
Towards Data Transmission Through Inaudible Sound in
Ginga-NCL

João Victor G. de S. Nunes, Álan L. V. Guedes, Guilherme F. Lima, Sérgio Colcher
Pontifical Catholic University of Rio de Janeiro

Rio de Janeiro, Rio de Janeiro
jvgirard@telemidia.puc-rio.br

ABSTRACT
In this paper, we report our efforts to add support for data trans-
mission through inaudible sound to the Ginga-NCL Digital TV
middleware. We present an algorithm for encoding a bitstream
in an inaudible audio signal, and to do so reliably on consumer-
grade hardware. We also discuss two attempts to implement this
algorithm in NCL, the language in which Ginga-NCL applications
are written. The first attempt was to transmit prerecorded inaudi-
ble audio signals in a Ginga-NCL-compatible set-top-box. And the
second attempt was to use NCLua to generate at runtime the in-
audible audio signal. For the second attempt we extended NCL with
a novel media object type, called SigGen, which can be used to
generate arbitrary audio signals. In the paper, we describe in detail
the implementation of SigGen and the result of these attempts.

KEYWORDS
Inaudible sound; Ginga-NCL; Nested Context Language; NCL

1 INTRODUCTION
Current consumer devices, such as TVs, smartphones, smartwatches,
etc., often come with built-in support for radio-frequency (RF) wire-
less communication. This support requires RF hardware and de-
pends on technologies such as Bluetooth, IEEE 802 WiFi, or 4G
mobile networks. There are situations, however, where the RF data
network is not available, or where it is more advantageous to use
some other form of wireless communication. One such alternative
is communication through inaudible sound.

The same consumer devices that come with RF support usu-
ally come equipped with speakers and microphones which enables
them to produce and detect inaudible sound. By inaudible sound we
mean sound waves in frequencies that cannot be heard by humans—
usually those above 19–22 kHz. There are many works in the lit-
erature that show that communication through inaudible sound is
feasible on consumer-grade PCs, laptops, and smartphones [3, 4, 6].
Here we are mainly concerned with the applicability of this tech-
nique to digital TV scenarios, in particular, to those scenarios where
the TV broadcasts data to nearby devices through inaudible sound.

In this paper, we report our ongoing efforts to enable inaudible
sound applications in the Ginga-NCL Digital TV middleware [1].
These efforts, so far, consisted of two steps. First, we came up with
a method for encoding a bitstream in an inaudible audio signal, and

In: XV Workshop de Trabalhos de Iniciação Científica (WTIC 2018), Salvador, Brasil.
Anais do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e
Pôsteres. Porto Alegre: Sociedade Brasileira de Computação, 2018.
© 2018 SBC – Sociedade Brasileira de Computação.
ISBN 978-85-7669-435-9.

to do so in a way that the resulting signal could be generated and
decoded reliably on consumer-grade hardware.

After that, in a second step, we tried to implement this encoding
algorithm in NCL, which is the language in which Ginga-NCL
applications are written. NCL is a declarative language with no
support for audio synthesis. So, our first attempt was to record the
signals generated by our algorithm into raw audio files; then we
combined these files in an NCL document and tried to play the
document in a Ginga-NCL-compliant set-top box. Unfortunately,
due to hardware limitations, that didn’t work.

In face of this, we decided to extend the NCL language with a
new type of media object, called SigGen, which can generate ar-
bitrary audio signals. We implemented the SigGen object and its
underlying player in PUC-Rio’s NCL player, using the GStreamer
multimedia framework. Then we implemented our encoding algo-
rithm in an NCLua script (the scripting language of NCL) which
was used to drive SigGen objects. Unfortunately, that also didn’t
work. (In PUC-Rio’s implementation, the rate at which changes
occur within an NCL document is limited by the display frame-
rate—about 60Hz—which is too low for the correct operation of our
encoding algorithm.)

The rest of the paper is organized as follows. In Sections 2 and 4,
we describe our main contributions: the encoding algorithm and
the SigGen media object. In Sections 3 and 4, we give a detailed
account of our attempts to implement the proposed algorithm in
NCL and of the lessons we learned in the process. In Section 5, we
compare our encoding algorithm with similar algorithms we found
in the literature. Finally, in Section 6, we present our conclusions
and future work.

2 THE ENCODING ALGORITHM
We will describe our encoding algorithm in two parts. In the first
part, Section 2.1, we discuss how we selected inaudible frequencies
that combined minimize the audible background noise. In the sec-
ond part, Section 2.2, we discuss the encoding algorithm together
with its transmission and reception parts.

The hardware we used in the development of this algorithm is
illustrated in Figure 1a. It consisted of a PC with speakers and a
smartphone. The PC had an Intel Core i5 (6th gen.) processor, 16 GB
of RAM memory, Edifier XM2PF speakers, and run Ubuntu 16.04
LTS. The smartphone was a Samsung Galaxy S8 running Android
8.0 Oreo.

We implemented the transmission part of the algorithm in the
GStreamer multimedia framework. The GStreamer pipeline we used
for the tests consisted of three elements connected in series: Au-
dioTestSrc to generate frequencies; AudioConvert to convert raw au-
dio buffers to samples; and AutoAudioSink to send the raw samples

65



WebMedia 2018: Workshops e Pôsteres, Salvador, Brasil João Victor G. de S. Nunes et al.

(a) (b)

Figure 1: (a) PC environment and (b) TV environment (set-
top box); both broadcasting to an Android smartphone.

to the audio driver. For reception, we used the Android AudioRecord
API1 to analyze the audio spectrum by taking samples.

2.1 Frequency Selection
To explain our selection process, we first need to introduce the
concepts of guard band and beat frequencies. The guard band is the
gap in the audio spectrum between two data-carrying frequencies.
This gap is introduced to ensure the unambiguous reception of
the data carried by contiguous frequencies. Sometimes, however,
the combination of data-carrying frequencies and guard band may
generate beat frequencies. These beats happen, for instance, when
two frequencies interfere with each other. Such interference can
generate a new frequency with a periodic variation of volume and
a rate that is equal to the difference of the two initial frequencies.
Beat frequencies are undesirable because they can generate noise
in frequencies which can be heard by humans.

We chose frequencies based on experiments we did in a quiet
room. The goal was to select the maximum number of frequencies
which generated fewer beats and had a good guard band. Figure 2
depicts the spectrum visualization of four experiments using the
Spectrum Analyzer2. In the figure, the cyan rectangle highlights
beats.

(a) 4 freqs., 200Hz gap (b) 10 freqs., 200Hz gap

(c) 10 freqs., 150Hz gap (d) 12 freqs., 150Hz gap+ref.freq

Figure 2: Spectrum analysis of four experiments with fre-
quencies ranging from 17,335Hz to 22,050Hz.

In our definition of “inaudible”, we chose the starting point of fre-
quencies to be at least above 19000Hz, since some people can hear
1developer.android.com/reference/android/media/AudioRecord
2play.google.com/store/apps/details?id=com.raspw.SpectrumAnalyze

sounds in frequencies below this value. Fewer can hear above it, so
it is viable to work in this area of the spectrum. The reception hard-
ware defines our maximum frequency to be around 22000Hz, which
seems to be the operational limit for consumer-grade hardware.

In the first experiment (Figure 2a), we used 4 frequencies with
a 200Hz guard band. These four frequencies generated fewer beats
but also carried fewer data (assuming one bit per frequency). In the
second experiment, we used 10 frequencies (Figure 2b) with the
same 200Hz guard. Although more data was transmitted, these 10
frequencies increased the width and amplitude of the beats. In the
third experiment we changed the guard band to 150Hz (Figure 2c)
and kept the same 10 frequencies. This retained a good reception
and reduced both problems caused by the added frequencies with a
larger guard band.

We found our best condition using 13 frequencies (Figure 2d).
In this experiment, the first frequency starts at 19500Hz and is
separated from the next frequency by a gap of 500Hz. This first
frequency is intended to be easily captured as a reference frequency.
The greater initial gap between the reference frequency and the
others reduces the probability of interference between them. The
remaining frequencies are located from 20000Hz to 21650Hz and
are separated by a 150Hz guard band. The inclusion of the reference
frequency added some beats with very low amplitudes in the high-
frequency area, making it possible but hard to be heard by users,
but it improved reception without affecting the bit-rate.

2.2 The Algorithm
In our algorithm, the reference frequency is at 19500Hz; this fre-
quency signals the presence of the transmission but carries no data
itself. The remaining frequencies carry one bit each, which are to
be interpreted in the little-endian format. A message is transmitted
by varying the amplitude of these data-carrying frequencies over
time, i.e., by toggling them up and down. If the frequency being an-
alyzed is below -60dB the message as a whole is considered invalid,
provided that a single misread bit could interfere on the message
as a whole.

Thus, above -60dB we set a new amplitude threshold. An ampli-
tude above this new threshold corresponds to a bit 1 and, otherwise,
to a bit 0. This threshold is determined dynamically accordingly
to the current amplitude of the reference frequency. This is done
because the distance between the speaker and the smartphone
affects the amplitude of the frequencies when is received by the
microphone. The fixed threshold for invalid bits (-60 dB) should
not be lower, due to other ambient sounds possibly be mistakenly
considered valid or higher so that the dynamic threshold has a wide
enough area for the bit 0 amplitude reception.

The reception is done in three steps: sample capture, conversion
and analysis (we have not implemented a synchronization method).
First we capture 44100 samples per second, as it is recommended to
function in all Android devices in the API’s documentation and it
suits our needs. By the Nyquist Theorem, this provides us, at most,
coverage for 22050Hz frequency. Each sample takes around 0.5ms to
be captured. Then we use a FFT (Fast Fourier Transform) algorithm
with a buffer size of 512 to convert the raw sound sample to values in
dB. Finally, we analyze the amplitude of each frequency comparing

66



Towards Data Transmission Through Inaudible Sound in Ginga-NCL WebMedia 2018: Workshops e Pôsteres, Salvador, Brasil

itself to the reference frequency amplitude. One frequency is a bit 1
if it has the same or greater amplitude than the reference frequency.

After all the samples of the bits of the message are collected
during its 100 ms period, the previous amount of 1’s and 0’s of that
particular message are analyzed. It is determined which one has at
least 2/3 of the total count of samples. In the end, it is set if that bit
is a 1 or 0 and then compose the message’s eventual outcome.

3 THE SET-TOP BOX EXPERIMENT
Before evaluating our approach in the TV environment (Figure 1b),
we experimented on the PC environment (Figure 1a). In particular,
we checked if the same signal which was generated in real-time by
our GStreamer pipeline could be transmitted by pre-rendered audio
samples—and the result was positive. The pre-rendered message
was received just as the real-time one. On average, in the PC envi-
ronment we achieved the same bit-rate using pre-rendered samples.
We did this experiment because although TV environment has no
support for audio synthesis it can play audio files. So, one approach
to inject an inaudible audio signal in the TV environment is through
an application which uses such pre-rendered samples.

The Brazilian Digital TV system uses the Ginga-NCLmiddleware
for application development. Those applications are written in
the NCL language [1]. Figure 3 depicts an initial version of this
application. Each frequency uses a <media> element for each pre-
rendered sample. The volume property defines the bit value.

<media id="freq_ref" src="19500.mp3">
<property name="volume" value="100%">

<media>
<media id="freq_1" src="20000.mp3">
<property name="volume" value="30%">

<media>

Figure 3: Part of the NCL code using pre-rendered samples.

The TV environment we used (depicted on Figure 1b) consisted
of a TV plus a TS 2017 set-top box. This set-top box was distributed
by the Brazilian government during the switch-off of the analog TV
signal. The deployment of our application in this environment lead
us to discover a decoding bottleneck. Although the TS 2017 set-top
box is compliant with the SBTVD [1] requirements, it has only one
decoder for video and one decoder for audio, which means that
it cannot play more than one audio file at a time. This limitation
prevented us from using the pre-rendered audio samples.

One possible workaround to this bottleneck is to encode the
signal into the audio transmitted by the broadcaster. The audio
signal can then be mixed with the video being broadcast and re-
ceived in all television sets, including the sets of those users not
interested on it. But regarded that only high frequency sounds are
being generated to transmit the message, those users do not need
to worry about it.

4 THE SIGGEN MEDIA OBJECT
With the failure of the set-top box experiment, our next attempt
was to extend Ginga-NCL with support for audio synthesis. We
did this by integrating our GStreamer pipeline into PUC-Rio’s
NCL player [7], as a new media player, called SigGen. More pre-
cisely, we extended NCL with new type of <media> element, called

x-ginga-siggen. Figure 4 presents a NCL application that creates
such <media> elements. The freq and volume properties of these
elements are used to synthesize a pure frequency.

<media id="freq_ref" type="application/x-ginga-siggen">
<property name="freq" value="19500"/>
<property name="volume" value="1"/>

</media>
<media id="freq_1" type="application/x-ginga-siggen">
<property name="freq" value="20000"/>
<property name="volume" value="0.3"/>

</media>

Figure 4: SigGen media object declarations in NCL.

We extended our initial pipeline to also present a visual repre-
sentation of each frequency. This way a visual representation of
the frequencies can be shown on screen. The complete GStreamer
pipeline we used is depicted in Figure 5. Note that the SigGen
player does not require an audio decoder: it generates raw audio
data which can be passed directly to the audio driver.

AudioTestSrc AudioConvert Tee

Quee1 AutoAudioSink

Quee2 Spectrascope VideoConvert

AppSink

Figure 5: Player SigGen pipeline.

With the SigGen player working, we moved on to implement
our encoding algorithm using an NCLua script. The idea was to
use such script to change the properties of SigGen media elements
(one per frequency) dynamically via the NCLua event.timer API.
However, we run into another problem. In PUC-Rio’s NCL player,
the speed at which the event-loop runs is limited by the monitor
frame-rate (usually, 60Hz). This upper limit is too low for the cor-
rect implementation of our encoding algorithm, which requires a
precision of the order of microseconds.

One way to work around this problem is what is called, the use
case Timeline. This use case is not intended to have a high bit-rate
requirement to transmit messages. Instead it focus on transmitting
time-stamps with precision greater then Ginga’s event loop, so
the bottleneck is surpassed by making the algorithm slower. To
send time-stamps during a TV show, for instance, we may use the
first four frequencies to determine the show and the remaining 8
frequencies to carry the time-stamps since the show began. For
example, a pre-downloaded image or video propaganda can be pre-
sented at some specific moment of the TV show on the smartphone.
Two videos were made to present a simulation of this propaganda
scenario. On video3 the smartphone screen is shown and on video4
the transmission as a whole.

5 RELATEDWORK
Other works also share our motivation in terms of data transmis-
sion using inaudible sound. Jang et al. [5] and Bang et al. [2] focus
on sending only one message during all transmission, whereas

3imgur.com/a/FUov3mu
4imgur.com/a/MirE3sy

67



WebMedia 2018: Workshops e Pôsteres, Salvador, Brasil João Victor G. de S. Nunes et al.

Table 1: Comparison summary.

Feature Jang [5] Bang [2] Lakhwani [8] Tsugawa [9] This work

Number of data/total frequencies 32/40 32/40 2/2 8/20 12/13
Sampling rate (Hz) 48000 44100 44100 44100 44100
FFT sample size 32768 8192 1024 512 512
Frequencies used (kHz) 18 to 24 18 to 22 20.7 and 21 17.959 to 20.973 19.5 and 20 to 21.6
Dynamic bit threshold yes no yes yes yes
Error handling method CRC 8 bits CRC 8 bits no Hamming Code (7,4) Invalid bit
Send time (ms) 92 500 105 150 100+300 (data+silence)
Bit-Rate (bps) 347 (same msg) 64 (same msg) 19 53 30
Sucess rate 99.8% 97.5% 76% 93% 60%
Synchronization method no no handshake preamble detection no
Noise when redone with GStreamer yes yes no yes no

Lakhwani et al. [8] and Tsugawa et al. [9] focus on sending a se-
quence of messages. We discuss each of these works next. Table 1
presents a summary of their main features.

Jang et at. [5] use 40 evenly divided frequencies in a flexible
range between 18000Hz and 24000Hz. They use 8 bits for CRC
(cyclic redundancy correction) and transmit each piece of data for
92ms, achieving a bit-rate of 347bps. Their main limitation is the fact
that they use 48kHz as sampling rate. This sampling rate increases
the number of frequencies that can be used, but is not recommended
for reception on Android smartphones.

Bang et al. [2], similarly to Jang et al., use 40 frequencies between
18050Hz and 21950Hz with a guard band of 100Hz. They also use
8 bits for CRC and transmit each piece of data for 500ms, achieving
bit-rate of 64bps. Their main limitation is that they do not have
a dynamic bit threshold to handle distance variation between the
transmitter and the receptor.

Lakhwani et al. [8] use only two frequencies, 21000Hz and 20700Hz,
the former representing a bit 1 and the latter representing a bit 0.
They transmit each piece of data for 105ms achieving a bit-rate
of 19bps. To handle the synchronization of messages, their trans-
mitter also have a microphone and performs a handshake with the
receiver. Lakhwani et al. are not concerned with improving the
bit-rate or correcting errors.

Tsugawa et al. [9] use 20 frequencies between 17959Hz and
20973Hz. Six of these are used for Hamming Code error correction,
two for dynamic bit threshold, and two for synchronization. The
synchronization bits are used before the data bit analysis happens
at the start of each transmission. Their algorithm waits for two
successful transmissions of the synchronization bits in order to
guarantee the correct start of the data bits analysis. Tsugawa et
al. transmit each piece of data for 150ms achieving a bit-rate of
53bps. However, they work only with pre-rendered audio samples
generated on MATLAB.

Our transmission algorithm achieves a bit-rate of 30bps. On the
PC environment described earlier, it has achieved an average rate of
successful reception for the whole message of 60% and for the bits
individually of 76%. The algorithm with the highest transmission
rate in the works we are considering is the one from Tsugawa et al.
This algorithm also has a good success rate. We used our GStreamer
pipeline to test the frequency selections of all algorithms discussed
in this section. Except for Lakwhwani et al., which only uses two
frequencies, all of the selections generated frequency beats and
noise.

Comparing the number of frequencies we used (13) to the number
used in other works, e.g., 20 in Tsugawa et al., our work indeed
uses less frequencies, but retains no audible noise reproduction
coming from undesired beat frequencies while using the GStreamer
pipeline with our frequencies placement . An increase in the number
of frequencies to 20 could be attempted in two ways. One way
is to widen the area of the spectrum used by the reallocation of
the reference frequency, but this could increase the amount of
noise generated. Another way is to decrease the gap between the
frequencies and increase the FFT sample size. This, however, would
slow down the capture speed of the Android devices which would
reduce the bit-rate.

6 FINAL REMARKS
This paper presented lessons learned from our experiments to trans-
mit data through inaudible sound in the PC and TV environments.
Although related work achieves higher bit-rates, our contribution
is in the discussion of the problems and workarounds for making
the technique feasible on the digital TV environment.

As future work, we intent to improve the use of our data-carrying
frequencies in order to increase the bit-rate achieved by our algo-
rithm. We also intend to extend the algorithm to handle errors and
to improve the transmission-reception synchronization.

REFERENCES
[1] ABNT 15606-2. 2007. Digital Terrestrial TV — Data Coding and Transmission

Specification for Digital Broadcasting — Part 2: Ginga-NCL for Fixed and Mobile
Receivers: XML Application Language for Application Coding. (2007).

[2] Green Bang, Myoungbeom Chung, and Ilju Ko. 2016. Data communication
method based on inaudible sound at near field. (2016), 4.

[3] Luke Deshotels. 2014. Inaudible Sound As a Covert Channel in Mobile Devices.
In Proc. 8th USENIX Conf. Offensive Technologies.

[4] Michael Hanspach and Micahel Goetz. 2013. On Covert Acoustical Mesh Net-
works in Air. J. Communications 8, 11 (2013). DOI:http://dx.doi.org/10.12720/
jcm.8.11.758-767

[5] Insu Jang, Myoungbeom Chung, and Hyunseung Choo. N/A. Reliable Short-
Distance Data-Transmission Mechanism Using Inaudible High-Frequency
Sound. (N/A), 10. https://insujang.github.io/assets/pdf/research_paper_data_
communication.pdf

[6] Soonwon Ka, Tae Hyun Kim, Jae Yeol Ha, Sun Hong Lim, Su Cheol Shin, JunWon
Choi, Chulyoung Kwak, and Sunghyun Choi. 2016. Near-ultrasound Communi-
cation for TV’s 2nd Screen Services. In Proc. ACM 22nd Ann. Int. Conf. on Mobile
Computing and Networking.

[7] TeleMidia Lab. 2018. (2018). https://github.com/TeleMidia/ginga
[8] Sahil Lakhwani, Nishant Pardamwar, and Nikhil Khewalkar. 2015. High Fre-

quency Sound Based Device Communication. IJARCCE 4, 3 (March 2015).
[9] Hiroaki Tsugawa and Masakatsu Ogawa. 2017. Proposal of Ultrasonic Commu-

nication Method and Its Application to Position Estimation System. J. Signal
Processing 21, 4 (2017).

68


