
A GALS Approach for Programming Distributed Interactive
Multimedia Applications

Rodrigo C. M. Santos
PUC-Rio

Rio de Janeiro–RJ 22451-900
rsantos@inf.puc-rio.br

Francisco Sant’Anna
UERJ

Rio de Janeiro–RJ 20550-900
francisco@ime.uerj.br

Noemi Rodriguez
PUC-Rio

Rio de Janeiro–RJ 22451-900
noemi@inf.puc-rio.br

ABSTRACT
Multi-device (or distributed) multimedia applications are programs
designed for exploring multiple devices during their execution.
Most of these applications allow users to interact with them, defin-
ing their flow of execution. We argue that current programming
approches still lack proper support for developing these applica-
tions. In a previous work we have discussed the use of the synchro-
nous language Céu for programming multimedia, which has led
to the development of the library Céu-Media as a partial result
of this work. Now we are extending our work for approaching
distributed applications. More precisely, we are devising a GALS
(Globally Asynchronous Locally Synchronous) middleware that sup-
ports the development and execution of multi-device multimedia
applications and guarantees the consistency between devices.

KEYWORDS
Multi-device Applications, Synchronous Languages, GALS, Céu,
Céu-Media, Synchronization, Consistency

1 INTRODUCTION
The proliferation of personal multimedia-enabled devices—such
as smartphones, tablets, smartwatches, etc.—has encouraged the
development of multimedia applications using multiple devices, the
so-called distributed or multi-device multimedia applications. Here
we call interactive those applications that allow users to interact
with them. There are at least two issues when developing interactive
multi-device applications. The first one is their programming, that
is, the support in terms of languages and frameworks programmers
have for aiding during the development phase. The second regards
the runtime support, that is, guarantees provided by the underlying
middleware or framework during the execution phase.

To better frame our discussion, let’s consider the five-layered
synchronization reference model proposed by Costa Segundo and
Santos [9] depicted in Figure 1. The media, stream, object and
semantic layers cover runtime support techniques, while the speci-
fication layer embodies approaches for supporting the specification
of programs. In the media layer lies techniques for achieving intra-
stream synchronization, while the stream layer refers to approaches
regarding inter-stream synchronization.

The object layer involves what the authors call synthetic syn-
chronization: approaches for satisfying relationships that are not

In:XVII Workshop de Teses de Dissertações (WTD 2017), Gramado, Brasil. Anais do
XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e Pôsteres. Porto
Alegre: Sociedade Brasileira de Computação, 2017.
© 2017 SBC – Sociedade Brasileira de Computação.
ISBN 978-85-7669-380-2.

encoded directly within media objects. Players of high-level mul-
timedia languages fit in this layer. The semantic layer deals with
synchronization in a contextual way, comprising content, spatial
and temporal relationships between objects (e.g., inter-destination
synchronization). Finally, in the specification layer lies proposals
for aiding the programming of multimedia applications.

Figure 1: Five-layered synchronization model [9].

Some of the issues regarding the development of multi-device
applications have been extensively studied by related work, but
most of them proposes or discusses approaches that fit into one of
the four horizontal layers. For instance, [22, 31] are comprehensive
surveys about distributed multimedia synchronization techniques
(stream and semantic layers). Stokking et al. [28] propose a network-
based approach for achieving inter-destination synchronization in
IPTV settings (stream and semantic layers). Challenges in devel-
oping multimedia systems supporting social viewing of shared
content are discussed in [6, 13] (semantic layer). Mauve et al. [21]
propose the local-lag and timewarp approaches for maintaining
the consistency when executing distributed continuous applica-
tions (semantic layer).

Here we are concerned with the specification of the semantic
layer, which is a view often disregarded by previous work. More
precisely, we are interested in investigating how one can program
multimedia interactive applications in a precise (non-ambiguous)
and coherent (following consistent concepts) way. Therefore, our
main focus is in the high-level support for programming these ap-
plications rather than proposing novel runtime support approaches
for these systems. Current approaches are either too low-level (mul-
timedia frameworks for general purpose languages) forcing users
to program part of the communication layer, or are ambiguous and
lack expressiveness (declarative multimedia languages).

Clearly, any effective approach that covers the specification layer
will involve most if not all the previous layers—there is no point
in proposing a programming framework without providing means
for supporting its execution. Hence, although focusing on the spec-
ification, we should implement approaches from other layers for

Anais do XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e Pôsteres

52



WebMedia’2017: Workshops e Pôsteres, WTD, Gramado, Brasil Rodrigo C. M. Santos, Francisco Sant’Anna, and Noemi Rodriguez

guaranteeing that the execution of applications indeed corresponds
to what have been specified in their source code.

The interactive qualified stated in the last paragraphs actu-
ally brings additional complexity to the problem. Most of non-
interactive programs can have part of their behavior statically
checked, which can be used for compensating network delays in
distributed applications. For instance, the streaming of a given
content could start before its scheduled time. On the other hand,
users’ input cannot be known a priori, preventing the implementa-
tion of techniques as the described above ([21] has an interesting
discussion about this).

In this research we are investigating the use of reactive synchro-
nous languages for tackling the interactive multi-device program-
ming problem. Synchronous languages rely on the synchronous
hypothesis that states that programs take no time for producing
outputs when reacting to inputs. Although this abstraction is well
suited for programming local applications (as indicated by prelim-
inary results of this thesis), it cannot be directly applied to the
distributed domain—the synchronous hypothesis does not hold due
to communication latency. For approaching multi-device applica-
tions, we are exploring the GALS (Globally Asynchronous, Locally
Synchronous) architectural style, that considers a distributed sys-
tem as composed of several synchronous nodes that communicate
with each other asynchronously. More precisely, we are devising a
GALS middleware that supports the development and execution of
multi-device multimedia applications.

This paper is organized as follows: Section 2 discusses ap-
proaches for programming multi-device applications. Section 3
presents the theoretical background of this thesis. Section 4 dis-
cusses our proposal and the preliminary results. And, Section 5
highlights the expected contributions and points future work.

2 RELATEDWORK
There are two common approaches for programming multimedia
applications: using general purpose or domain specific languages.
The first approach usually implies in using specialized frameworks
for supporting the programming of complex low-level operations.
GStreamer, FFmpeg, libav, libVLC, DirectShow and AV Founda-
tion are examples of multimedia frameworks for general purpose
languages. Several other frameworks are built upon them.

By relying on general purpose languages, expressiveness is a
strength of this approach. However, it tends to require expert pro-
grammers familiar with details about multimedia processing, cod-
ing, decoding, filtering, transcoding, packaging for streaming, etc.,
hence the use of these frameworks usually demand a non-negligible
learning curve of low level concepts. By design, their APIs favor
operations at intra-stream level over the composition of multiple
objects. As consequence, high-level operations, such as synchro-
nization of different streams, users’ interaction, detection of the
end of media (considering that a single object may have multiple
streams) should be programmed on top of the low-level API, which
requires solid background of the underlying framework.

Programmers commonly resort to threads and/or callbacks for
developing programs composed of multiple objects when using
these frameworks. This introduces another level of complexity,
once it brings to the multimedia programming field the well-known
problems of understandability, predictability and determinism [18].

In general, these frameworks lack proper support for distributed
applications. FFmpeg and libav, for instance, only provides functions
for transcoding media content to formats suitable for streaming—
the streaming per se should be implemented from scratch or using
a third-party library. Others have means for streaming content (lib-
VLC, DirectShow). GStreamer goes a step further by implementing
support for clock synchronization in different devices. High-level
operations like communication, state synchronization, total or par-
tial event ordering are not natively supported by any of them.

On the other hand, multimedia DSLs (also known as multimedia
languages) implement a set of constructs to support the program-
ming of applications without exposing too much low level details.
They tend to favor the specification of the composition of multiple
objects into a unified and coherent presentation. NCL [1], SMIL [32],
IPML [14], HTML5 [34], X3D [16], BIFS [17] and SVG [33] are ex-
amples of multimedia languages. The well-known tradeoff between
high-level abstractions and expressiveness also applies to these
languages, that is, they do not have the same expressiveness of
general purpose languages.

Most multimedia DSLs are interpreted, demanding the existence
of a player (or execution engine). Players take as input a source
code written in a given language and map high-level constructs to
low-level digital signal processing operations producing an audio-
visual presentation as output. Conceptually there are two actors
involved when using multimedia DSLs: the player implementer and
the application programmer. The first one is an expert programmer
familiar with low-level multimedia concepts and is able to use a
specialized framework to implement the execution engine. The
second actor should be familiar only with the constructs offered
by the language, which, in general, implement high-level concepts
focusing on synchronization and composition of objects.

An well-known problem of widespread multimedia languages is
their ambiguity caused by the lack of a deterministic semantics. A
lot of works in literature address this problem by proposing alter-
native semantics [7, 10] or creating tools that statically check pre-
sentation properties (audio overlapping, video/images shadowing,
contradictory constraints) [8, 24]. However, these works consider
just a subset of the languages due to their complexity.

Regarding the programming of distributed applications, SMIL,
HTML, SVG, X3D and BIFS have no support. Some works propose
extensions to SMIL for allowing the specification of QoS streaming
parameters [15, 30]. The W3C Multi-Device Timing Community
Group is proposing the TimingObject concept as an alternative for
precisely timed web applications, which consists of a JavaScript API
that provides a synchronized timeline among different devices (at
the time of this writing, it has the draft status). On the other hand,
NCL and IPML implement declarative constructs for supporting
interactive distributed applications. However, these constructs have
either limited expressiveness or semantic inconsistencies, hindering
the use of those languages in real-world applications.

3 BACKGROUND
We are designing a middleware that offers high-level abstractions,
some similar to those implemented by multimedia languages, but
suitable for the distributed domain. Under the hood, we are ex-
ploring approaches to produce an audiovisual presentation that

Anais do XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e Pôsteres

53



A GALS Approach for Programming Distributed Interactive
Multimedia Applications WebMedia’2017: Workshops e Pôsteres, WTD, Gramado, Brasil

accurately corresponds to its source code, since there is no point in
providing high-level programming abstractions without supporting
their execution. Our intended users are both the actors mentioned
in Section 2, namely player implementers and application program-
mers.

In our approach, we are delving into the use of reactive syn-
chronous languages [3] (synchronous languages, as shorthand) for
programming multimedia applications. These languages rely on the
synchronous hypothesis [2] that considers that programs produce
outputs synchronously with their inputs. Reactive languages divide
computations into a sequence of discrete steps called reactions. Each
reaction executes until its completion before the system can process
any other input. The synchronous hypothesis adds the constraint
that inside each reaction the time does not advance. In practice,
this model assumes that the computation of reactions is faster than
the minimum time interval between external events.

The synchronous approach was originally proposed as an alter-
native for developing safe concurrent real-time embedded systems,
where the synchronous assumption is rather common [11]. Even
though synchronous languages constitute a suited paradigm for
developing interactive reactive programs, an well-known limitation
of them regards the programming of distributed applications, be-
cause communication latency breaks the synchronous hypothesis.
To overcome this issue, we explore the GALS (Globally Asynchro-
nous, Locally Synchronous) design in this research for approaching
the multi-device setting — more on that later in this section.

Some characteristics and guarantees provided by synchronous
languages may be used for solving part of the problems of the
multimedia programming field. In these languages, time advances
in a sequence of discrete input events, defining what is known as
logical time. As argued by Lima [19], in synchronous systems the
logical notion of time supplants the physical notion, since it favors
the specification of operations that should be executed accurately
in a given time instant.

Determinism is another feature embraced by most synchronous
languages. A program is said to be deterministic if given an initial
state and a sequence of inputs, it always executes the same sequence
of operations and reaches the same final state. As pointed by Berry
and Benveniste, the advantages of deterministic systems should
be obvious: there is no reason a programmer should want his/hers
programs to behave in some non-deterministic manner [2].

Synchronous languages have native support for concurrency,
while preserving determinism. Safe concurrency and determinism
are important features for real-time embedded systems that these
languages have been originally designed for.

Support for event handling, in general, is a major concern of re-
active languages. The programming of event-driven applications us-
ing traditional programming models is typically performed around
the notion of asynchronous callbacks. One of the main issues when
using callbacks is that the program control jumps around multiple
callbacks, leading to codes that are hard to follow and/or under-
stand (the so-called Callback Hell problem). In fact, the control flow
is driven by events and not by an order specified by the program-
mer. Synchronous languages overcome these and other problems
by proving abstractions to express how programs should react to
events. Compilers usually guarantee safe access to shared variables,

which yields the advantage that programmers do not need to worry
about the order of events and computation dependencies.

Furthermore, as the synchronous approach has been proposed
based on mathematically sound tools, it provides means for stati-
cally checking properties of programs. In the scope of this research,
this supports the effective development of tools that check whether
the final presentation holds a given set of properties, as for in-
stance audio or video overlapping, contradictory constraints, time
conflicts, etc.

The approach of applying synchronous languages in the multi-
media field is not novel. At the 90’s, some authors have explored
the use of these languages for addressing the problem of real-time
synchronization of streamed media contents [4, 5, 12]. There are
proposals of using these languages for programming applications:
ChucK [35], Pure Data [25], and Faust [23] are some examples of
synchronous DSLs developed for audio processing (also know as
music programming languages). As the human hearing can detect
even small latencies and delays in audio signals, the use of the
synchronous approach represents an interesting alternative for pro-
viding timing guarantees over sample-level operations in the audio
signal.

Smix [19] is a more recent proposal for high-level multimedia
programming that also relies on the synchronous hypothesis. A
Smix program is composed of a set of media objects and a list of
links. Links causally relate events with media object operations
(start, stop, pause, set the value of a property, etc.). The language
has been proposed as an alternative for traditional informal and
ambiguous high-level multimedia languages, therefore since its
conception Smix was designed to have a formal and deterministic
semantics.

These works help to illustrate how the multimedia research com-
munity for long has been investigating the use of synchronous
languages for approaching problems of the field. However, none
of them has explored the use of these languages in the context
of programming interactive multi-device applications, at least at
the abstraction level we are interested in this research. They all
have in common the assumption that the characteristics of synchro-
nous languages constitute a suitable framework for programming
the control part of multimedia systems. Here we borrow this as-
sumption under the programming perspective and apply it in the
distributed domain.

Approaching distributed applications using synchronous lan-
guages is not straightforward. One of the main issues is that in a
distributed setting one cannot assume the synchronous hypothesis
due to the non-negligible communication latency. In fact, some au-
thors consider that defining the precise semantics and consistency
guarantees for reactive programming in distributed systems is an
open research problem [20]. We call a distributed system consistent
if all devices perceive the events of interest in the same order.

A proposed modeling for distributed synchronous systems is
the so-called GALS design. A GALS [29] system is composed of
several synchronous parts that communicate with each other using
an asynchronous medium. In practice, this design is an attempt to
model systems in which individual modules take advantage of the
synchronous approach and the communication latency is usually
the only source of non-determinism. The GALS design has been

Anais do XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e Pôsteres

54



WebMedia’2017: Workshops e Pôsteres, WTD, Gramado, Brasil Rodrigo C. M. Santos, Francisco Sant’Anna, and Noemi Rodriguez

originally proposed for programming multi-clock digital circuits,
in which each synchronous block has its own clock running in its
own frequency, and interconnected through an asynchronous bus.

In essence, we are approaching the problem of programming
of multi-device applications in two levels. For guaranteeing the
synchronization in each device, we are using a multimedia syn-
chronous framework that supports the development of applications
using high-level abstractions and accurately supports their execu-
tion (that its, respecting the timing expressed by users in the source
code)—this framework discussed in Section 4 is a partial result of
this research. For the distributed part, we are using a middleware
for coordinating the communication between devices. This middle-
ware follow the GALS style and one of its main goals is to provide
consistency to the system, accordingly to the definition above.

4 PRELIMINARY RESULTS
We have been exploring the synchronous language Céu [26] for
programming multimedia, which has led to the development of the
framework Céu-Media [27] as a preliminary result of this ongoing
research. Céu is a structured synchronous reactive programming
language that provides native support for event handling and con-
currency. As most of other synchronous languages,Céu’s semantics
is also deterministic. Céu-Media explores Céu characteristics for
providing a multimedia framework capable of accurately program-
ming inter-media synchronization in a local application.

There are two main advantages in using Céu-Media. The first
is its high-level abstractions combined with the expressiveness of
Céu. The framework implements abstractions similar to those of
traditional multimedia languages NCL and SMIL, but avoids their
ambiguity and synchronization problems due to the synchronous
and deterministic semantics of Céu. Additionally, Céu’s support for
event handling and concurrency has been seen as a useful alterna-
tive for programming multimedia in a general-purpose imperative
reactive language.

The second advantage is its accuracy. One of our main concerns
when designing Céu-Media has been to reproduce in the final mul-
timedia presentation the synchronous semantics expressed in the
program’s source code. Hence, Céu-Media guarantees that the pre-
sentation clock does not advance while the program is reacting to a
given event — a discussion of practical implications of this feature
can be found in [19]. Under the hood, we managed to implement
this by developing and attaching to the presentation a determin-
istic monotonic clock which is enslaved to the program’s logical
time. As backend, Céu-Media uses the industry-grade multimedia
framework GStreamer.

The Céu-Media framework consists of three main concepts:
Scene, Media, and Player. A Scene represents a top-level OS window
with audio and (possibly) video output. A Media holds the description
of a media object. And a Player renders a Media on a Scene.

Consider the Céu-Media program depicted in Listing 1. It de-
clares five Media descriptions. vid1, vid2, vid3, and vid4 (lines 1–4) rep-
resent videos (muted_video.gov, a muted video) and audio represents
an audio (audio.ogg, the corresponding audio track). The program
waits for five seconds due to the await statement in line 6 and then
creates a Scene (lines 7–20) for rendering the presentation.

The par/or composition creates concurrent execution trails when
evaluated. The execution of such trails is necessarily deterministic.

Once executed, the par/or statement starts its trails in parallel and
terminates when one them terminates. Thus, the composition in
lines 9–19 creates five Players, one in each of its trails. Each of the
first four trails creates a Player with a distinct video description.
The last trail creates a Player to execute the audio. The program ends
when one of these Player ends.

1 var Media vid1 = Media.VIDEO (" muted_video.ogv", ...);
2 var Media vid2 = Media.VIDEO (" muted_video.ogv", ...);
3 var Media vid3 = Media.VIDEO (" muted_video.ogv", ...);
4 var Media vid4 = Media.VIDEO (" muted_video.ogv", ...);
5 var Media audio = Media.AUDIO ("audio.ogg", 1.0);
6 await 5s;
7 var IScene scene;
8 watching Scene (Size (1080, 720)) -> (&scene) do
9 par/or do
10 await Play(vid1 , &scene);
11 with
12 await Play(vid2 , &scene);
13 with
14 await Play(vid3 , &scene);
15 with
16 await Play(vid4 , &scene);
17 with
18 await Play(audio , &scene);
19 end
20 end

Listing 1:Céu-Media guarantees that all players starts with
the same clock reference and keeps them in-sync.

Conceptually, the logical time does not pass when the program
awakes for the await in line 6 until all trails reach their correspond-
ing await. It means that all Céu-Media Players should start at the
same logical time and, therefore, be executed in-sync. Céu-Media
guarantees that this property holds during the presentation, be-
cause its clock advances at the same pace as the program’s logical
time. While this may lead to glitches — especially in the audio
— due to the drift between real and logical time, this approach is
capable of realize the synchronous semantics in the final output.
Thus, we say that Céu-Media promotes the accurate programming
of inter-media synchronization relationships.

4.1 Mars: Céu-Media for Distributed
Applications

To approach the distributed scenario, we have designed and imple-
mented a GALS middleware (calledMars) whose main goal is to
provide the programming support for developing interactive multi-
device applications upon Céu-Media. Internally,Mars takes care
of implementing all low-level communication and synchronization
functionalities among devices.

Figure 2:Mars architecture.

Mars is actually composed of a set of APIs and a tiny server
application. Figure 2 depicts the internal minimalist architecture of
the middleware. The server has mainly two functionalities: to man-
age sections and to broadcast events and clock ticks to all devices
within a section. We call section a group of devices that are com-
municating with each other to execute jointly and collaboratively
a given distributed program.

Anais do XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e Pôsteres

55



A GALS Approach for Programming Distributed Interactive
Multimedia Applications WebMedia’2017: Workshops e Pôsteres, WTD, Gramado, Brasil

Within a section, all Céu-Media events generated in any device
are forwarded to all others, that is, these events become global to all
devices of that section. The Maestro component is responsible for
intercepting these events and sending them to the server. Likewise,
this same component receives events coming from the server and
forwards them to applications. The low-level client and server
APIs implement the communication layer of the middleware. Even
though the low-level communication API has been designed to
meet the middleware requirements, programmers interested in
more control over these low-level operations may optionally build
their programs using directly the client communication API.

To better illustrate the use of Mars, consider the source code of
a simple Céu-Media program depicted in Listing 2. This program
creates a Player for executing a video and finishes when the video
ends or when one presses any button of the mouse. For didactic
purposes, let’s call this program P .

1 var Media.Video video = val Media.Video (<...>);
2 var& IScene scene;
3 watching Scene (Size (640, 480)) -> (&scene);
4 do
5 par/or
6 await Play (&scene , &video);
7 with
8 await CM_SCENE_MOUSE_CLICK;
9 end
10 end

Listing 2: A simple Céu-Media program that plays a video
and finishes when one presses a mouse button.

When compiling this source code using Mars libraries, the out-
put is a modified version of the program P , that we will call P ′. P
and P ′ have similar behavior: both execute a video until one presses
a mouse button, but P ′ has been compiled for the distributed setting.
Consider a section in which there are several devices running their
own instance of P ′. When any of these instances generates the
mouse click event, the Maestro component sends it to the server,
which in turn forwards it to all devices. Therefore, all instances of
P ′ will receive the CM_SCENE_MOUSE_CLICK event and thus awake from
the await in line 8. It worth highlighting that this source code has
no explicit constructs for communicating or synchronizing with
remote instances, but Mars hides these operations offering an API
that resembles the programming of local applications.

The server has an important role in the system, being vital for
guaranteeing the consistency between devices. In Mars’s archi-
tecture, the server forwards events in the same order it receives,
ensuring a total order of events within a section. Furthermore, when
a Céu-Media event is generated in a given device, the Maestro in-
tercepts it before the application has the chance to react to it. The
application is notified about that event only when the Maestro
receives it back from the server. While this approach indeed guar-
antees the global consistency, a drawback is the decrease in the
level of responsiveness of programs, once events are processed after
the server has received and forwarded back them to the device.

Considering the wall-clock time, each device reacts at a different
moment to broadcast events. To overcome this issue, the server
sends periodic tick events based on its internal clock (we are assum-
ing a local network with low-latency) to emulate a notion of global
clock. Thus, as these ticks are delivery respecting the ordering of
events, logically all devices react at the same time. The deployment
of applications that use this global clock in networks with high

latency can lead to executions having several glitches, but the con-
sistency is guaranteed. While we agree that these glitches can make
some programs infeasible to use, we have chosen to prioritize the
consistency over the QoE in this research.

4.2 Ongoing work: Asymmetric Programs
Until now we have discussed howMars takes as input programs
designed for being executed in a single device and adapts them to
its distributed client-server architecture. As these programs react
in the exactly same way, we call them symmetric. However, some
programs explicitly developed for the distributed setting should
react differently depending on the event source—which is why we
call them asymmetric.

To illustrate, a simple 2-players game consisting of a hero and
a monster. If the player controlling the hero issues a key event,
the hero avatar should be updated in both devices. Likewise, if
the player controlling the monster issues the event, the monster
avatar should be updated. Considering that each device has a unique
ID and that is possible to identify the device that has generated
the key event, using a sequence of if-than-else one can implement
this game. However, this tends to become a complex and tedious
programming task as the number of roles and/or devices increases.

Consider now that we have the events MONSTER_UPDATE and
HERO_UPDATE to indicate which avatar should be updated. Thus, one
could write the program as in Listing 3. The every statement (line
3—5) in the first trail of the par composition (lines 2—10) awakes in
each occurrence of the MONSTER_UPDATE event, calling the function that
updates the monster avatar (line 4). Likewise, the second trail has
another every block that awakes in occurrences of the HERO_UPDATE

event for updating the hero (lines 7—9).
1 <...>
2 par do
3 every (key , press) in MONSTER_UPDATE do
4 call Update_Monster (key , press);
5 end
6 with
7 every (key , press) in HERO_UPDATE do
8 call Update_Hero (key , press);
9 end
10 end

Listing 3: A modified version of the monster-hero game.

Now the problem becomes how to properly generate the
MONSTER_UPDATE and HERO_UPDATE events. In practice, the program
in Listing 3 would work if each occurrence of the key event
(CM_SCENE_KEY) coming from the device with id 0 (assuming this de-
vice controls themonster) was forwarded as being the MONSTER_UPDATE

event and if occurrences of that same event, but coming from the
device with id 1 (this one controlling the hero) was forwarded as
the HERO_UPDATE event.

We are working on ways for allowing the programming of event
mappings as discussed above. Our initial approach is to use a Lua
table that express this mapping, as in Listing 4. Each entry follows
the skeleton DEVICE_ID, EVENT, MAPPING, indicating that the EVENT from
device with id DEVICE_ID is to be interpreted as the event MAPPING.

1 return {
2 {0, CM_SCENE_KEY , MONSTER_UPDATE},
3 {1, CM_SCENE_KEY , HERO_UPDATE}
4 }

Listing 4: A Lua file specifying event mappings.

Anais do XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e Pôsteres

56



WebMedia’2017: Workshops e Pôsteres, WTD, Gramado, Brasil Rodrigo C. M. Santos, Francisco Sant’Anna, and Noemi Rodriguez

Note that one could develop different programs, one for control-
ling the monster and other for controlling the hero, and execute
them in the same section. The first one would be as simple as the
first trail of Listing 3 and the second would be as simple as the
second trail. In this case, we could also have different Lua files, one
for each device and each having only the necessary mapping.

5 FUTUREWORK AND EXPECTED
CONTRIBUTIONS

Mars currently provides a GALS programming model for multime-
dia applications. However it still lacks support for synchronizing
media objects in different devices. In literature, most of the work
addressing this problem approaches it by means of clock synchro-
nization. Céu-Media has a deterministic clock that controls the
pace of the multimedia presentation according to the program’s
logical clock. We intend to support this feature by investigating
approaches for synchronizing clock sources in each device within
a section using classical algorithms as NTP or PTP.

The evaluation of the results of this research should follow a qual-
itative analysis. By using realistic multi-device scenarios proposed
in literature, we intent to discuss how they could be implemented
using our solution and highlight the main strengths and weak-
nesses of this approach when compared with the use of current
programming frameworks for multimedia (both, imperative and
declarative).

Summarizing, at the end of this research we expect the following
main contributions: an alternative programming model exploring
the synchronous hypothesis, high-level abstractions and a general-
purpose imperative language for the multimedia domain; an in-
vestigation of the suitability of the GALS style for programming
interactive distributed multimedia applications (the outcome of this
investigation should be implemented in the Mars middleware);
an alternative for players implementers to develop execution en-
gines either by developing players havingMars as backend or by
compiling programs in high-level DSLs to Céu-Media; an in-depth
study about how the features of the Céu language can properly
support programmers to express the control part of multimedia
applications.

REFERENCES
[1] ABNT. NBR 15606-2:2011 “Digital Terrestrial Television - Data Coding and

Transmission Specification for Digital Broadcasting - Part 2: Ginga-NCL for
Fixed and Mobile Receivers - XML Application Language for Application Coding.
Technical report, São Paulo, Brazil, 2011.

[2] A. Benveniste and G. Berry. The Synchronous Approach to Reactive and Real-
Time Systems. Proceedings of the IEEE, 79(9):1270–1282, 1991.

[3] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. De
Simone. The synchronous languages 12 years later. Proceedings of the IEEE,
91(1):64–83, 2003.

[4] G. S. Blair, G. Coulson, M. Papathomas, P. Robin, J. B. Stefani, F. Horn, and
L. Hazard. A programming model and system infrastructure for real-time syn-
chronization in distributed multimedia systems. IEEE Journal on Selected Areas
in Communications, 14(1):249–263, 1996.

[5] G. S. Blair, M. Papathomas, G. Coulson, P. Robin, J. B. Stefani, F. Horn, and
L. Hazard. Supporting real-time multimedia behaviour in open distributed
systems: an approach based on synchronous languages. ACM Multimedia’94,
1994.

[6] F. Boronat, R. Mekuria, M. Montagud, and P. Cesar. Distributed Media Synchro-
nisation for Shared Video Watching: Issues, Challenges and Examples. Computer
Communications and Networks, pages 393–431, 2013.

[7] A. Bossi and O. Gaggi. Enriching smil with assertions for temporal validation.
In Proceedings of the 15th ACM International Conference on Multimedia, MM ’07,

pages 107–116, New York, NY, USA, 2007. ACM.
[8] A. Y. Chang. An Intelligent Analysis and Verification Model for Consistent SMIL

Presentations. Journal of Convergence Information Technology, 7(7):332–341, apr
2012.

[9] R. M. Costa Segundo and C. A. S. Santos. Systematic Review of Multiple Contents
Synchronization in Interactive Television Scenario. ISRN Communications and
Networking, 2014:1–17, 2014.

[10] J. dos Santos, C. Braga, and D. C. Muchaluat-Saade. A rewriting logic semantics
for ncl. Sci. Comput. Program., 107(C):64–92, Sept. 2015.

[11] J.-p. T. Dumitru Potop-butucaru, Robert De Simone. The synchronous hypothesis
and synchronous languages. In Embedded Systems Handbook. CRC Press, 2005.

[12] J. M. Eyzell and J. Farines. Using ESTEREL for building synchronization mech-
anisms in multimedia systems. IEEE Conference on Protocols for Multimedia
Systems - Multimedia Networking, 1997, pages 269–272, 1997.

[13] D. Geerts, I. Vaishnavi, R. Mekuria, O. van Deventer, and P. Cesar. Are We in
Sync?: Synchronization Requirements for Watching Online Video Together. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’11, pages 311–314, New York, NY, USA, 2011. ACM.

[14] J. Hu and L. Feijs. IPML: Extending SMIL for Distributed Multimedia Presenta-
tions. In VSMM 2006. Lecture Notes in Computer Science, pages 60–70. Springer
Berlin Heidelberg, 2006.

[15] Ing-Chau Chang and Sheng-Wen Hsieh. An adaptive QoS guarantee framework
for SMIL multimedia presentations with ATM ABR service. In Global Telecom-
munications Conference, 2002. GLOBECOM ’02. IEEE, volume 2, pages 1784–1788.
IEEE, 2002.

[16] ISO. X3D Architecture and base components V3, 2013. ISO/IEC IS 19775-1:2013.
[17] ISO. Information technology – Coding of audio-visual objects – Part 11: Scene

description and application engine, 2015. ISO/IEC 14496-11:2015(E).
[18] E. Lee. The Problem with Threads. Computer, 39(5):33–42, may 2006.
[19] G. F. Lima. A synchronous virtual machine for multimedia presentations. PhD

thesis, Department of Informatics, PUC-Rio, Rio de Janeiro, RJ, Brazil, 2015.
[20] A. Margara and G. Salvaneschi. We Have a DREAM: Distributed Reactive Pro-

grammingwith Consistency Guarantees. Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, pages 142–153, 2014.

[21] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-Lag and Timewarp: Provid-
ing Consistency for Replicated Continuous Applications. IEEE Transactions on
Multimedia, 6(1):47–57, feb 2004.

[22] M. Montagud, F. Boronat, H. Stokking, R. van Brandenburg, and R. Branden-
burg. Inter-destination multimedia synchronization: schemes, use cases and
standardization. Multimedia Systems, 18(6):459–482, jul 2012.

[23] Y. Orlarey, D. Fober, and S. Letz. FAUST: An efficient functional approach to DSP
programming. In New Computational Paradigms for Computer Music, 2009.

[24] D. Picinin, Jr., J.-M. Farines, and C. Koliver. An approach to verify live ncl
applications. In Proceedings of the 18th Brazilian Symposium on Multimedia and
the Web, WebMedia ’12, pages 223–232, New York, NY, USA, 2012. ACM.

[25] M. Puckette. Pure data: another integrated computer music environment. In in
Proceedings, International Computer Music Conference, pages 37–41, 1996.

[26] F. Sant’Anna, N. Rodriguez, R. Ierusalimschy, O. Landsiedel, and P. Tsigas. Safe
System-Level Concurrency on Resource-Constrained Nodes. In SenSys ’13, New
York, New York, USA, nov 2013. ACM Press.

[27] R. C. Santos, G. F. Lima, F. Sant’Anna, and N. Rodriguez. CÉu-media: Local
inter-media synchronization using cÉu. In Proceedings of the 22Nd Brazilian
Symposium on Multimedia and the Web, Webmedia ’16, pages 143–150, New York,
NY, USA, 2016. ACM.

[28] H. Stokking, M. van Deventer, O. Niamut, F. Walraven, and R. Mekuria. IPTV
inter-destination synchronization: A network-based approach. oct 2010.

[29] P. Teehan, M. Greenstreet, and G. Lemieux. A Survey and Taxonomy of GALS
Design Styles. IEEE Design & Test of Computers, 24(5):418–428, sep 2007.

[30] Y. Terashima, K. Yasumoto, T. Higashino, K. Abe, T. Matsuura, and K. Taniguchi.
Integration of QoS guarantees into SMIL and its flexible implementation. In 2000
Eighth InternationalWorkshop onQuality of Service. IWQoS 2000 (Cat. No.00EX400),
pages 164–166. IEEE, 2000.

[31] M. O. van Deventer, H. Stokking, M. Hammond, J. Le Feuvre, and P. Cesar.
Standards for multi-stream and multi-device media synchronization. volume 54,
pages 16–21, mar 2016.

[32] W3C. Synchronized Multimedia Integration Language (SMIL 3.0), 2008. W3C
Recommendation https://www.w3.org/TR/smil/.

[33] W3C. Scalable Vector Graphics (SVG) 1.1 (Second Edition), 2011. W3C Recom-
mendation. http://www.w3.org/TR/SVG/.

[34] W3C. HTML5 - A vocabulary and associated APIs for HTML and XHTML, 2014.
W3C Recommendation. http://www.w3.org/TR/html5/.

[35] G. Wang and P. R. Cook. On-the-fly programming: Using code as an expressive
musical instrument. In Proceedings of the 2004 Conference on New Interfaces
for Musical Expression, NIME ’04, pages 138–143, Singapore, Singapore, 2004.
National University of Singapore.

Anais do XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Workshops e Pôsteres

57


