
MobSink: a Visual Mobile Wireless Sensor Networks Positioning
Simulator

João Paulo Just Peixoto
Federal Institute of Bahia

Vereador Romeu Agrário Martins St., Tento
Valença, BA 45400-000
joao.just@ifba.edu.br

Daniel G. Costa
State University of Feira de Santana
Transnordestina Av., Novo Horizonte

Feira de Santana, BA 44036-900
danielgcosta@uefs.br

ABSTRACT
The planning and deployment of a WSN (Wireless Sensor Network)
in a Smart City can be a very challenging work. People involved in
such implementation must be aware of how sensors and sinks may
behave in the target environment. To aid the development of new
WSNs, simulation tools are often used to predict how nodes will
interact before spending time and money in a real deployment. Also,
simulator can help students better understand WSNs. In this paper,
we present MobSink, a simulator for WSNs with multiple mobile
sinks. MobSink also allows to perform simulations in a Smart City
scenario, with streets and movements constraints. It also shows
how to configure MobSink for a generic scenario and describes how
it works internally.

KEYWORDS
simulation, WSN, sinks mobility, smart city

1 INTRODUCTION
AWireless Sensor Network (WSN) is an ad-hoc network composed
of several sensor nodes that gather environment data as tempera-
ture, humidity, luminosity and also multimedia data as audio and
video. The sensed data is then transmitted in a hop-by-hop manner
to centralized nodes called sinks, which can be connected to the
Internet or to a local server to deliver all the collected data to an
application [9].

The main purpose of WSNs is to monitor environments, apply-
ing the data obtained from the network in specific applications
[1]. Sensor nodes can also be deployed in a Smart City to collect
many useful information as pollution status, urban noise, local
temperature, traffic density, etc. There are several possibilities of
applications of WSNs in Smart Cities, like smart surveillance, smart
transportation, smart services, among others [3]. In such scenarios,
sinks can be installed in vehicles to run across the roads, collecting
data from sensor nodes as they pass by them [6].

In an ordinary WSN, the sensor nodes have some hardware
constraints: restricted energy supply, reduced processing power,
lowmemory, low communication range, etc. Most of the constraints
of a sensor node are related to the low power available (most sensor
nodes run with non-rechargeable batteries [2]).

In: XVII Workshop de Ferramentas e Aplicações (WFA 2018), Salvador, Brasil. Anais
do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e Pôsteres.
Porto Alegre: Sociedade Brasileira de Computação, 2018.
© 2018 SBC – Sociedade Brasileira de Computação.
ISBN 978-85-7669-435-9.

In order to create a sensing environment, several sensor nodes
must be deployed into the area of interest, which can be time con-
suming and costly if the network is not well designed [2]. When
trying to predict the performance of a WSN before its deployment,
simulators can be used to support better designing of the network
[4, 7, 8]. Also, they can help students to learn more about WSN
configurations without the need to buy and deploy real hardware.

In this paper we describe the development of the new tool Mob-
Sink, a software specially designed to simulate WSNs in a Smart
City environment. The main purpose of MobSink is to test energy
consumption and data delivery in a WSN with mobile sinks in a
Smart City. A traffic model is used to calculate the fastest route of
a mobile sink in such a way it can avoid traffic jams and reach its
destination as fast as possible. The use of this type of simulator
can aid the designing and deployment of WSNs in a Smart City
scenario, as well to help students to better understand how a WSN
works with multiple mobile sinks. MobSink is focused in multiple
sinks positioning and do not consider routing algorithms, transport
protocols, etc.

MobSink is licensed under GNU GPLv3 (GNU General Public
License version 3) and its source code is available on GitHub. This
makes possible to students to learn how to code tools for WSN
simulation and also contribute with this project.

The remainder of this paper is organized as follows. Section 2
presents the energy model and positioning scheme used in Mob-
Sink, while section 3 explains how these models were implemented;
section 4 describes how to simulate a Smart City scenario and 5
concludes this paper and presents future works.

2 MOBSINK INTERNALS
The MobSink tool works by simulating sensor nodes that generate
data and that forward the buffered data to the next hop, which
is another sensor node, until the data reaches the nearest sink.
Actually, there are different possible behaviors for the sensor nodes,
but the MobSink tool was designed to incorporate the relevance-
based scheme proposed in [5]. In that proposal, each sensor node
has a RL (Relevance Level) that varies from 0 (no relevance) to
15 (highest relevance). Generally speaking, the relevance level of
each sensor node can be defined in different ways, but the values
of RL will usually be a reflection of the applications monitoring
requirements (e.g. a temperature sensor near a nuclear reactor may
have higher relevance than a sensor node monitoring the ambient
temperature in the same WSN). It is reasonable to expect that the
amount of data generated by a sensor node depends on its RL
(RL = 0means no data is generated by the sensor and it works only
as a relay node).

103



WebMedia’2018: Workshops e Pôsteres, WFA, Salvador, Brasil João Paulo Just Peixot and Daniel G. Costa

In wireless sensor networks, data transmission and relaying tasks
are expected to consume most energies of the nodes. Therefore, the
position of the sinks influence the path data packets must follow to
reach their destinations, also impacting in the amount of consumed
energy. This particularity of WSNs was specially considered when
designing the MobSink tool.

The following subsections describe how MobSink computes the
energy consumed by each sensor node and how this tool moves the
sink nodes inside the modelled WSN.

2.1 Energy consumption
The MobSink tool operates generating data packets at source nodes
and transmitting them to the nearest sink, which is performed in
the scope of a “simulation”. At each iteration of a simulation, every
sensor node generates PDUs (Packet Data Units) according to its RL
(sensor nodes with RL = 0 generate no data). Each generated packet
is then inserted into a buffer for further transmission. If the buffer
is full, the exceeding packets are discarded and this information is
accounted for a final report. After inserting the generated PDUs
into the local buffer, the sensor node transmits to the next hop,
which receives the packets and stores them into its buffer (again, if
the receiver node’s buffer is full, the packets are dropped).

This whole process is performed once at each iteration for every
sensor node in the WSN simulation. Data transmission and recep-
tion procedures result in energy consumption in each node that
participated in the considered communication. Currently, MobSink
uses the power scheme described in [5]: each PDU is 127 bytes
sized, the power used in transmission and reception of packets is
60 mW and 4 µs are needed to transmit each bit of data (computed
according to the maximum transmission rate, which is based on
the IEEE 802.15.4 standard). Also, each sensor node is supplied by
a 3 V battery with 1000 mAh capacity and has a 128 KB buffer.
Although the current version of MobSink does not allow for con-
figurable power source and buffer, future releases will feature a
configuration file.

When a packet leaves the source node, it is relayed by some
intermediate nodes until it reaches the sink. The energy consumed
in each intermediate node is computed to account the total energy
spent in the simulation. Let Dtx (i) be the size of the packet trans-
mitted from node i in bits, Ptx (i) the power needed by node i to
transmit a bit and t(i) the time needed by node i to transmit a bit,
E(i) is then the total power needed by node i to transmit a packet,
as shown in Equation 1.

Etx (i) = Dtx (i) · Ptx (i) · t(i) (1)
In the sameway,MobSink computes the energy needed to receive

a packet in each sensor node. The equation is almost the same, but
MobSink considers the size of the received packet in node i as
Drx (i) and the reception power as Prx (i) in Equation 2.

Erx (i) = Drx (i) · Prx (i) · t(i) (2)
In a sequence S = (s0, s1, ..., sn ) of sensor nodes, the total energy

spent to send a packet from its source to the sink is obtained by
summing the energy spent by each node to transmit the packet
to the next hop and the energy spent by each node to receive the
packet from its origin, as described in Equation 3.

n−1∑
i=0

Etx (i) + Erx (i + 1) (3)

2.2 Sinks positioning
MobSink provides three main positioning schemes for sinks: static,
fixed movement and relevance-based.

In the static scheme, the sinks are positioned in a grid centralized
manner and they keep their initial positions during the whole sim-
ulation time. No movements are performed in this scheme. Distant
sensor nodes must relay its data through intermediate nodes to
reach the sink. Although currently MobSink does not allow for a
custom fixed position, this is a feature to come in a future release.

In the fixed movement scheme, the sinks move on straight lines
which can be a horizontal or a vertical path through the WSN. The
sink moves at a constant speed and just like the static scheme, its
initial position is defined by the simulator.

At last, in the relevance-based scheme, MobSink uses the ap-
proach defined in [6]. In such way, the sinks positions are defined
by the relevance levels of sensor nodes. The goal of this approach is
to make sinks closer to more relevant nodes, potentially improving
the global performance of the network, since sinks will be closer to
the source nodes that transmit more data (higher values of RL. If
there are more than one sink in the WSN, this algorithm creates
clusters of sensors according to their relevances. The total RL of the
clusters, defined by the sum of the sensors relevances in a cluster,
are balanced in a way that each cluster total RL do not differ too
much from the others.

When using the relevance-based scheme, a Smart City scenario
can be easily simulated. The user can model streets of a city and
the sinks will move through these streets to reach its final positions.
Every time the topology changes (e.g.: a sensor node RL changes
or runs out of energy), MobSink recalculates new positions for the
sinks and make them move. The sinks paths always obey roads
restrictions, if defined by the user.

3 SOFTWARE ARCHITECTURE
The MobSink was designed to model the operation of any WSN
that has one or more static or moving sinks, which complies with a
lot of different real sensor networks. For that, the operation details
of wireless sensor networks were carefully considered.

This section explains how a WSN is simulated and how sinks
positions are calculated in a Smart City scenario. Subsection 3.1
presents the mechanism used to calculate energy consumption
and data traffic in a simulation, while subsection 3.2 presents the
developed mechanisms to model a city and its associated traffic
behavior.

3.1 WSN simulation
To simulate aWSN, some classes were implemented to represent the
actors in a WSN. Figure 1 presents a class diagram showing the rela-
tions of nodes and sinks in MobSink. When the user inserts any new
sensor node in the WSN, an object of “Node” class is instantiated.
After specifying how many sinks will be used in the simulation,
MobSink instantiates a “Sink” object for each sink in simulation
and a “Cluster” object for each sink. Each “Cluster” object has a

104



MobSink: a Visual Mobile Wireless Sensor Networks
Positioning Simulator WebMedia’2018: Workshops e Pôsteres, WFA, Salvador, Brasil

Sink

- connected : bool

Cluster

- sink : Sink
- nodes : Node
- received_pdus : double = 0
- dropped_pdus : double = 0
- moved_pixels : float = 0

Node

- x : float
- y : float
- RL : int
- power : double
- active : bool

Figure 1: Class diagram for MobSink.

sink associated to it, besides several nodes. The nodes associations
are made depending on the chosen positioning algorithm.

When simulation starts, MobSink positions every sink according
to the employed positioning algorithm, associating each node to
its nearest sink. This is done by adding a reference of the node
object to the correspondent Cluster object. After this, MobSink has
some clusters (one for each sink), containing its nodes. The sensor
nodes can only communicate with other nodes in the same cluster,
including the sink.

MobSink simulates “one second” intervals. At each iteration, it
checks every sensor node and sends it amessage to “work” (generate
data and update its status according to user’s programmed schedule).
The sensor node will generate packets according to its relevance
level and sinks may be repositioned if there was any topology
change in the network (e.g: a sensor toggles active/inactive or
changes its relevance level). At last, active sensors with buffered
data transmit to the next hop. At the end of the iteration, one second
has passed in the simulated scenario and every active sensor has
generated and/or relayed data. Figure 2 presents the flowchart of
MobSink simulation.

After simulation finishes, the cluster object has accounted the
total of received and dropped packets, distance traveled by its sink
and power consumption of all sensor nodes.

3.2 Smart City modeling
In oder to model a Smart City scenario, MobSink simulates roads
and their traffic behavior. Before simulation begins, MobSink checks
every road added by the user and finds all intersections between
them. Each road is modeled as an edge in a directed weighted graph.
Roads’ source and destination points are modeled as vertices and
so are their intersections.

To set a weight in each edge, MobSink uses the total time to
traverse the road, calculated using the road’s length and average
speed as parameters. Our approach to simulate traffic jams was
to use the roads legal speed limit defined as V (r ) as a maximum

Figure 2: Flowchart of MobSink simulation.

105



WebMedia’2018: Workshops e Pôsteres, WFA, Salvador, Brasil João Paulo Just Peixot and Daniel G. Costa

vehicle speed, applying then a traffic coefficientm(r ) (as shown in
Equation 4) to set the approximated time to traverse each road. By
using these parameters with the road’s length, defined as S(r ) in
that Equation, it is possible to calculate the time spent to traverse a
road r . The user can then program a traffic schedule and simulate
traffic jams along the simulation time.

t(r ) = lim
x→m(r )

S(r )
V (r ) · x (4)

Every time a sink has to be positioned in the map, Dijkstra’s
algorithm is run, using the specified weight (t(r )) to find the fastest
route, avoiding traffic jams. The simulator also offers an option
to use the shortest routes, ignoring traffic information. A control
schedule is implemented in a WSN XML file, setting traffic data for
each road.

3.3 WSN XML programming
Sensors behavior and traffic can be dynamically changed during the
simulation. The way MobSink allows it to be done is by specifying
the changes and the times they occur in a well-formatted WSN
XML file. Each sensor node is defined by a sensor tag in the XML
file, containing its coordinates in the map and the initial relevance
level. Inside the sensor tag, a control tag is used to define a change
in the sensor behavior. The control tag has three attributes: time,
to specify at which time of simulation the change will be applied;
rl, to specify the new relevance level of the sensor; and enabled, to
enable or disable the sensor node at that time of simulation.

The roads, if any, are defined by a path tag, containing its two
vertices coordinates and flow (it may be an one-way road). Like the
sensor nodes, the roads may have control tags with three attributes:
time, like sensor nodes, to specify the time of change; speedlimit, to
specify the new speed limit from that time on; and traffic, varying
from 0 (stopped traffic) to 1 (free road), to specify the traffic behavior
at that moment. The traffic attribute is used asm(r ) in Equation 4.
Listing 1 shows an example of a WSN XML file for MobSink.

Listing 1: MobSink XML sample
<?xml version ="1.0" encoding ="UTF -8"?>

<network width="200" height="200">

<path xa="0" ya="50" xb="100" yb="50">

<traffic time="1" speedlimit="60"

traffic="1"/>

<traffic time="3600" speedlimit="60"

traffic="0.3"/>

</path>

<sensor x="10" y="40" rl="1">

<control time="0" rl="0" enabled="false"/>

<control time="60" rl="5" enabled="true"/>

</sensor >

<sensor x="70" y="70" rl="1">

<control time="0" rl="0" enabled="false"/>

<control time="120" rl="7" enabled="true"/>

<control time="180" rl="0" enabled="false"/>

</sensor >

</network >

4 SIMULATING AWSNWITH MOBSINK
A simulation of a generic WSN deployed on a city will be presented,
demonstrating the operation of the MobSink tool. In this section, a
map of the city of Feira de Santana (Brazil) is considered, assum-
ing that sensors will be deployed in this city. The MobSink can
be used as shown in Figure 3 (main screen of the tool) to model
every street of the city or the user can convert maps exported from
OpenStreetMaps directly to the MobSink format, which is a feature
also provided by the MobSink tool.

Once the user has created a map for simulation or imported a
map from OpenStreetMaps, he/she can insert sensor nodes to create
a WSN. There are three ways to insert sensor nodes:

• Manually: the user can click the sensor tool, type a rele-
vance level in “RL” text box and click the position on the
map where he/she wants to insert the sensor.

• Grid: the user can type the amount of sensors to be inserted
into the “Sensors” text box and click the “Insert sensors in
a grid manner” button. The sensors will be inserted onto
the map forming a regular grid.

• Randomly: the user can type the amount of sensors to be
inserted into the “Sensors” text box and click the “Insert
sensors randomly” button. The sensors will be inserted
onto the map in random positions.

In any of these options, there is also a possibility to randomly
select the relevance level of the new sensor nodes by clicking the
“Insert sensors with random RLs” button. In this case, every time
the user inserts a new node, its relevance level will be randomly
chosen.

After inserting sensors nodes, the sinks have to be inserted. The
current version of MobSink does not allow to insert sinks in user-
defined positions. Instead, the user has to type how many sinks
he/she wants to insert into the “Sinks” text box, choose a sink posi-
tioning algorithm from the combo box labeled “Sink positioning”
and click the “car" button. MobSink will place the sinks according
to the chosen sink positioning method.

At last, the user can type the simulation time in seconds into
the “Time” text box and start a simulation. To do so, the user has
to click the “Start simulation” button. MobSink will simulate the
network for the time the user has chosen and display its results in
the text box at the right corner of the main window.

After a simulation had run, it is possible to save all the simulation
data into a CSV file by clicking the “Save report” button. This file
can be opened in most spreadsheet applications and can be parsed
to generate graphics of energy consumption in the WSN. Along
with energy and transmission data, it contains every movement the
sinks may have done during the simulation. Figure 4 contains an
example of a chart created with GNU Plot just processing MobSink
provided data.

Also, it is possible to run an animated simulation if the user clicks
the “Enable sinks animation” button. Sometimes, this is worth to
watch the sinks moving during the simulation (the paths chosen by
the sinks are highlighted every time they move). Actually, this is
a helpful resource provided by our tool that can support different
teaching methods in networks and WSN classes.

Finally, if the user needs to run several simulations in a batch
manner, MobSink offers a command line interface.

106



MobSink: a Visual Mobile Wireless Sensor Networks
Positioning Simulator WebMedia’2018: Workshops e Pôsteres, WFA, Salvador, Brasil

Figure 3: MobSink main screen.

 0

 5000

 10000

 15000

 20000

 25000

 30000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

D
ro

p
p
e
d
 P

D
U

s

Time of simulation

Dropped PDUs

Figure 4: Number of dropped PDUs.

5 CONCLUSIONS
This paper presented MobSink, a novel tool to simulate multiple
sinks positioning in WSNs and associated energy consumption.
MobSink can be used to simulate dynamic sensors behavior and
traffic jams, allowing the user to assess energy consumption and
packet losses. The energy consumption accounting and sinks posi-
tioning algorithms were described in this paper, as well a flowchart
explaining how the tool works when simulating a WSN. Also, the
mechanism for sensors and traffic configurations were shown.

We believe MobSink can be very useful to students who want to
better understand the basics of WSNs, sinks positioning and Smart
Cities. And this will be even more evident in future versions of the
tool, which will include additional features in this sense.

6 DOWNLOAD
The MobSink software can be downloaded from http://just.pro.br/
blog/mobsink

REFERENCES
[1] Y. Charfi, N. Wakamiya, and M. Murata. 2009. Challenging Issues in Visual

Sensor Networks. Wireless Commun. 16, 2 (April 2009), 44–49.
[2] E Egea-Lopez, J Vales-Alonso, AS Martinez-Sala, P Pavon-Marino, and J García-

Haro. 2005. Simulation tools for wireless sensor networks. In Symposium on
Performance Evaluation of Computer and Telecommunication Systems (SPECTS).
24.

[3] G. P. Hancke and G P. Silva, B.and Hancke Jr. 2012. The Role of Advanced Sensing
in Smart Cities. Sensors 13, 1 (2012), 393.

[4] M. Jevtic, N. Zogovic, and G. Dimic. 2009. Evaluation of Wireless Sensor Network
Simulators. 17th Telecommunications Forum.

[5] J. P. J. Peixoto and D. G. Costa. 2015. QoE-aware multiple sinks mobility in wire-
less sensor networks. In Conference on New Technologies, Mobility and Security
(NTMS). 1–4.

[6] J. P. J. Peixoto and D. G. Costa. 2017. Wireless visual sensor networks for smart
city applications:A relevance-based approach for multiple sinks mobility. Future
Generation Computer Systems 76 (2017), 51 – 62.

[7] D. Rosario, Z. Zhao, C. Silva, E. Cerqueira, and T. Braun. 2013. An OMNeT++
Framework to Evaluate Video Transmission in Mobile Wireless Multimedia
Sensor Networks. In Conference on Simulation Tools and Techniques (ICST).

[8] H. Sundani, H. Li, V. Devabhaktuni, M. Alam, and P. Bhattacharya. 2008. Wire-
less Sensor Network Simulators: A Survey and Comparisons. 2 (April 2008).
International Journal Of Computer Networks.

[9] J. Yick, B. Mukherjee, and D. Ghosal. 2008. Wireless sensor network survey.
Computer Networks 52, 12 (aug 2008), 2292–2330.

107


