
A Hybrid Approach to Recommend Long Tail Items
Diogo Vinícius de Sousa Silva

Federal University of Bahia
Salvador, Bahia, Brazil
diogovss@ufba.br

Frederico Araújo Durão
Federal University of Bahia
Salvador, Bahia, Brazil

fdurao@ufba.br

ABSTRACT
Techniques in recommendation systems generally focuses on rec-
ommending the most important items for a user. The purpose of this
work is to generate recommendations focusing on long tail items,
and then to conduct the user to less popular items. However, such
items are of great relevance to the user. Two techniques from the
literature were applied in this study in a hybrid way. The first tech-
nique is throughmarkov chains to calculate node similarity of a user
item graph. The second technique applies clustering, where items
are separated into distinct clusters: popular items (short tail) and
non-popular items (long tail). Using the Movielens 100k database,
we conducted an experiment to calculate the accuracy, diversity,
and popularity of the recommended items. With our hybrid ap-
proach we were able to improve the recall by up to 27.97 % when
compared to the markov chain-based algorithm, which indicates
greater targeting to long tail products. At the same time the rec-
ommended items were more diversified and less popular, which
indicates greater targeting to long tail products.

KEYWORDS
Recommender System; Long Tail; Graphs; Markov Chain; Clusteri-
zation.

1 INTRODUCTION
Most of the methods used by Recommendation Systems (RS) tend
to recommend the most popular items to users. Since the majority
of users are interested in an item, the likelihood is that a new user
will also be interested in that item [8]. By following this logic, it
is natural that less popular items are less recommended and con-
sequently less consumed. Usually, the main companies focus their
sales on these products envisioning better logistic. If we imagine
a company with physical stock, it is easy to understand that it is
much cheaper to put the best-selling products on the more evident
shelves. However, with the advent of virtual stores the cost of orga-
nizing products on shelves is non-existent. In the context of virtual
stores has raised the term “infinite-inventory” [1], where products
in evidence can be selected according to the preference of each
online user. This virtual user will not necessarily have the same
preference as other users.

The term “long tail” refers to the set of products not commonly
consumed by users [1]. Usually, these products make up the bulk of
store stock with low demand. Only a small amount of products con-
tribute for the majority of sales. In contrast, most products (which

In: XVIII Workshop de Teses de Dissertações (WTD 2018), Salvador, Brasil. Anais do
XXIV Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e Pôsteres. Porto
Alegre: Sociedade Brasileira de Computação, 2018.
© 2018 SBC – Sociedade Brasileira de Computação.
ISBN 978-85-7669-435-9.

would be in long tail) are responsible only for the minority of sales.
According to Paretto’s rule [11], 80% of the consequences come
from 20% of the causes, that is, 80% of sales would be concentrated
in only 20% of the products from the stock. Long tail items are those
less popular items, while the other items, i.e. the most popular, will
be called “short tail” items.

The long tail phenomenon can also be seen as a way to increase
company profits. Generally high popular products are quite mar-
keted by several other companies and of course the competition
for sales is great. Since there is a great demand for these products,
the price tends to be the lowest due to competition. Therefore, the
products profit rate becomes quite low. Considering items with low
demand, it is possible to predict a higher profit margin for interested
users. The users will be more motivated to pay a higher price due
to the low product availability. Another effect of exploring long tail
products is the so-called “one-stop shopping convenience” effect.
A store that offers long tail products and also popular products
delivers an additional convenience for their customers since you
find everything you need in one place.

In this context, this work proposes a hybrid technique for improv-
ing the recommendation of long tail products. Our approach uses a
structure that represents the items and users in a bipartite graph.
Then, we determine the proximity throughMarkov chains using the
Hitting Time algorithm. In addition, we also combine the use of this
algorithm with a technique of splitting and clustering in order to
improve the accuracy of long tail items recommendations. Finally,
we indicate the long tail items for recommendations, thus turning
the algorithm more assertive and improving the recommendations
diversity.

The remainder of the work is organized as follows: Section 2
presents the related works. The Section 3 addresses the proposed
long tail recommendation. Section 4 details the experimental eval-
uation of the proposed technique and discusses the results of the
experiments. Finally, Section 5 traces some conclusions and future
work.

2 RELATEDWORK
Yin et al. [12] has developed four variations of an algorithm for long
tail item recommendations. The basic algorithm of the proposal is
the Hitting Time, where the users and items are represented in a
disjunct, indirect and bipartite graph. From this graph an adjacency
matrix is obtained, as shown in Figure 1. The edges of the graph are
weighted and represent the relevance of a user’s connection to an
item, that is, a user’s rating for that item. To calculate the proximity
of unrecorded items, the author calculates the Hitting Time using
a type of Markov chains called Random Walk [2]. Using Random
Walk, the probability of a user reaching an item not evaluated by
him is calculated. The higher the probability, the lower the Hitting
Time, and therefore the item should have higher priority in the



WebMedia 2018: Workshops e Pôsteres, Salvador, Brasil D.V.S Silva and F.A. Durão

recommendation. Transition matrices are derived from a probabil-
ity matrix. The probability matrix is obtained from the adjacency
matrix shown in Figure 1. Shang et al. [10] perform a study of a
custom recommendation model using collaborative filtering and
ternary relationships, through tripartite graphs, representing users,
items, and tags. It proposes a new measure for user similarity based
on user tags and preferences. The similarities are calculated using
a diffusion-based process and finally compared with recommen-
dations calculated based on similarity of the cosine. Johnson et
al. [4] carry out an extension of the work of Yin et al. [12]. John-
son combines the algorithms used by Yin, adapting to tripartite
graphs, shown by Shang. Johnson combined the Yin approach with
the study of Shang to generate recommendations by collaborative
filtering.

Park and Tuzhilin [7] suggest an approach based on splitting
and clustering item set. The item set is divided between short tail
and various parts of the long tail. Thus, recommendation of short
tail items are made based on the individual scores of each item. In
the case of the long tail items recommendation, the clusters scores
are grouped in each part of the long tail. Park in [6] evolves the
previous work by clustering the items based on popularity. The
author presents a technique called adaptive clustering for recom-
mendations of items according to their popularity. It is possible to
define the size and quantities of the clusters in an adaptive way
according to the state of the dataset, focusing on items long tail. As
a result you get lower error rates and improved performance.

The approach presented in this work uses Hitting Time combined
with a technique for item clustering. Our proposal will be based
on the Park’s approach [7]. We will group the long tail items into
clusters according to the average ratings of each item and use
this score as weight. The weight represents an additional variable
in the Hitting Time algorithm. The main objective is to increase
the emphasis on the recommendation of items located in long tail
improving the accuracy.

3 PROPOSED SOLUTION
In this section we will explain our hybrid approach composed of
Hitting Time algorithm and a clustering technique will turn the
recommendations more focused on long tail items.

3.1 Hitting Time
In the Hitting Time algorithm [12] the set of users U and items
M are represented in a split-graph and have their corresponding
adjacency matrix. Figure 1 illustrates an example of the graph with
nodes that could be items or users. The edges of these nodes carry
a weight that reflect the user’s rating for that item that the edge
binds to. When there is no edge connecting two nodes, the weight
is 0 (zero). As an example, we have the user node U1 that has a
connection with the item node M6. In the matrix of Figure 1 the
weight of this edge is 5. In other words, the rating of such a user for
itemM6 has a value of 5. The weight of an edge is represented by
a(i, j).The variables i and j are the nodes of the graph in an array
A = (a(i, j))i, j ∈V . The variable V represents the set of vertices
(nodes) of the graph.

Aiming at calculating the proximity of two nodes in the graph,
the algorithm uses a specific type of Markov chain, called random

Figure 1: Representation of users and items through a bipar-
tite graph and its respective adjacency matrix [12].

walk. A random walk has a current state (a node in the graph) and
with each evolution in time the state is changed, that is, visiting
other nodes of the graph. Through the hitting time this path is
driven by the weights of the edges and the random walk ends its
walk when it arrives at the target node. The algorithm is based on
a probability matrix that is computed from the adjacency matrix.
Finally, the edge weights are given by Equation pi, j = P(s(t + 1) =
j |s(t) = i) = a(i, j)

di
, where di =

∑n
j=1 a(i, j).

Taking into account the probability matrix, a transition matrix
is calculated for each chain state until the destination state is reach.
Next, the hitting time valuemay be obtained through of theH (q |j) =
1

pj,q =
πj

pq, jπq , where πi =
∑n
j=1 a(i, j)∑n
i, j=1 a(i, j)

.
The Hitting Time algorithm is based on the time-reversibility

property to guide recommendations with long tail items. This prop-
erty indicates that the paths are not symmetric. The probability
that a node A reaches a node B is different from the probability
that node B reaches node A [2]. The algorithm calculation takes the
inverse path to calculate the value, that is, from user node to item
node. In this way all items, including long tail items, are equally
considered for recommendations. Thus, long tail items tend to be
more recommended. This fact would not happen if the calculation
began in the user-item sense, since there would be more paths that
would link to the most popular products.

3.2 Clustering
We divide the set of items between short tail items and long tail
items. At this point we use the Paretto’s rule [11] as a parameter
to separate the most popular items from the less popular ones. All
long tail items are clustered considering the score of each item.

Those items with higher scores will have higher priority in the
recommendation and will have a greater weight. Such items impact
on the decrease in the Hitting Time value. The items with smaller
scores are grouped in clusters that will be used to ponder the value
of Hitting Time, increasing its size. The value resulting from the



A Hybrid Approach to Recommend Long Tail Items WebMedia 2018: Workshops e Pôsteres, Salvador, Brasil

Table 1: Clustering of the item dataset related to the average
rating (score) and its respective adjustment factor.

Score Item (S) Cluster Adjustment Factor (%)

1 <= S < 2 A +20
2 <= S < 3 B +10
3 <= S < 4 C -10
4 <= S <= 5 D -20

Table 2: Ordering items based on the Hitting Time algo-
rithm.

Item Hitting Time Priority for
Recommendation

Titanic 12 1º
Little Dorrit 13 2º
Batman 14 3º

Simple Simon 15 4º
Black 16 5º

application of the adjustment factor to the value found through
the algorithm Hitting Time will be called Hitting Time Clustered
(HTCL). The value of the adjustment factor that will increase or
decrease the Hitting Time is described in Table 1.

To calculate the Hitting Time Clustered (HTCL) we first need
to calculate the value to be added. This value may be negative or
positive, depending on the cluster in which the item was clustered
(see Table 1). This additional value will be added to the previously
calculated Hitting Time value. The equation HTCL(q |j) = H (q |j) +
AF ·H (q |j)

100 shows this calculation, where AF means the adjusting
factor based on Table 1, H (q |j) means the Hitting Time of an item j
for a user q and HTCL(q |j) means the Hitting Time Clustered.

3.2.1 Algorithm In Action. In order to illustrate the algorithm
operation, Table 2 presents a list with 5 items recommended for
a given user. In our context the items presented are examples of
movies. As stated in the previous section, the smaller the hitting
time the closer the user is to the item, consequently the item will
have higher priority in the recommendation. In Table 2 the items
are presented in order of relevance, according to the hitting time.

Now, let’s look at the distribution of items in a chart that repre-
sents long tail items and short tail items. Figure 2 represents the
point of the set item where splitting is performed and how the items
are clustered. In our example, there are 2 items that are presented
in the short tail (movies “Titanic” and “Batman”) and 3 items in the
long tail (movies “Little Dorrit”, “Simple Simon” and “Black”). For
each item in the long tail, its score is shown, i.e. the average of the
received ratings. The clustering algorithm will perform similarity
classification based on the score (according to Table 1). In this way
the movies “Little Dorrit” and “Simple Simon” will be considered
similar and will be together in cluster C and the item “Black” will
be alone in cluster D. The movies “Titanic” and “Batman” as they
are located in the short tail will not be clustered.

Figure 2: Graphic illustration of splitting and clustering in
item dataset.

Table 3: Comparing values between Hitting Time and Hit-
ting Time Clustered.

Item Hitting Time Hitting Time Clustered

Little Dorrit 13 11,7
Simple Simon 15 13,5

Black 16 12,8

Table 4: Result after dataset clustering.

Priority for
Recommendation Previous Ranking Current Ranking

1º Titanic Little Dorrit
2º Little Dorrit Titanic
3º Batman Black
4º Simple Simon Simple Simon
5º Black Batman

Table 3 lists the 3 items that are located in long tail. For each of
them the calculation result is shown by the HTCL approach, based
on the adjustment factor shown in Table 1. The order of relevance
for the recommendation of the items will no longer be the Hitting
Time (HT), but the Hitting Time Clustered (HTCL), instead.

In the Table 4 we see the relevance items order changing after
the clustering presented here. We can observe that movie “Titanic”
was previously the most relevant recommendation for the user.
After the application of clustering we see that movie “Little Dorrit”
becomes the most relevant. Notice that in Figure 2 movie “Titanic”
is in short tail and movie “Little Dorrit” in longtail. That is, long
tail are more prioritized rather than short tail items by just adding
the clustering technique. The logic of the Hitting Time algorithm
remained the same. We can also observe that the other items also
changed position in the ranking of recommendations. Movie “Black”
(present in long tail) has increased in the ranking and item “Bat-
man” (present in short tail) fell in the ranking. The item “Simple



WebMedia 2018: Workshops e Pôsteres, Salvador, Brasil D.V.S Silva and F.A. Durão

Simon” remained in the same position, despite being in the long
tail, showing that clustering does not always prioritize the items
that are in the long tail.

With such approach the trend is that long tail items with better
user ratings take higher priorities. In addition, items that are at
the end of the tail can also be recommended more easily and more
assertively, since thay have a good score.

4 EVALUATION
4.1 Dataset
The dataset used in this study was the Movielens100k dataset [3].
TheMovielens dataset has approximately 1,682 movies and contains
100,000 ratings on a scale of 1 to 5 scored by around 943 users.
The density for the rating matrix is 6.30%, a sparse matrix, which
means that most users have not seen most movies. The dataset also
includes other information that was not used in this study, such as:
age, gender, user occupation, and category of movies.

Each user has rated at least 20 movies. The data was collected
through the MovieLens web site (http://movielens.umn.edu) during
the seven-month period from September 19th, 1997 through April
22nd, 1998. This data has been cleaned up - users who had less than
20 ratings or did not have complete demographic information were
removed from this dataset.

4.2 Metrics
4.2.1 Recall. To calculate the accuracy of the proposal, we use

a metric called Recall@N, previously adopted by [12]. Recall is the
index that indicates the amount of items of interest to the user that
appear in the list of recommendations. This index ranges from 0
to 1. The closer to 1 better the recommendation. The metrics idea
is to select a user favorite item and include it in a set of randomly
selected items. After that, the algorithm ranks all set items and then
checks whether the user’s favorite item is displayed in the top@N.

For the recall application we split the dataset into two subset. The
first, called test set (or estimation test) was used to randomly select
items located in long tail and evaluated with 5 stars. The second
subset was used to perform the tests and validation of the generated
recommendations. For each item M present in the training subset,
we select other items that have not been evaluated by the same user
who evaluated item M. Let’s call this training set as B. From there
we execute the algorithm and rank all items not evaluated together
with the item M. A test case, as described above with item M, is
performed several times. In our experiment we varied the number
of test cases together with the number of items present in training
set B. A number of 500 test cases were executed. Each experiment
used a training set B of 100 items.

To calculate the Recall@N we define hit@N like a test case. It
is counted how many times the item M appears inside the top@N
results, as shown in the following equation Recall@N =

∑
hit@N
|L | ,

where |L| is the number of test cases. This way, the higher the recall
result, the greater the accuracy of the tested algorithm. Which rep-
resents that there are more items of user preference being returned
in the top@N results.

4.2.2 Diversity. The metric diversity [5] was used to obtain the
degree of distribution of long tail items that are recommended.

With a high diversity the tendency is that long tail items are rec-
ommended to the users, that is, the recommendations suffer little
influence from very popular items. Such influence causes the dis-
covery of new items hitherto hidden in the long tail.

To calculate diversity we use the same calculation shown in [12].
This metric calculates for a given set of users the top@K items to
recommend. Let’s assume that we will use a set of 20 users and for
each of them a top@10 ranking, that is, 10 recommended items.
In this case we would have a total of 200 recommended items for
all users. To calculate the diversity we check how many repeated
items are counted only once and then calculate the proportion to
the total, as shown in Diversity = |

⋃
Iu ∈I |

|U | ·top@N , where Iu is the set
of single items recommended for all users. The I element means
the set of items in the dataset, U represents the set of users and
top@N means the number of items recommended for each user.

In our experiments we fixed a set with 200 users and for each
user varied the amount of recommended items in top@10, top@20,
top@30, top@40 and top@50.

4.2.3 Popularity. The metric popularity represents the quantity
of recommended long tail and short tail items. An analysis of this
metric together with the others result in a more careful analysis
regarding the algorithm performance. This metric calculates the
frequency of an item according to the amount of ratings it holds
because of the other ratings of dataset [12].

Considering that our dataset has 100,000 ratings, we calculated
the popularity of the top@10, top@20, top@30, top@40 and top@50.
For each of them we selected 200 different users. The calculation
was based on the average popularity of items in each user’s ranking.
And for each user the average was calculated to arrive at the final
value. That is, we count the amount of evaluations received for each
item. And then we relate to the total amount of dataset evaluations,
as shown in Popularity = Ru∑

|Rd |
, where Ru =

∑
|Rr |

|U | ·top@N , where
Rd represents the rating set of the entire dataset. The number of
ratings is about 100,000 and the U element represents the set of
users selected for the popularity calculation. The top@N element
means the amount of recommended items for each user belonging
to theU set. In Equation above,Ru represents the rating rate already
normalized according to the number of users and recommended
items.

The higher the result, the greater the popularity of a particular
item. Thus, to have a good result of the algorithm in relation to the
recommendation of long tail items, it is interesting that this metric
has a low value, that is, recommend little popular items to users.
Both the diversity metric and the popularity metric can measure
how far the recommendation is directed to long tail items.

4.3 Baselines
To analyze the effectiveness of our Hitting Time Clustered approach
(HTCL), we performed a comparison with 3 different baselines,
namely:

• Hitting Time (HT) - The algorithm proposed by Yin [12]
is presented in Section 3.1.

• Hitting Time + Clustering All Dataset (HTCA) - The
Hitting Time Algorithm plus clustering similar to our ap-
proach. The difference here is in the lack of splitting of



A Hybrid Approach to Recommend Long Tail Items WebMedia 2018: Workshops e Pôsteres, Salvador, Brasil

the dataset. That is, there was no separation of items be-
tween long tail and short tail and then clustering occurred
throughout the dataset.

• Hitting Time + Clustering Short Tail Dataset (HTCS)
- Also similar to our approach, however, the splitting in the
dataset was done in the opposite way. Instead of clustering
the items located in the long tail, in this baseline we cluster
only the items present in the short tail of the dataset.

4.4 Results
4.4.1 Recall Measurement. Figure 3 shows the performace of

our approach (HTCL) compared to the baselines described in the
Section 4.3. In the execution presented in the graph were ranked
100 items and then calculated the recall for 500 test cases. We can
observe that of all baselines, our approach obtained the best values
for the recall in all top@N .

Note that when we used only HT, the results were better than
any of the other baselines that use clustering, with the exception
of HTCL. For example, at the top@10 point, the value in baseline
HT is 0.086, when we change to our HTCL approach the value was
0.094. In top@35 the HTCL outperforms HT in 27,97%. When using
HTCA and HTCS, the result was worse than HT in all top@N.With
the HTCS we had the worst result of all. In top@5 HT outperforms
in HTCA 31,25% and HTCS in 34,38%. That is, clustering only the
short tail will make the recommendations worse than not clustering
anything. The best results for the HTCL confirmed the effectiveness
of our approach, because the clustering of items in the long tail
tend to have a recommendation with better recall.

Other experiments were also performed by varying the number
of test cases and the number of ranked items. However the results
were similar, following the same order as shown in Figure 3. That
is, the best approach was HTCL followed by HT, HTCA and finally
HTCS.

Figure 3: Recall of the top@N items in 500 test cases.

4.4.2 Diversity Measurement. The results of the measurement of
diversity were also positive for HTCL. Figure 4 presents the results
for an amount of 200 random users when generating top@N rec-
ommendations. In this measurement, although the increase is low,
it is noticeable mainly when the HTCL recommends from top@30
items. Note that at the top@30, the HTCL approach presents 0.0347,

versus 0.345 of the HT approach. That is, the items recommended
by our proposal have a greater diversity of items. This approach
proved to be the best, followed by HT. And following the same
order of the recall, the third best was the HTCA and finally the
HTCS.

Figure 4: Diversity on Movielens 100k using 200 random
users.

4.4.3 Popularity Measurement. In terms of popularity measure-
ments, there was no unanimity. Analyzing Figure 5 we see that
the results were quite close to all baselines. The HTCA and HTCS
approaches were the ones with the lowest popularity ratings. Our
approach got the same result as HT up to the top@20. From then
on it managed to overcome HT. See that in top@30 the popularity
index in HTCL is 0.3119 and the index in HT is 0.3122. That is, our
recommendations tend to suggest less popular products.

Low popularity is not bad for our purpose, since the recommen-
dation of long tail items needs to be more focused on niche products
and not among the top sellers. In short, the HTCL approach im-
proves diversity and returns less popular items, which is good, as
we are focusing on long tail recommendations. In addition, the good
results in diversity and popularity were reached without harming
the accuracy, since in the recall method our approach obtained the
best results.

Figure 5: Popularity on Movielens 100k using 500 random
users.



WebMedia 2018: Workshops e Pôsteres, Salvador, Brasil D.V.S Silva and F.A. Durão

4.5 Discussion and Points of Improvements
The approach proposed in this work (HTCL) obtained the best re-
sults in the 3 tested metrics. The recommendations tend to be more
focused on longtail items, since our approach uses the Hitting Time
algorithm together with the clustering technique. The results of
baselines HT and HTCL when compared in metrics diversity and
popularity show the superiority of our approach. Until reaching the
top@20, the two baselines do not show significant differences. The
top results of the HTCL approach are evident from top@30, when
the HTCL baseline begins to recommend less popular and more
diverse items. The results of the other two baselines HTCA (clutter
of the entire dataset) and the HTCS (clustering only of short tail)
show that clustering if performed in any way can lead to worse
results. That is, the clustering performed in these baselines wors-
ened the results already obtained without any type of clustering
(baseline HT).

The items diversity was improved and there was a decrease
in popularity, but the relevance of the recommendations was not
affected. The recall metric allowed us to monitor the accuracy of the
recommendations. The HTCL approach obtained the best results
at all top@N (see Figure 3). The other baselines that performed
the clustering differently, worsened the results of the HT approach.
This result has showed the importance of defining a good strategy
when clustering a dataset.

Only the variable “item score” was used in the clustering step.
Only with this variable the results have already improved, confirm-
ing the feasibility of applying different techniques to reach the same
goal. Besides the score, there are other variables that can be taken
into account in the calculation of similarity, such as: category of the
film, producer, and cast. User clustering can also be done through
his/her profile data, including age, occupation, gender, among oth-
ers. These variables are already present in the dataset used in this
work and will be the subject of new experiments.

Other techniques can be used in conjunction with a base algo-
rithm and improve recommendations to further explore the long tail.
Our approach used Hitting Time as the base algorithm, but other al-
gorithms can be adopted in conjunction with the various clustering
techniques. Another possibility is to use, together with clustering,
other techniques such as probabilistic CF algorithm (IRM2), multi-
modal similarity and multi-objective evolutionary algorithm (MORS),
just to name a few.

A limitation is related to the size of the dataset and its sparsity.
Datasets with different dimensions and sparsities could generate
other results. A deeper analysis could bring new information. The
other limitation would be the use of a single domain. We have
applied a dataset that aggregates movie ratings, called MovieLens.
Analyses in other domains could give different results showing
specificities of each tested domain.

5 CONCLUSION
In this work we performed a study to generate recommendations of
long tail items. The combination of the Hitting Time algorithm with
a clustering technique was adopted in order to give more visibility
to long tail items. Using the 100k ratings of Movielens database,
we conducted an experiment to calculate the recall, diversity, and
popularity of the recommended items.

The results indicate that two techniques used together may im-
prove the result of a first technique used alone. This procedure
should be done carefully, otherwise the effect may be negative.
Our proposal presented satisfactory results by focusing on longtail
items. We have increased the diversity of recommendations. There
was a decrease in popularity of the recommended products. At the
same time, the relevance of the recommendations (measured by the
recall metric) was also higher compared to the tested approaches.
The positive results point out possibilities for retail companies that
aim at increasing the profit of their businesses. Since the profit
from selling long tail items tend to be larger than short tail items.
Focusing part of the sales for these products will bring greater
financial returns. This is evidenced by the lower competition for
such products. In addition, customers of niche products are usually
more loyal and are more willing to pay a higher amount to acquire
it.

As future work we intend to extend this work using more vari-
ables in the clustering of items, such as age of the user, category
of the item, among others. We also intend to adopt other cluster-
ing techniques as proposed by [9]. Another possibility is to try
out the other algorithms proposed by [12], combining them with
the presented clustering technique. Other metrics can be added
such as Time, Precision, and F-measure. The use of other databases
would also help giving more validity to the results, as well making
comparisons with other baselines.

REFERENCES
[1] Chris Anderson. 2006. The Long Tail: Why the Future of Business Is Selling Less of

More. Hyperion.
[2] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi. 1998.

Queueing Networks and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications. Wiley-Interscience, New York, NY, USA.

[3] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
History and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015),
19 pages. https://doi.org/10.1145/2827872

[4] Joseph Johnson and Yiu-Kai Ng. 2017. Enhancing Long Tail Item Recommen-
dations Using Tripartite Graphs and Markov Process. In Proceedings of the In-
ternational Conference on Web Intelligence (WI ’17). ACM, New York, NY, USA,
761–768. https://doi.org/10.1145/3106426.3106439

[5] Matev Kunaver and Toma Porl. 2017. Diversity in Recommender Systems A
Survey. Know.-Based Syst. 123, C (May 2017), 154–162. https://doi.org/10.1016/j.
knosys.2017.02.009

[6] Y. J. Park. 2013. The Adaptive Clustering Method for the Long Tail Problem of
Recommender Systems. IEEE Transactions on Knowledge and Data Engineering
25, 8 (Aug 2013), 1904–1915. https://doi.org/10.1109/TKDE.2012.119

[7] Yoon-Joo Park and Alexander Tuzhilin. 2008. The Long Tail of Recommender
Systems and How to Leverage It. In Proceedings of the 2008 ACM Conference
on Recommender Systems (RecSys ’08). ACM, New York, NY, USA, 11–18. https:
//doi.org/10.1145/1454008.1454012

[8] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to Rec-
ommender Systems Handbook. In Recommender Systems Handbook. Springer,
1–35.

[9] Jia Rongfei, Jin Maozhong, and Liu Chao. 2010. A new clustering method for
collaborative filtering. In 2010 International Conference on Networking and Infor-
mation Technology. 488–492. https://doi.org/10.1109/ICNIT.2010.5508465

[10] Ming-Sheng Shang, Zi-Ke Zhang, Tao Zhou, and Yi-Cheng Zhang. 2010. Col-
laborative filtering with diffusion-based similarity on tripartite graphs. Phys-
ica A: Statistical Mechanics and its Applications 389, 6 (2010), 1259 – 1264.
https://doi.org/10.1016/j.physa.2009.11.041

[11] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E. Hassan, and
Naoyasu Ubayashi. 2015. Revisiting the Applicability of the Pareto Principle to
Core Development Teams in Open Source Software Projects. In Proceedings of
the 14th International Workshop on Principles of Software Evolution (IWPSE 2015).
ACM, New York, NY, USA, 46–55. https://doi.org/10.1145/2804360.2804366

[12] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. 2012. Challenging
the Long Tail Recommendation. Proc. VLDB Endow. 5, 9 (May 2012), 896–907.
https://doi.org/10.14778/2311906.2311916

https://doi.org/10.1145/2827872
https://doi.org/10.1145/3106426.3106439
https://doi.org/10.1016/j.knosys.2017.02.009
https://doi.org/10.1016/j.knosys.2017.02.009
https://doi.org/10.1109/TKDE.2012.119
https://doi.org/10.1145/1454008.1454012
https://doi.org/10.1145/1454008.1454012
https://doi.org/10.1109/ICNIT.2010.5508465
https://doi.org/10.1016/j.physa.2009.11.041
https://doi.org/10.1145/2804360.2804366
https://doi.org/10.14778/2311906.2311916

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Hitting Time
	3.2 Clustering

	4 Evaluation
	4.1 Dataset
	4.2 Metrics
	4.3 Baselines
	4.4 Results
	4.5 Discussion and Points of Improvements

	5 Conclusion
	References

