
Case Recommender: A Recommender Framework

Arthur F. da Costa and Marcelo G. Manzato
Institute of Mathematics and Computer Science

University of São Paulo
São Carlos, SP, Brazil

{fortes,mmanzato}@icmc.usp.br

ABSTRACT
Case Recommender is a Python implementation of a number
of popular content-based and collaborative recommendation
algorithms which use implicit and explicit feedback. The
framework aims to provide a rich set of components from
which developers can construct a customized recommender
system. One differential of the framework is the possibil-
ity to combine multiple recommenders in a post-processing
ensemble approach to produce more accurate results. Case
Recommender can be used for rating prediction and item
recommendation tasks, and it includes different metrics and
procedures for validation and evaluation.

Keywords
Recommender Systems; Framework

1. INTRODUCTION
The growth of on-line content available to users has made

finding and consuming relevant items a challenge that users
have to deal with everyday. In response to this problem, rec-
ommender systems have been created, which are an informa-
tion filtering technology that can be used to predict prefer-
ence ratings of items, not currently rated by the user, and/or
to output a personalized ranking of items/recommendations
that are likely to be of interest to the user [7].

In order to obtain such interests, profiling mechanisms
have been developed, which consist of acquiring, represent-
ing and maintaining pieces of information relevant (and/or
irrelevant) to the user. In the particular case of obtain-
ing user’s preferences, the three most known techniques are
based on explicit feedback, implicit feedback and hybrid ap-
proaches. Implicit information is collected indirectly dur-
ing user navigation with the system while visiting a page,
mouse movement and clicks on various links of interest [4].
Regarding explicit feedback, the data is intentionally pro-
vided, i.e., the users express themselves in some direct way
(e.g. filling in forms or rating a content). This type of in-
formation is considered more reliable, since the user is the
one who provides the topics of interest, but the cost of this
procedure is the effort of the individual, who is not always

In: Workshop de Ferramentas e Aplicações (WFA), 15., 2016, Teresina.
Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web. Porto
Alegre: Sociedade Brasileira de Computação, 2016. v. 2.
ISBN: 978-85-7669-332-1
c©SBC – Sociedade Brasileira de Computação

willing to cooperate with the system [7]. Finally, the hybrid
approach consists of applying the implicit and explicit feed-
back together, in order to obtain a greater number of user
information [7].

Traditionally, recommender systems employ filtering tech-
niques and machine learning information to generate appro-
priate recommendations to the user’s interests from the rep-
resentation of his profile. However, other techniques, such as
Neural Networks, Bayesian Networks and Association Rules,
are also used in the filtering process [2]. The most used types
of filtering are currently: Content-Based (CBF), responsible
for selecting information based on content filtering of ele-
ments, e.g., e-mail messages filtered out as trash for contain-
ing unwanted words; Collaborative Filtering (CF), based on
the relationship between people and their subjective regard-
ing the information to be filtered. The selection of electronic
messages based on the relationship between sender and re-
cipient is an example of that. Besides, there is a Hybrid
approach that combines the content-based and the collabo-
rative filtering methods. [7].

Although there are useful libraries which can be used
to implement, evaluate and extend classical recommenders,
such as Apache Mahout1, MyMediaLite2, LensKit3, among
others, the viability of a framework which is able to contain
multiple recommender algorithms available using a variety of
data sources is unknown. Such framework, indeed, should
be able to deal with the effects of using large volumes of
data considering hardware configuration, and the impact of
model updates in the recommender performance.

In this paper we describe a new framework called Case
Recommender, which contains a variety of content-based
and collaborative recommender algorithms, as well as en-
sembling approaches for combining multiple algorithms and
data sources. In addition, it provides a set of popular eval-
uation methods and metrics for rating prediction and item
recommendation. As a result, it can be used to conduct
fair and comprehensive comparisons between different rec-
ommendation algorithms. The framework is published in
PyPi4, a international repository of software for the Python
programming language, as a GNU GPLv3 License, making
it easy for third parties to contribute with additional imple-
mentations and features.

This paper is structured as follows: Section 2 addresses
the related work; Section 3 describes the framework pro-

1https://mahout.apache.org/
2http://www.mymedialite.net/
3http://lenskit.org/
4https://pypi.python.org/pypi/CaseRecommender/

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

99



posed in this work; Section 4 reports Case Recommender
architecture; Section 5 presents details of the license and
distribution of the code; finally, Section 6 is devoted to final
remarks and future works.

2. RELATED WORK
A number of frameworks for recommender systems have

been proposed by the scientific community, involving dif-
ferent programming languages, such as C/C++, Java, C#,
Python, among others. One of the most popular and com-
plete frameworks is the open-source recommendation library
MyMediaLite, which has been developed since 2011 and con-
tains a variety of recommender algorithms for rating predic-
tion and item recommendation. However, it lacks content-
based filtering approaches, besides its design which embar-
rasses new developers to extend it with new features.

Other libraries, such as EasyRec5, Mahout, LensKit and
RiVal6 have also been proposed, but most of them contain
only a small set of recommendation approaches. Similarly
to MyMediaLite, most of them do not provide content-based
recommenders. In addition, none of them provides ensemble
techniques that allow developers to combine multiple recom-
menders. Table 2 summarizes the features available in each
considered recommender library.

In this sense, Case Recommender was developed to pro-
vide flexibility and extensibility in research environments,
while maintaining high performance. Its primary concern
is to maximize usefulness for research and education, in-
stead of large-scale commercial operations. The framework
is also designed to support a wide variety of recommenda-
tion approaches, including content-based and collaborative
filtering.

3. CASE RECOMMENDER
Case Recommender addresses two common scenarios in

content-based and collaborative filtering: rating prediction
and item recommendation, using either explicit and/or im-
plicit feedback. It offers state-of-the-art algorithms for these
two tasks and validation and evaluation metrics to measure
the recommender algorithms accuracy. Our framework is
implemented in Python with scientific environments for nu-
merical applications such as Scipy7 and NumPy8. Using
these free and open-source libraries, it can be used on the
most popular operating systems. To install Case Recom-
mender on Mac OS X or Linux, chances are that one of the
following two commands will work for developers and users
(with admin privileges):

easy install CaseRecommender

or alternatively:

pip install CaseRecommender

Windows users who do not have the easy install command
must first install it before installing the library. For this,
they need to check the pip and setuptools on Windows tu-
torial9 for more information about how to do that. Once
5http://www.easyrec.org/
6http://rival.recommenders.net/
7https://www.scipy.org/
8http://www.numpy.org/
9http://docs.python-guide.org/en/latest/starting/install/win/

they have it installed, it is possible to run the same com-
mands above.

An important feature in the design of our framework was
to enable the computation of recommendations in large-
scale. Case Recommender is currently being rewritten to
support optimized calculations using known Python scien-
tific libraries. Another feature is to support sparse and large
datasets in a way that there is as little as possible overhead
for storing data and intermediate results. Moreover, our
framework aims to support scaling in recommender systems
in order to build high-scale, dynamic and fast recommenda-
tions over simple calls.

Another feature of the framework is its extensibility and
flexibility, as developers can implement new recommenda-
tion algorithms while using the available data structures and
routines. According to the application scenario, developers
can choose between using one of the available recommender
algorithms, or combining multiple recommendations using
one of the available ensemble techniques [3, 2]. Table 1 shows
the recommender algorithms in the framework.

Table 1: Case Recommender Algorithms.
Approach Item Recommender Rating Prediction

Neighborhood
Based

UserKNN UserKNN

User Attr KNN User Attr KNN
ItemKNN ItemKNN
Item Attr KNN Item Attr KNN

Matrix
Factorization

BPR MF MF

SVD
ItemNSVD1
UserNSVD1

Ensemble Tag-Based
Average-Based -
BPR Learning

Case Recommender contains a generic interface for rec-
ommender systems implementations, among them the col-
laborative and content-based filtering approaches such as
neighborhood-based (NB) and matrix factorization (MF)
models, which are already available for use. The recom-
mender interfaces can be easily combined with more than
15 different pairwise metrics already implemented, like co-
sine, tanimoto, pearson and euclidean, using Scipy basic
optimized functions10. Moreover, it offers support for us-
ing similarity functions such as user-to-user or item-to-item
and allows easy integration with different input domains like
databases, text files or python libraries.

4. ARCHITECTURE
The proposed framework consists of a set of classes and

methods for generating and evaluating recommendations in
rating prediction and item recommendation scenarios. Fig-
ure 1 illustrates all components involved.

There are three main tasks in Case Recommender: data
representation, recommendation and evaluation. The fol-
lowing subsections detail each of them.

10http://docs.scipy.org/doc/scipy-
0.14.0/reference/generated/scipy.spatial.distance.pdist.html

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

100



Table 2: Comparison of free/open source recommender system toolkits.
Toolkits Case Recommender EasyRec Mathout LensKit RiVal MyMediaLite Crab
Version 0.0.6 0.99 0.12.2 2.2.1 0.2 3.11 0.1
Last update Jul 2016 Nov 2013 Jun 2016 Nov 2015 Aug 2015 Dec 2015 Jan 2012
Actively Developed X - X X - X -

License GPL 3 GPL 3 Apache 2.0 LGPL 2 Apache 2.0 GPL 3 BSD
Language Python Java Java Java Java C# Python
Scalable X - X X - X X
Rating Prediction X X X X X X X
Item Recommender X - - X - X X
CF Techniques X X X X X X X
CBF Techniques X - - - - - -
Ensemble Techniques X - - - - - -

Figure 1: Case Recommender Architecture.

4.1 Representing Data
Case Recommender is mainly a framework, designed to

be used by other applications. We provide command-line
interfaces, classes and functions that offer most of frame-
work’s functionality. The framework allows developers to
deal with different datasets and not having to develop their
own programs to execute recommender functions.

The input of rating prediction algorithms expects the data
to be in a simple text format:

u id i id rating

where u id and i id are integers referring to users and items
IDs, respectively, and rating is a floating-point number ex-
pressing how much the user likes an item. The separator
between the values can be either spaces, tabs, or commas.
If there are more than three columns, all additional columns
are ignored.

The item recommendation approaches behave similarly to
the rating prediction approaches. The main difference is
that in most of the item recommendation algorithms the
user can omit or ignore the third column, which corresponds
to the feedback value. However, there are some algorithms
that may or not use the feedback value in both scenarios.

4.2 Recommender Engines
The proposed framework contains a recommender engine

composed of several algorithms described in the literature,

such as user and item-based kNN and matrix factorization.
It provides an assortment of components that may be plugged
together and customized to create an ideal recommender for
a particular domain.

4.2.1 Rating Prediction
Ratings are a popular kind of explicit feedback. Users

assess how much they like a given item (e.g. a movie or
a news article) on a predefined scale, e.g. 1 to 5, where 5
could mean that the user likes the item very much, whereas
1 means the user strongly dislikes the item [4]. Rating pre-
diction algorithms estimate unknown ratings from a given
set of known ratings and possibly additional data like user
or item attributes. The predicted ratings can then indicate
to users how much they will like an item, or the system can
suggest items with high predicted ratings. Our available
prediction algorithms are mentioned in Table 1.

4.2.2 Item Recommendation
In the item recommendation task, the system constructs

a list of items which are more likely to be preferred by a
given user. Usually in the item recommendation scenario
the user’s feedback is implicit, which means that his pref-
erences on items are unobservable [5]. For example, in the
movie recommendation task, the number of times a user
watches a movie is observable (i.e., implicit feedback) but
not his explicit preference rating about the movie (i.e., ex-
plicit feedback). Recommendation models are then built
based on some pre-defined preference assumptions, e.g., the
more times a user watches a movie, the more he/ she likes it.
Such assumptions may not accurately describe users’ pref-
erences. Moreover, the observed user-item interaction data
are generally sparse, which makes the preference modeling
even more challenging. As a result, existing solutions often
deliver unsatisfactory recommendation accuracies.

4.2.3 Ensemble Approaches
Case Recommender provides an extensible platform for

ensemble approaches which allow developers to combine dif-
ferent recommender algorithms using different input data.
Its flexibility allows developers to build complex architec-
tures for better accuracy depending on the application sce-
nario. Such ensemble approaches, as they are integrated in
the framework, allow their evaulation with fair comparisons
against individual filtering approaches. Our implementation
provide a clear interface, where the ensemble strategies re-
ceive the results of previous probe runs (whether required),

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

101



and the set of results from previous trained recommenders.

4.3 Validation and Evaluation Metrics
Case Recommender contains routines for recommendation

evaluation, including measures such as root mean square
error (RMSE) and mean average error (MAE) for the rat-
ing prediction task. For the item recommendation task, the
available metrics are precision-at-N (prec@N), recall-at-N
(recall@N) and mean average precision (MAP). For both
scenarios, internal K-fold cross-validation is supported to
validate the experiments.

The framework also contains the All But One [1] protocol
for the construction of the ground truth using K-fold-cross-
validation. Given the data set, the system randomly divides
it into the same K subsets and for each sample it uses n−1,
these subsets of data for training and the rest for testing.
The training set tr is used to test the recommendation tech-
nique and in the test set Te the system randomly separates
an item for each user to create the truth set H. After that,
the remaining items form the set of observable O, which is
used to test the algorithm.

In order to compare the results with statistical signifi-
cance, the two-sided paired t-test [6] is available in Case
Recommender.

4.4 Usage
For each of the two recommendation scenarios, Case Rec-

ommender comes with a command-line instructions that al-
low users to train and evaluate all available recommenders
on data provided in text files. When a new recommender is
added into the framework, it is automatically detected, so
developers do not have to manually add new features into
the programs, only use the command import in Python. The
main instructions are available at Github11.

5. LICENSE AND DISTRIBUTION
Case Recommender is freely available under GNU GPLv3

license. The GPL grants the recipients of a computer pro-
gram the rights of the Free Software Definition12 and uses
copyleft to ensure the freedoms are preserved whenever the
work is distributed, even when the work is changed or added
to. The GPL is a copyleft license, which means that derived
works can only be distributed under the same license terms.

We chose this license because it allows programs to be
distributed and reused, keeping, however, the author’s rights
in order to not allow this information to be used in a way
that limits the original freedoms.

Our project is hosted at Github repository and it is avail-
able for the scientific community to use, test and contribute.
Future releases are planned which will include more features
and an evaluation tool with several plots and graphs to help
developers to better understand the behavior of their rec-
ommender algorithms. The source code is freely available
at Github11.

6. FINAL REMARKS
In this paper, we presented a framework to recommender

systems, called Case Recommender. The goal of this frame-
work is to integrate and facilitate the experiments and de-
velopment of new recommender techniques for different do-

11https://github.com/ArthurFortes/CaseRecommender
12https://www.gnu.org/licenses/

mains. Case Recommender contains a recommender engine,
that contains content-based and collaborative approaches
based on neighborhood and matrix factorization models for
rating prediction and item recommendation scenarios. In
addition, the framework contains ensemble algorithms, val-
idation and evaluation metrics to improve and measure the
quality of the recommendation.

The main advantages of our framework are extensibility
and flexibility, once it enables developers to use and de-
velop different recommender algorithms in both scenarios
of recommendation and also allows different ways of usage
of methods and classes during the recommendation process.
Moreover, the framework stands out for containing recent
content-based filtering algorithms and ensemble approaches,
differently from the other recommender toolkits cited in this
paper.

We will continue Case Recommender’s development in
several directions: implementing new recommendation al-
gorithms, evaluation and validation metrics and porting the
framework for other programming languages. We also plan
to add additional recommendation tasks and types of input,
e.g. item prediction from other kinds of implicit feedback
like viewing times or click counts, or tag recommendation.

7. ACKNOWLEDGMENTS
We would like to acknowledge CAPES and CNPq for the

financial support.

8. REFERENCES
[1] J. S. Breese, D. Heckerman, and C. Kadie. Empirical

analysis of predictive algorithms for collaborative
filtering. In Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, UAI’98, pages
43–52, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc.

[2] A. F. da Costa and M. G. Manzato. Exploiting
multimodal interactions in recommender systems with
ensemble algorithms. Information Systems, 56:120 –
132, 2016.

[3] A. da Costa Fortes and M. G. Manzato. Ensemble
learning in recommender systems: Combining multiple
user interactions for ranking personalization. In
Proceedings of the 20th Brazilian Symposium on
Multimedia and the Web, WebMedia ’14, pages 47–54,
New York, NY, USA, 2014. ACM.

[4] Z. Gantner, S. Rendle, C. Freudenthaler, and
L. Schmidt-Thieme. MyMediaLite: A free recommender
system library. In Proceedings of the 5th ACM
Conference on Recommender Systems, 2011.

[5] N. N. Liu, M. Zhao, and Q. Yang. Probabilistic latent
preference analysis for collaborative filtering. In
Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM ’09,
pages 759–766, New York, NY, USA, 2009. ACM.

[6] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc.,
New York, NY, USA, 1 edition, 1997.

[7] F. R., L. R., and B. S. Introduction to recommender
systems handbook. In Recommender Systems
Handbook, pages 1–35. Springer US, 2011.

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

102


