperability... Adel et al. 2022 IEEE
[13] Using a personal health library... Ammar et al. 2021 JMIR Publications Inc.
[10] Capturing semantic relationships... Aldughayfiq et al. 2023 MDPI
[9] Ontological framework for standardizing... Alahmar et al. 2020 Elsevier
[24] Semantically rich access control... Dixit et al. 2022 IEEE
[23] EMR2vec: Bridging the gap... Dhayne et al. 2021 Elsevier
[25] Structuring, reuse and analysis... Duncan et al. 2020 Springer
[26] An ontology-based Approach for... Frid et al. 2023 JMIR Publications Inc.
[28] A drug prescription recommendation system... Gögebakan et al. 2024 Springer
[35] Supporting integrated care... Kilintzis et al. 2019 Elsevier
[36] Uncertainty-aware text-to-program... Kim et al. 2022 PMLR
[40] Advanced Data Processing of Pancreatic Cancer... Manias et al. 2024 MDPI
[37] Modeling medical guidelines... Kober et al. 2022 IOS Press
[44] Knowledge graph-based question answering... Park et al. 2021 PMLR
[46] Cohort Identification Using Semantic... Pfaff et al. 2021 Cold Spring Harbor Laboratory Press
[52] Secure cloud ehr with semantic... Walid et al. 2021 IEEE
[53] Leveraging semantic context to... Walid et al. 2024 Elsevier
[48] EHR-oriented knowledge graph system... Shang et al. 2021 IEEE
[20] Colorectal cancer health and care... Choudhury et al. 2024 Springer
[18] An ontology-based system for... Casey et al. 2022 IEEE
[56] Leveraging genetic reports... Zong et al. 2021 JMIR Publications Inc.
[54] FHIR-Ontop-OMOP: Building clinical... Xiao et al. 2022 Elsevier
[7] Developing an Exercise Games Ontology... Abdullah et al. 2022 IEEE
[55] PO2RDF: representation of real-world... Zhao et al. 2022 Springer
[50] Predicting future state for... Sun et al. 2021 Elsevier

facilitating complex data integration and semantic querying pro-
cesses, which are crucial for the efficient management of medical
data and knowledge discovery in healthcare environments. Such
consistent use across diverse research [7–10, 13, 18, 20, 23, 25, 26,
28, 35, 37, 44, 46, 48, 50, 52–56] indicates their effectiveness and the
potential for further explorations in semantic applications within
the healthcare sector.

The study by Sun et al. [50] highlights the integration of N3
logic and the EYE reasoning engine in Electronic Health Records
(EHRs) to enable dynamic clinical pathway management. This ap-
proach enhances the adaptability of clinical decisions in real-time
and underscores the potential of Semantic Web technologies to
revolutionize patient care by providing context-aware adjustments.
The use of N3 logic allows for more expressive reasoning capabili-
ties beyond traditional RDF and OWL[15], while the EYE reasoning
engine supports efficient real-time processing[22]. This methodol-
ogy is particularly effective in complex healthcare settings where
standard protocols may fall short, offering a pathway towards more
personalized and effective healthcare solutions.

The study by Kober et al. [37] demonstrates the utility of inte-
grating Prova and SHACL with Electronic Health Records (EHRs)
to enhance clinical guideline management. Prova, a rule-based
language, is adept at complex data integration and facilitates dy-
namic medical decision-making through its compatibility with
SPARQL queries[38]. SHACL, used for data validation in RDF frame-
works, ensures data accuracy, which is crucial for effective clinical

decisions[5]. This integration supports real-time adaptations of
medical guidelines, enhancing clinical workflows with technolo-
gies like the ABCDE assessment method[49], underscoring the
significance of Semantic Web technologies in healthcare.

The concepts of Linked Data and Knowledge Graphs represent
subsets of Semantic Web technologies, offering sophisticated struc-
tures for data management and integration[32]. The papers by
Kilintzis et al.[35], Ammar et al.[13], Choudhury et al.[20], Walid
et al.[53], and Xiao et al.[54] provide compelling evidence of the
applicability of these technologies in enhancing the functionality
and interoperability of EHR systems. These studies underscore the
transformative potential of Semantic Web technologies in health-
care, supporting more effective data sharing, discovery, integration,
and reuse. Such advancements highlight a paradigm shift towards
more connected and accessible health information systems.

We categorized the tools and utilities used in the selected articles
to implement Semantic Web technologies, providing a structured
overview and emphasizing their roles in data interoperability and
management. Table 5 classifies these tools into categories such
as graph databases, ontology tools, and data conversion utilities,
aiding in understanding the technological landscape and serving as
a reference for researchers and practitioners. Table 5 is the revised
table with the mentioned tools and utilities’ URLs.

Several health standards are being enforced in the fields of Se-
mantic Web technologies used in healthcare to improve interoper-
ability, accessibility, and usability for EHRs. As part of our scoping
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Table 5: Implement Semantic Web Technologies

Category Tools & Utilities

Graph Databases & Triplestores GraphDB, Neo4j, Blazegraph,
Apache Jena TDB2, Virtuoso

Ontology Tools Protégé, Cellfie, LinkEHR

Libraries & Frameworks Apache Jena, RDFlib, LDflex

Data Management & Conversion OpenRefine, Ontotext Refine,
D2RQ

Links:
GraphDB: https://www.ontotext.com/products/graphdb/
Neo4j: https://neo4j.com/
Blazegraph: https://blazegraph.com/
Apache Jena TDB2: https://jena.apache.org/documentation/tdb/
Virtuoso: https://virtuoso.openlinksw.com/
Protégé: https://protege.stanford.edu/
Cellfie: https://protegewiki.stanford.edu/wiki/Cellfie
LinkEHR: http://www.linkehr.com/
Apache Jena: https://jena.apache.org/
RDFlib: https://rdflib.dev/
LDflex: https://github.com/solid/query-ldflex
OpenRefine: https://openrefine.org/
Ontotext Refine: https://ontotext.com/products/ontorefine/
D2RQ: http://d2rq.org/

review, we have identified and categorized the key health stan-
dards commonly integrated with Semantic Web technologies to
improve data exchange, representation, and analysis across dif-
ferent healthcare systems. These standards were organized into
categories depending on the main purpose and usage (see Table 6).

This review hopes to clarify the landscape of health standards
in the context of Semantic Web applications (by mapping and clas-
sifying these standards) and serve as a reference for researchers
or practitioners working at the intersection between technology
and healthcare. Integration of these standards with Semantic Web
technologies is necessary to develop advanced health information
systems that are capable, interoperable, and effective.

Table 6: Health Standards in Semantic Web Applications

Category Standards

Interoperability Standards HL7 FHIR, DICOM, IHE

Coding and Classification Systems SNOMED CT, LOINC, ICD,
ATC, NDC, RxNorm

Data Models and Frameworks EN/ISO 13606, OMOP CDM,
openEHR

Links:
HL7 FHIR: https://www.hl7.org/fhir/
DICOM: https://www.dicomstandard.org/
IHE: https://www.ihe.net/
SNOMED CT: http://www.snomed.org/snomed-ct/
LOINC: https://loinc.org/
ICD: https://www.who.int/classifications/icd/en/
ATC: https://www.whocc.no/atc_ddd_index/
NDC: https://www.fda.gov/drugs/drug-approvals-and-databases/national-drug-
code-directory
RxNorm: https://www.nlm.nih.gov/research/umls/rxnorm/index.html
EN/ISO 13606: https://www.iso.org/standard/62303.html
OMOP CDM: https://www.ohdsi.org/data-standardization/the-common-data-model/
openEHR: https://www.openehr.org/

HL7 FHIR is a compulsory standard in the United States of Amer-
ica and has already received acceptance into Brazil’s SUS, empha-
sizing on the use of Semantic Web technologies for enhanced data
exchange and interoperability between systems. This provides vital
support to the process of modernising health information systems,
improving communication among health providers and promot-
ing patient care. In today’s digital healthcare context, it cannot be
overemphasized that FHIR guarantees reliable and secure informa-
tion exchange among healthcare systems.

5.2 What data management perspectives are
addressed by these technologies?

Semantic Web technologies enhance healthcare data management
through several key functions. We have categorized the reviewed
studies into three main groups based on their focus, noting that
these categories are not mutually exclusive; a single study may span
multiple groups: Interoperability and Data Sharing they enable
semantic interoperability among different healthcare systems, fa-
cilitating better data and knowledge exchange among healthcare
stakeholders, which is crucial for coordinated care (8 articles);Data
Integration and Discovery these technologies integrate and dis-
cover medical data from varied sources, allowing efficient access to
diverse health datasets and improving service delivery by linking
information across platforms (25 articles); and Data Reuse and
KnowledgeManagement they improve information management
and clinical decision-making by enabling semantic and pragmatic
levels of service and knowledge sharing, incorporating AI and IoT
for enhanced diagnostic and security measures (15 articles).

5.2.1 Interoperability and Data Sharing. In recent times, there has
been an increase in healthcare informatics, which emphasizes the
significance of Semantic Web technologies in improving interoper-
ability and data sharing within EHR systems. Studies conducted by
Redwan Walid et al. (2024)[53], Vassilis Kilintzis et al. (2019)[35],
and Nariman Ammar et al.[13] discuss how these technologies such
as ontologies and knowledge graphs can be incorporated in such a
way that EHRs become more secure, efficient and user-controlled.
These studies demonstrate that by leveraging attribute-based and
searchable encryption, EHR systems can achieve fine-grained ac-
cess control and secure data querying, ensuring privacy and robust
data management.

Furthermore, initiatives like the Personal Health Libraries[12]
and the adoption of standards such as SNOMED CT, HL7 FHIR, and
the OMOP Common Data Model are crucial for facilitating seamless
data exchange and enhancing analytical capabilities across health-
care systems. The exploration of federated approaches, such as the
Personal Health Train by Ananya Choudhury et al. (2024)[20], also
underscores the potential for preserving privacy while computing
quality indicators. These technologies bolster the infrastructure of
health data management and pave the way for advanced applica-
tions in integrated care and artificial intelligence in healthcare.

5.2.2 Data Integration and Discovery. This subsection of the scop-
ing review highlights research that has utilized the approach of Data
Integration and Discovery in healthcare. It examines how recent
studies have focused on improving clinical decision support sys-
tems and integrating diverse healthcare data sources. For instance,
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Santiago Frid et al. (2022)[26] discuss how patient data can be
consolidated using ontologies and common data models to stream-
line healthcare processes. Similarly, Hong Sun et al. (2020)[50] and
George Manias et al. (2024)[40] have developed methodologies for
predictive analytics and holistic health records, enhancing clinical
pathways and patient care.

Efforts such as those by Gerhard Kober et al. (2022)[37] and
William D Duncan et al. (2020)[25] have applied Semantic Web
technologies to model medical guidelines and structure dental data,
demonstrating the significant impact of data integration. Nansu
Zong et al. (2020)[56] have utilized machine learning to enhance
diagnostic accuracy by integrating genetic reports with Electronic
Health Records. Additionally, Zul Hilmi Abdullah et al. (2022)[7]
and Redwan Walid et al. (2024)[53] have contributed to security
enhancements and standardized ontology development, further il-
lustrating the diverse applications of Semantic Web technologies in
healthcare data integration and discovery. These collective efforts
underscore a significant shift towards a more integrated and in-
formed healthcare system, leveraging advanced data management
strategies to improve clinical outcomes and patient care.

Several studies have explored the use of Resource Description
Framework (RDF) triplestores and knowledge graphs for complex
computable phenotyping and cohort identification (Pfaff et al., 2021;
Shang et al., 2021)[46, 48]. Personal Health Libraries (PHLs) have
been proposed to give patients more control over their digital health
data and enable integration with other knowledge sources (Am-
mar et al. [13]). Ontology-based frameworks have been developed
for standardizing and digitizing clinical pathways (Alahmar et al.,
2020)[9] and integrating diverse healthcare data sources (Kilintzis
et al., 2019)[35]. These approaches aim to enhance healthcare sys-
tems’ interoperability, privacy preservation, and data utilization.
Additionally, federated approaches using FAIR data principles[29]
and the Personal Health Train infrastructure have been explored for
calculating quality indicators across multiple hospitals (Choudhury
et al., 2024)[20]. Overall, these studies demonstrate the potential of
semantic web technologies to improve healthcare data management
and decision-making.

Numerous studies have devised methods for secure, fine-grained
access control to cloud-based EHRs using attribute-based encryp-
tion and ontology reasoning (Redwan Walid et al., 2024; Redwan
Walid et al., 2021)[52, 53]. Graph-based representations of EHR
data have shown advantages over traditional relational databases
for question-answering tasks (Junwoo Park et al., 2020)[44]. Re-
searchers have also explored methods for integrating patient data
with clinical trials (Houssein Dhayne et al., 2021)[23] and transform-
ing heterogeneous medical information into interoperable formats
using semantic technologies. Efforts have been made to create clin-
ical knowledge graphs compliant with healthcare standards like
FHIR and OMOP (Guohui Xiao et al., 2022)[54], represent real-world
oncology data using RDF (Yiqing Zhao et al., 2021)[55], and develop
ontology-based models for achieving interoperability between dis-
tributed EHR systems (Ebtsam Adel et al., 2022)[8].

5.2.3 Data Reuse and Knowledge Management. Data reuse and
efficient knowledge management are cornerstones in enhancing
healthcare data systems. A recent emphasis on refining the function-
ality of EHR systems has been motivated by the power of Semantic

Web Technologies. Notably, research has helped develop ontologies
that standardize and combine various medical data, which leads to
improved interoperability across different healthcare systems as
well as coordinated care. For example, various works by Duncan et
al. (2020)[25], Kilintzis et al.(2019)[35], and Alahmar et al.(2020)[9]
have relied on such ontologies. Furthermore, knowledge graphs
have made it possible for EHR functionality to be enriched through
secure access control as discussed by Redwan Walid et al.(2024)[53]
or through effective use of unused clinical information (Shang et
al., 2021)[48]. Furthermore, these technologies have facilitated the
representation of real-world data for precise applications such as on-
cology (Zhao et al., 2021)[55] and have been proven advantageous
in question-answering systems within EHRs, surpassing traditional
methods (Park et al., 2020)[44]. Concurrent efforts mean that in-
formation repetition plays a significant part in improving medical
attention quality, helping to make choices based on examination
results, and allowing general patient investigations within many
areas of medicine.

Expanding on the significant function of data reuse and knowl-
edge management for health care, recent investigations have also
looked into how Semantic Web technologies can upgrade EHR
systems. The ongoing research focuses on using ontologies and
knowledge graphs to standardize and integrate various data sources,
greatly facilitating efficient data analysis and decision-making. No-
table efforts include the work by Santiago Frid et al. (2022)[26]
and Shinead Casey et al. (2022)[18], which underscore the practical
application of these technologies in enhancing data management
systems.

Additionally, the concept of Personal Health Libraries (PHLs) has
been proposed, as seen in the studies by Nariman Ammar et al.[13],
to empower patients with greater control over their health data,
supporting the self-management of chronic conditions. This patient-
centric approach aligns with the broader goals of Semantic Web
technologies to foster personalized and patient-driven healthcare.

Ontology-based systems have also been tailored for specific
healthcare applications. For instance, Kadime Göğebakan et al.
(2024)[28] have developed drug prescription recommendation sys-
tems for patients with diabetes and chronic kidney disease, high-
lighting the adaptability of these technologies to address complex
medical needs.

Moreover, federated approaches such as the Personal Health
Train, explored by Ananya Choudhury et al. (2024)[20], utilize Se-
manticWeb principles to calculate quality indicators while ensuring
patient privacy. Such initiatives illustrate the sophisticated inte-
gration of Semantic Web technologies into healthcare practices,
enabling a more nuanced analysis of patient data while adhering
to strict privacy standards.

Finally, using knowledge graphs to capture complex relation-
ships within EHRs by Bader Aldughayfiq et al. (2023)[10], demon-
strates the transformative potential of these technologies. They
improve the functionality of EHR systems and enhance the com-
prehensive analysis of patient outcomes and risk factors.

Together, these studies exemplify the significant advancements
in data reuse and knowledge management facilitated by Semantic
Web technologies, underscoring their indispensable role in evolving
healthcare data systems for better quality care and informed clinical
decision-making.
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5.3 What are the existing knowledge gaps
regarding handling health data through
Semantic Web technologies?

To answer research question Q3, all selected papers were read thor-
oughly to find out what method/approach/technology is proposed
and their pros and cons. The key points of this analysis are summa-
rized in Tables 7 and 8, (additionally see Table 9).

Our review examined various healthcare informatics methodolo-
gies, grouping them by similar technological strategies and analyz-
ing their disadvantages.

5.3.1 Semantic Web and Ontology Engineering.

• Limited scalability and adaptability to diverse data types.
• High complexity in integrating and maintaining updated
ontologies.

• Dependence on extensive domain knowledge and continuous
collaboration with domain experts.

5.3.2 Data Integration and Security.

• Privacy concerns when handling sensitive patient data, es-
pecially in cloud-based systems.

• Incomplete tools for semantic harmonization, leading to po-
tential data integrity issues.

5.3.3 Advanced-Data Processing Techniques.

• Challenges in model explainability, particularly in machine
learning applications.

• Limited testing and validation in real-world settings may
affect the generalizability of the models.

6 DISCUSSION
6.1 Opportunities for future research
Our review answered initial research questions by analyzing var-
ious healthcare informatics methodologies and their limitations.
It highlighted the critical role of semantic web technologies in
improving health data management and identified gaps that sug-
gest future research directions. These include developing dynamic
methodologies and robust security measures to enhance clinical
decision-making and patient care:

6.1.1 Semantic Web and Ontology Engineering.

• Developing dynamic ontologies that can adapt to rapidly
evolving medical standards without significant manual in-
tervention.

• Automation in mapping local terms to standardized vocabu-
laries to improve data sharing.

• The authors acknowledge that there are not yet many studies
connecting semantic web tools with large language models
(LLMs), likely due to the newness and fast development of
the field. However, they see this as a major research oppor-
tunity. Combining LLMs with semantic web technologies
has the potential to significantly improve data processing,
interoperability, and decision-making in healthcare.

6.1.2 Data Integration and Security.

• Development of more robust, transparent, and user-friendly
security mechanisms that can be easily audited.

• Efficient real-time data processing techniques to handle the
increasing volume of health data without compromising
privacy or performance.

6.1.3 Advanced Data Processing Techniques.

• Enhancing the transparency and explainability of complex
models used in healthcare.

• Creating methods that are readily validated and transferable
to diverse clinical settings.

Such an analysis also draws attention to the necessity of fur-
ther developing information technology in healthcare, primarily
through enhanced interoperability and security measures while
improving generic data-processing capabilities relevant to health
workers.

6.2 Limitations of the Scoping Review
This scoping review, while comprehensive in its approach, encoun-
tered some limitations that must be acknowledged. Firstly, the
inclusion and exclusion criteria may have narrowed the scope of
reviewed Semantic Web technologies and their applicability in
healthcare. Specifically, the criteria limited the selection to articles
explicitly referencing the Semantic Web in their titles or abstracts.
This restriction might have led to the exclusion of relevant studies
where the term was not explicitly mentioned or was obscured.

Moreover, the review did not incorporate a quality appraisal of
the included studies, potentially affecting the overall quality of the
evidence presented. The absence of quality assessment could result
in the inclusion of lower-quality studies, which might influence the
conclusions drawn from the review.

To address these issues and enhance literature coverage, the
reference lists of all selected articles were meticulously examined
to identify additional significant studies that might have been over-
looked. Future research efforts could expand the scope of this review
by incorporating studies from other fields and performing compar-
ative analyses to broaden the understanding and applicability of
Semantic Web technologies across various domains.

7 CONCLUSIONS
The meticulous scoping review of Semantic Web Technologies in
healthcare has exhibited that they are used mostly to enhance
EHRs. Our findings further show that healthcare systems have im-
proved data interoperability and management using RDF, OWL,
and SPARQL technologies. However, it still remains difficult to
adopt these technologies widely due to complexities related to tech-
nology deployment and integration, which then calls for continued
research into their application.

The continuous expansion of Semantic Web usage in the health-
care sector demonstrates how it can radically change medical data
management. For instance, linking records and inference capabili-
ties are a good foundation for more advanced health data analysis
platforms. In the future, there’s a need to make integration proce-
dures easier and improve these technologies’ ability to accommo-
date increasing amounts of information from different healthcare
providers.

The current SemanticWeb implementations have notable gaps in
knowledge, which this review has looked into, especially regarding
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Table 7: Methodology Analysis: Advantages and Disadvantages

Ref Proposed Method/Approach/Technology Advantages Disadvantages

[50] The methodology utilizes a "weighted state transition
logic" implemented via semantic web technologies to
model clinical pathway changes. This includes defin-
ing specific "From" and "To" states, a "transition state"
for transitions, and associating weights like duration
and cost to transitions. The system generates path-
ways, detects conflicts, and validates pathways based
on these weighted transitions.

The methodology predicts future patient states
through modeling state changes and transitions, man-
ages clinical pathways adaptively by anticipating state
transitions over time, and integrates duration, cost,
comfort, and belief as evaluative measures in transi-
tions, employing semantic web technologies for robust
healthcare data integration.

The methodology reacts to changes in the patient’s
state without proactively predicting future conflicts.
Machine learning application within this system is lim-
ited by a lack of explainability and constraints on uti-
lizing predictions for adaptive management. The state
transition logic is restricted to asserting new states
without retracting old ones and generates only a sin-
gle pathway to the target state, lacking alternatives.

[26] The methodology involves defining clinically relevant
variables and data structures using standardized termi-
nologies and EN/ISO 13606 archetypes to identify and
normalize EHR data. It includes the creation of multi-
layered ontologies for modeling and mapping data
to different standards like EN/ISO 13606 and OMOP
CDM. The process culminates in inserting normalized
EHR extracts into an ontology-based repository and
extracting data via SPARQL queries to produce OMOP
CDM-compliant tables.

The methodology offers flexibility and adaptability by
adding conceptual layers and mapping locally defined
concepts to various standards with minimal resource
usage. It supports automated data extraction and facil-
itates the reuse of clinical information through onto-
logical representations, enabling the effortless appli-
cation of the methodology across different use cases.
Its standard-agnostic approach permits transforma-
tions between various standards like EN/ISO 13606,
OpenEHR, FHIR, OMOP CDM, and i2b2 without the
need for database modifications.

The development of the ontology-based clinical reposi-
tory over many years may not suit institutions needing
rapid implementation. Additionally, the tool for insert-
ing data from standardized extracts into ontologies
is incomplete, delaying the creation of OMOP CDM
tables.

[40] The methodology integrates, anonymizes, and veri-
fies primary and secondary data using Apache Kafka
while applying machine learning techniques like KNN
for data cleaning and outlier detection. Data is stan-
dardized by classifying reliability, translating into
SNOMED concepts, mapping to FHIR elements, and
transforming into the Holistic Health Record format.

Integrates Semantic Web and machine learning to
process data into the Holistic Health Record format
enhancing data utilization from EHRs and IoMT de-
vices. Supports the generation of actionable insights
and personalized prevention plans, aiding healthcare
providers in decision-making.

The main drawback of the methodology is its limited
evaluation of a specific pancreatic cancer use case at a
single hospital without broader testing across various
use cases and data sources.

[37] The study implemented the ABCDE medical guideline
using Prova and SHACL rule-based approaches incor-
porating SPARQL queries to interact with FHIR-RDF
data. The guidelines were structured by setting condi-
tions to manage rule execution and the effectiveness
was evaluated using 1000 generated FHIR-bundles.

The Prova-based approach offers rule chaining and fail-
ure handling with connectivity to multiple SPARQL
endpoints for enhanced error reporting and query effi-
ciency. It is convertible to RuleML for broader appli-
cation reuse. Conversely, the SHACL-based approach
excels in performance, requiring less integration, mak-
ing it ideal for specific scenarios.

Not mentioned (the paper does not explicitly discuss
any drawbacks of the proposed methodology approach
or technology)

[25] The Oral Health and Disease Ontology (OHD) was col-
laboratively created by a multidisciplinary team that
first defined the domain and necessary terms. Relevant
terms were imported from existing ontologies, such
as BFO and OGMS, supplemented by new terms when
necessary. Additionally, a relation was established to
sequentially link patient encounters enhancing the
clarity and efficiency of data queries.

The Oral Health and Disease Ontology enhances data
understanding through clear terminology and supports
multiple coding systems for flexibility. It facilitates
structured queries and allows for broad application
across various medical domains. Additionally, it sup-
ports automated reasoning to derive insights from the
data.

The main limitations of the methodology include the
need for deep knowledge of vendor-specific database
schemas, potential communication barriers with EHR
vendors, and the challenge of encouraging the adop-
tion of ontology-based systems over existing vendor-
specific frameworks.

[56] The methodology involves creating a network-based
framework using FHIR and RDF to represent cancer
data, integrating genetic and phenotypical data from
EHRs for 1011 patients. Utilizing RDF to generate a
patient-genetic-phenotypic network and applying the
Node2vec algorithm to extract features. Evaluating can-
cer prediction using various machine learning models
and a feature bagging approach from the FHIR model.

The methodology enhances cancer prediction by ac-
curately predicting cancer using Electronic Health
Record data with satisfactory precision. Significantly
improving prediction outcomes by integrating genetic
information, which supports early diagnosis. Utiliz-
ing a network-based framework with FHIR and RDF
standards to streamline the cancer prediction process
achieving superior performance compared to existing
methods for most cancer types.

The limitations of the methodology include challenges
in distinguishing between germline and somatic mu-
tations in the genetic data leading to potential biases.
The restricted availability of genetic information at
some medical facilities limits the adaptability of the
best-performing models. A constrained dataset of can-
cer cases with unknown primaries potentially impacts
the robustness of the analysis.

[53] The methodology includes a multi-layer system with
user authentication and attribute-based access control
utilizing a revocable searchable encryption scheme
to secure patient data. Integration of a knowledge
graph for storing user and patient data coupled with
techniques to perform secure efficient searches on
encrypted data. Cloud computing and edge comput-
ing principles are used to handle data processing effi-
ciently, reducing the operational load on medical orga-
nizations.

The methodology offers consistent data retrieval per-
formance as datasets expand. Capability to manage
schema evolution and changes effectively. Enhanced
scalability and cost-efficiency through cloud-based
computation delegation, including reduced client-side
processing needs.

The summary highlights several challenges cloud com-
puting introduces privacy and security risks for health-
care data. Cloud-based EHR systems struggle with per-
formance consistency amid data growth and diverse
data types. Previous systems, like those using SWRL by
Walid et al., faced scalability and support limitations.
The knowledge graphs used lacked essential data and
properties for a robust healthcare system.

[7] The methodology involved the ontology development
101 methods focusing on specifying, designing, for-
malizing, and evaluating the ontology based on over
62000 normalized patient records from a Malaysian
rehabilitation center.

The methodology enhances communication between
exercise game developers and medical practitioners by
aligning exercise game data with SNOMED-CT, facili-
tates the electronic exchange of clinical data, integrates
common rehabilitation assessments, and is developed
from real-world data on the MIRA platform, grounding
it in practical application.

The methodology’s limitation is that it does not in-
corporate the exercise game rehabilitation ontology
with a Clinical Decision Support System (CDSS) crucial
for effective patient assessment and clinical decision-
making.
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Table 8: Methodology Analysis: Advantages and Disadvantages - cont

Ref Proposed Method/Approach/Technology Advantages Disadvantages

[26] The methodology involved using RDF Data Cube Vo-
cabulary and SDMX standards to model cancer registry
data transforming tabular data into RDF triples and
integrating it into the Neo4j graph database. The per-
formance of Neo4j was then compared to a traditional
relational database for querying the data.

The approach leveraged existing ontologies to har-
monize data across different registries, utilized graph
databases for faster queries and more flexible data re-
trieval compared to relational databases, and aimed to
enhance interoperability by potentially releasing data
as linked open data.

Not mentioned (the paper does not discuss any draw-
backs of the proposed approach)

[46] The study utilized a triplestore to integrate multiple
heterogeneous data sources, including EHR claims and
various community data, converting them into RDF
format. It then linked EHR and claims data determinis-
tically and executed SPARQL queries to identify new
chronic opioid users.

The methodology supports consistent data definitions
and classifications using ontologies, handles hetero-
geneous data through its schemaless nature, and effi-
ciently models and queries complex hierarchical clini-
cal data.

The methodology highlights challenges such as the
FHIR format generating an excessive number of triples,
the impracticality of converting entire clinical data
warehouses to RDF, the efficiency of targeting specific
data for analysis, and the risk of data loss during trans-
formation, emphasizing the need for careful validation
against original sources.

[13] The methodology involved a thorough assessment
of patient needs for a personal health library (PHL),
identification of necessary technologies, and descrip-
tion of infrastructures like the Solid platform and per-
sonal knowledge graphs for managing and integrating
knowledge. An initial prototype and its practical appli-
cation were also developed, aligning the mobile health
app’s features with identified user requirements.

The approach enhances healthcare by empowering pa-
tients and caregivers through control over their data,
equipping providers with tools for managing health
knowledge, and fostering third-party app development
using the PHL. It extends healthcare interaction be-
yond clinical settings facilitating continuous patient-
provider connections and informing new treatment
strategies.

Not mentioned (the paper does not discuss any draw-
backs of the proposed methodology approach or tech-
nology)

[24] The methodology employs a two-part framework uti-
lizing edge computing principles consisting of an in-
ternal Access Handler for authentication and decision-
making and a Document Processor for handling and
encrypting documents. The second part manages data
in an untrusted cloud server.

The methodology enhances security using an en-
crypted access control mechanism suitable for multi-
authority environments and employs MA-ABE encryp-
tion to manage decryption keys efficiently. It alleviates
load bottlenecks and offers a flexible, semantically rich
access control system.

The system’s limitations include only allowing brute
force attribute revocation, lacking patient-end delega-
tion for revoking access, and not supporting keyword
searches over encrypted EHR data, highlighting areas
for potential enhancements.

[36] The methodology employed an NLQ2Program ap-
proach for the MIMIC-SPARQL* EHR-QA dataset
defining a custom grammar for exploring the knowl-
edge graph. It generated pseudo-gold programs semi-
supervisedly trained a sequence-to-sequence model
for translating natural language questions and used
ensemble-based uncertainty decomposition to detect
ambiguous questions.

The NLQ2Program approach enhances the handling of
complex inference tasks and multi-modal data, exceed-
ing typical query language limitations. It achieves per-
formance comparable to advanced NLQ2Query mod-
els without complete training data and introduces an
ensemble-based uncertainty decomposition tomeasure
question ambiguity, effectively identifying ambiguous
input in QA research for the first time.

The proposed methodology lacks a user interface for
interactive clarifications and program modifications.
Additionally, the data uncertainty metric intended to
indicate question ambiguity may inaccurately reflect
model errors instead.

[28] The methodology included developing the DIAKID
system by sourcing a dataset expert knowledge and
clinical guidelines, organizing patient data into a pop-
ulated DIAKID ontology with new and modified on-
tologies, and crafting SWRL rules to tailor drug dosage
recommendations and warnings for drug interactions
and potassium-raising drugs for individual patients.

The approach involves developing a unique DIAKID
ontology integratingmodified DMTOwith new ontolo-
gies for drug interactions and patient profiles utilizing
SWRL rules for automated drug dose adjustments and
interaction warnings and uniquely addressing treat-
ment recommendations for patients with both Type 2
Diabetes Mellitus and Chronic Kidney Disease, includ-
ing alerts for potassium-increasing drugs.

The proposed system, while innovative, is currently
limited to Type 2 DiabetesMellitus and Chronic Kidney
Disease, necessitating expansion for broader applica-
bility to conditions like heart failure and hypertension.
It primarily adjusts drug dosages based on kidney func-
tion, potentially overlooking other critical factors in
different diseases. Furthermore, the system requires
enhancements to effectively manage the complexities
of drug interactions and dosage adjustments across a
more extensive range of chronic conditions.

[48] The study utilized a two-level ontology structure
grounded in the OMOP CDM and clinical guidelines
to construct a knowledge graph. EHR data was con-
verted into OMOP CDM format and subsequently into
RDF triples establishing semantic relationships and a
comprehensive patient information model. The sys-
tem engaged in semantic reasoning on this model to
analyze previously unused clinical information, neces-
sitating collaboration from both medical and domain
experts throughout its development.

The methodology leverages deductive reasoning and
medical evidence to clarify clinical decision-support
outcomes, enhancing interpretability for clinicians. It
standardizes medical concepts and data within an on-
tological structure with clear semantic relationships
facilitating traceability and acceptance. Furthermore,
it constructs a detailed clinical trajectory for patients
by analyzing treatment sequences and includes a visu-
alization module to communicate key clinical insights
and reasoning processes effectively.

The knowledge graph system is limited to structured
EHR data and does not incorporate omics or medical
imaging data, which could provide more comprehen-
sive data coverage. Additionally, it faces challenges
due to the fragmentation of patient clinical informa-
tion across multiple hospitals, which complicates the
use of multi-center EHR data due to security and cross-
institutional reasoning issues.

[20] The methodology involves extracting data from hos-
pital EHR systems, cleaning and converting it to the
FAIR data format, storing this data in hospital-based
repositories and utilizing the Personal Health Train
(PHT) infrastructure to calculate quality indicators
while maintaining data privacy by keeping the data
within the hospital environment.

The approach effectively reduces errors in EHR data
through FAIRification, alleviates the burden of data
registration and assembly, and addresses privacy con-
cerns by localizing data and analysis using the Personal
Health Train (PHT) infrastructure. This method also
facilitates timely calculations of quality indicators and
supports ongoing comparative effectiveness research.

The methodology faces several challenges including
unforeseen ethical legal and social implications dur-
ing implementation a lack of stakeholder involvement
and complex processes for gaining approvals. Addi-
tionally, it struggles with manual data integration due
to extraction limitations and raises security and trust
concerns among hospital IT departments regarding
external computations on local datasets.

[9] The methodology focuses on creating an ontological
framework to represent and share clinical pathways
standardizing them using SNOMED CT and HL7 stan-
dards and developing a unique coding system for digi-
tizing and encoding clinical pathway data.

The methodology enhances clinical pathway manage-
ment systems by enabling them to operate indepen-
dently yet in sync with other health systems, integrates
data analytics for decision-making, and supports inter-
national standardization to improve healthcare quality,
reduce costs, and enhance patient outcomes.

The methodology highlights limitations in clinical
pathways (CPs) noting they are often seen merely as
supports for electronic medical records rather than as
central elements of healthcare systems typically devel-
oped in non-standardized formats with low adherence
to medical terminologies and lacking a dedicated cod-
ing system.
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Table 9: Methodology Analysis: Advantages and Disadvantages - cont

Ref Proposed Method/Approach/Technology Advantages Disadvantages

[10] The methodology involves using Protégé to develop an
ontology that defines entities and relationships within
the EHR domain processing the MIMIC III dataset with
Ontotext Refine to convert data into RDF and represent
it graphically and querying the resulting knowledge
graph with SPARQL to derive insights.

The approach enhances EHR data integration and anal-
ysis by standardizing data representation, improving
the efficiency and effectiveness of data analysis for
clinical decisions, and contributing to evidence-based
knowledge graph development. This advances the field
by addressing scalability, interoperability, and clinical
validity in knowledge graph development, ultimately
aiming to improve patient outcomes and reduce health-
care costs.

The approach faces challenges, including scalability,
interoperability, clinical validity, privacy and security
risks, limited clinical adoption, and a need for more
comprehensive evaluation.

[8] The methodology involves converting various EHR
data sources into local OWL ontologies, merging these
into a single global ontology, and evaluating the system
across diverse data formats.

The methodology unifies heterogeneous EHR data into
a single model, enhances data accessibility and error
reduction through semantic querying, and improves
interoperability by integrating various data formats
into a centralized ontological system, potentially lead-
ing to better health outcomes and cost reductions.

The methodology faces limitations, including its in-
ability to process unstructured EHR data, lack of a
user-friendly graphical interface, unmeasured sensi-
tivity, and difficulties managing uncertain, incomplete,
and vague medical knowledge.

[55] The methodology includes semi-automated collection
of real-world data from EHRs and genetic reports ex-
traction and normalization of genetic disease and drug
data using UMLS integration using the Genetic Test-
ing Ontology and transformation of relational database
data into RDF format using the D2RQ tool.

The methodology facilitates the examination of as-
sociations between genetic data and treatment deci-
sions, supports precision oncology decision-making,
and serves as a pilot for further clinical applications.
It utilizes RDF to mathematically model data relation-
ships enabling detailed analysis and advanced graph
mining to uncover patterns and insights for drug re-
purposing.

The methodology faces limitations as it only identifies
associative relationships between drugs, diseases, and
genes without confirming causality and lacks tempo-
ral data in RDF representations, which may introduce
biases and hinder the detection of dynamic changes
over time.

[48] The methodology involves creating the FHIR-Ontop-
OMOP system to generate virtual clinical knowledge
graphs from OMOP databases using Ontop technology.
It automates the mapping between OMOP CDM and
FHIR RDF through a two-step process with Turtle Tem-
plate Mapping Language and a Java-based converter.
The system’s effectiveness was tested by assessing
data transformation fidelity and ensuring the clinical
knowledge graphs conformed to FHIR RDF standards.

The virtual CKG approach efficiently uses existing
OMOP databases without needing extra storage and
enhances interoperability between FHIR and OMOP
CDM standards, demonstrating significant potential
for supporting healthcare AI applications.

The mappings between FHIR and OMOP CDM are
initial and may need further development particularly
in handling vocabulary and encounter type differences.
Additionally, the evaluation was restricted to a single
OMOP CDM instance with plans for broader testing.

[23] The EMR2vec platform integrates patient data with
clinical trials using a vectorization and matching pro-
cess combining NLP machine learning and semantic
web technologies. Key stages include extracting med-
ical terms, transforming EMR and clinical trial data
into vectors, reducing dimensionality, and matching
patients to trials using similarity measures. The plat-
form notably applies ontological reasoning to align
structured and unstructured medical data facilitating
the linkage of patients with relevant clinical trials.

The EMR2vec platform integrates EMR data with clin-
ical trials using NLP machine learning and semantic
web technologies to accelerate clinical research. This
method involves creating a vector space model from a
"bag of medical terms" derived from trial criteria, trans-
forming EMR data into vectors, and matching these
vectors to trials using dimensionality reduction and
orthogonal projection. It provides a comprehensive
approach to systematically linking patients with ap-
propriate trials leveraging structured and unstructured
medical data.

The proposed methodology has limitations in fully uti-
lizing unstructured clinical text and handling missing
EMR fields crucial for matching clinical trial criteria.
It lacks mechanisms to standardize and extract labora-
tory test details essential for effectively linking EMRs
to clinical trials impacting its performance in clinical
research applications.

[44] The study developed and compared table-based and
graph-based EHRQAdatasets finding that graph-based
approaches using the TREQS model significantly en-
hanced accuracy by up to 34% over table-based datasets.
TREQS incorporated advanced techniques like pointer
generation and dynamic attention to improve the trans-
lation of natural language questions into SQL, effec-
tively addressing the complexities of querying Elec-
tronic Health Records.

The proposed graph-based approach for EHRQA offers
significant benefits: it more naturally represents rela-
tionships between entities, simplifying queries with
SPARQL, which aligns closer to natural language than
SQL. Additionally, the TREQS model shows enhanced
performance on this dataset, improving relation pre-
diction by 5.1% and accuracy by 3.6%.

The main limitation of the graph-based EHR QA ap-
proach is its scalability concerning inference time. As
the underlying knowledge graph expands, the process-
ing time for SPARQL queries increases significantly, be-
coming a bottleneck and resulting in slower response
times compared to SQL queries on larger datasets.

[52] The methodology consists of two main components:
an Authentication Module that manages access control
using user attributes and organizational policies and a
Data Processing Module responsible for encryption de-
cryption search token generation, encrypted index cre-
ation, and attribute revocation. The system uniformly
employs a single revocable searchable attribute-based
encryption scheme and handles attribute revocation by
updating ciphertext and secondary secret keys within
the Data Processing Module.

The system enhances digital health security by in-
tegrating advanced security features for cloud EHR
systems streamlining the attribute revocation process
with updates only needed at the cloud service provider
(CSP) level. It also improves the efficiency of keyword
searches reducing network latency and client-side com-
puting demands. Additionally, the use of a single en-
cryption scheme simplifies operations, enhancing user-
friendliness.

The previous system’s drawbacks include the complex-
ity of managing two encryption schemes, slow search
times for large datasets, and the absence of an attribute
revocation feature, which is critical for adapting to
changes in user attributes and organizational policies.

[35] The methodology involves selecting entities for the
ontology related to medical and telehealth data for
chronic conditions, defining relationships and restric-
tions to ensure data validity and coherence through ex-
pert reviews, and implementing the ontology in OWL-
DL.

The proposed methodology provides flexibility and
reusability through its ontology-based framework, al-
lowing data model modifications without altering API
code. It includes a dynamic REST API that automati-
cally generates endpoints from the ontology, improv-
ing adaptability for different applications. Additionally,
it integrates linked data and semantic annotations, en-
hancing data integration and minimizing ambiguity.

The main drawbacks include the immaturity of HL7
FHIR, which necessitates frequent updates to the on-
tology to reflect changes in FHIR resources, and the
placement of constraint checking using SPIN above
the persistence layer, which may affect the efficiency
of operations.
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dynamic ontology management and real-time data processing. To
fill these gaps, we need directed research aimed at creating methods
that will adjust according to new medical standards and handle
large amounts of information quicklywithout jeopardizing either its
security or performance. On top of that, further investigations into
automatic mappings and sophisticated protection systems would
also be important for reducing the complications involved.

Using Semantic web technologies in healthcare has given hope
for better Electronic Health Record (EHR) systems. One of the seri-
ous problems to be solved is how to fully integrate these technolo-
gies into current health systems without making radical modifica-
tions. Continued innovation and research in this area are necessary
if we want to exploit the full benefits of Semantic web technologies,
which may result in significant transformations in health informat-
ics and patient care management.
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