
LiveSync: a Tool for Real Time Video Streaming
Synchronization from Independent Sources

Marcello N. de Amorim
UFES

Av. Fernando Ferrari, 514
Vitória - ES, Brazil

novaes@inf.ufes.br

Ricardo M. C. Segundo
UFES

Av. Fernando Ferrari, 514
Vitória - ES, Brazil

rmcs87@gmail.com

Celso A. S. Santos
UFES

Av. Fernando Ferrari, 514
Vitória - ES, Brazil

saibel@inf.ufes.br

ABSTRACT
This work presents a tool that allows users to synchronize
live videos from multiple sources such as YouTube or any
other video streaming sources. The proposed approach to
proceed the multiple camera video synchronization is based
in crowdsourcing techniques, using the power of a crowd of
collaborators to synchronize videos, requiring from each user
the sync of only a pairs of videos. Additional sync relations
are inferred from the known contributions, using transitivity
properties and an appropriate structure for this inference,
the Dynamic Alignment List.

Keywords
live video; synchronization; crowdsourcing

1. INTRODUCTION
Multiple camera video synchronization is a research area

within multimedia. Automatic video synchronization (AVS)
is a form to synchronize multiple video streams. AVS can
be done analysing video segments [6] or audio ones [5]. In
Schweiger et.al.[3] we find these and other approaches in the
area. One main contribution of this paper is the description
of the challenges for automatic synchronization algorithms:
wide baselines, camera motion, dynamic backgrounds and
Occlusions.

We propose in this work the use of crowdosurcing tech-
niques to synchronize these videos, instead of an automatic
one. Crowdsourcing [1] in our scope refers to the use of the
crowd as part of a computational problem that can be solved
easily by a human than by a machine. The ”easily” word can
mean that the human approach: is cheaper, faster or can be
done more efficiently by humans.

In video synchronization, we know that humans can ful-
fil all challenges presented by [3]. A person can identify
if two videos are synchronized or not independently of oc-
clusions, change of the background, camera motion or view
point changes. The main challenge is how to use the human
abilities to synchronize the videos, and permit that other
persons can benefit from these contributions. So our tool
uses the power of the crowd to synchronize live streaming

In: Workshop de Ferramentas e Aplicações (WFA), 15., 2016, Teresina.
Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web. Porto
Alegre: Sociedade Brasileira de Computação, 2016. v. 2.
ISBN: 978-85-7669-332-1
c©SBC – Sociedade Brasileira de Computação

videos and provide a form that other persons that want to
watch those videos can receive both videos and synchroniza-
tion info.

The remaining of this paper is presented as follows: sec-
tion 2 explains our approach to synchronize videos; section
3 details our tool; and section 4 presents our final remarks.

1.1 D.A.L.
To synchronize the video streams we use an synchroniza-

tion technique presented in [4]: the Remote Temporal Cou-
plers for aligning videos. It allows us to synchronize inde-
pendent videos from multiple sources and to infer unknown
relations from videos. We implemented the technique under
our Dynamic Alignment List structure.

A DAL derivates from a matrix m x n, with m and n
natural numbers, where m=n is the quantity of videos that
can be synchronized at that moment. Each position of the
matrix represents the relation of two videos (the coupler),
in other words, the value necessary to align them, in our
synchronization scenario. This value is calculated using:
∆i,j = begin(idi,0) − begin(id0,j), para0 < i, j 6= m, where
begin(x) is the time where an asset X begins its presenta-
tion. A ∆i,j > 0, implies that the asset in the column starts
∆i,j before the asset in the line. Case ∆i,j < 0, the oppo-
site happens and case Deltai,j = 0, both starts at the same
time.

As previously said, the list is derived from a matrix, pre-
senting different aspects. Firstly, it does not presents all
cells of a matrix. In the matrix, ∆i,j is equal to Deltaj,i, so
we don’t need to store both relations, and with that, only
the superior part of the relations are stored. Secondly, each
”cell” of the list, presents multiple properties to help in the
management of the crowd contributions. As each relation
can contain multiple contributions, we need to calculate a
mean of these contributions to set as the actual ∆. Lastly,
each relation has a new dimension: a list with all contribu-
tions for that relation, that identifies the value of the con-
tribution and the user that made it (if we want to identify
who made it).

Figure 1, shows the representation of a DAL. There we
have 5 assets (videos in our scope) labelled: A, B, C, D
and E. Each asset represents a struct with the assets: URI,
label, duration and a list of relations with the other assets.
Following the asset A we find its relations with the other
assets: AB, AC, AD and AE. We do not need to represent
AA because ∆A,A is always 0. Taking teh relations from
B, we have: BC, BD and BE. Again, ∆B,B = 0. Thus, we
do not represent BA, because we previously represented AB,
and as said before, we can find BA by negating AB (∆A,B =

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

112



Figure 1: DAL with 5 Assets (A,B,C,D,E)

−∆A,B). And this will happens to the other relations.
In the end of the DAL, we have the contributions for each

asset (represented in the figure by a cloud due to figure di-
mensions). Each relation can receive multiple contributions,
and are stored in the list. These contributions are processed
(means) and generate the value of ∆ for its relations. Fields
such as confidence factor and number of contributions are
used to know how robust those contributions are, and if its
necessary more contributions to verify the synchronization.

2. LIVESYNC
Live synchronization includes the scenario where a viewer

has access to an event that is live streamed by more than
one Content Provider. These content providers are inde-
pendent, so their videos do not have initial resources that
allow their automatic synchronization to viewers, requiring
a video analysis to generate synchronization points (Cou-
plers). This synchronization fits as a problem that can be
solved by using the power of the crowd. This occurs because
videos are generated independently, without synchronization
points and without previous description of what is about to
be shown in screen, neither how can it be correlated to other
videos. This way, human perception is used in real time to
generate unknown synchronization points.

As example for this scenario, we can take a public man-
ifestation. In the event, multiple people can take their cell
phones and start streaming the event. In their house, other
people can watch the videos. However, the multiple videos
from different sources will be asynchronous. We need a way
to synchronize these UGV. We use the crowd to achieve it.
To this objective we group all videos in a MashUp appli-
cation that connects to a Coupler Server that contains all
synchronization data. Both synchronizing and playing the
videos are made using this mashup, that can receive videos
from multiple sources.

2.1 Method
In a live presentation, it is assumed that content must be

consumed right after its generation. It is of extreme impor-
tance that the synchronization method can be performed in
playback time, to allow the integration of live content.

The way synchronization is performed in live video poses
a single requirement: in a live situation, there is no need to
analyse an entire video to find synchronization points, only
an estimated stream delay must be considered. This occurs
because the event is happening in real time (live), sources are
also live and, therefore, the lack of synchronization during
playback is caused by video streaming delays. In this specific
case, synchronization through the crowd may be achieved
by using tools that allow a user to manipulate time from
videos: he can, for instance, keep pausing videos alternately
, until he feels they are synchronized. This is a consequence

of having a reduced search space, when limited to stream
delays between videos.

However, not all viewers are required to be part of the
crowd to achieve synchronization. If a synchronization made
by a single member of the crowd is accepted as accurate, it
can be transferred to the remaining viewers, this way each
one will have his content locally synchronized.

One way of live synchronization can work is as follows: a
person selects and synchronizes two videos with the help of
a manipulation tool. This becomes a candidate synchroniza-
tion point. Several people can do the same, and the results
can be based on multiple synchronizations. Having these
synchronization points defined, synchronization information
can be sent to other viewers interested in watching those
videos. As simple example, take two independent sources
that are transmitting an event. A mash-up system allows
the user to watch both videos at the same time is his de-
vice. However the videos are asynchronous and the user
notes that. He then access the option to synchronize the
videos. After he achieve a synchronous result, implicitly his
contribution is sent to a server that will feed other users that
choose to watch the same videos with the synchronization
specification. If the user thinks the content is not synchro-
nised yet, he can synchronize it himself and send another
contribution.

2.2 Main Functionalities
The main functionalities provided by our tool are:
Synchronized Live Video Player: The tool permits

users to watch multiple videos synchronized. He selects from
a list of sources the videos he wishes to watch and them they
are synchronized using information provided by other users.
: If a pair of videos does not have any information about

their synchronization, users are invited to contribute and
synchronize the videos.
Synchronization Infering: In some cases that there

is no direct information about the synchronization of two
videos, the tool is able to infer the synchronization about
them, based on the contributions of other videos. We use
the transitive attribute of video synchronizations, where if
we know AB and BC synchronization info (couplers), we
can infer AC. To infer this value we travel trough the DAL,
finding the unknown relations (for example, CE), and try
to find a path of known relations where we can infer CE.
Taking the DAL in Figure 1, we can infer CE if we know:
AC and AE. This a two steps route, but we try all possible
routes when inferring, in a way that we fill as much relations
as possible.
Video Aggregation: Although the focus of the LiveSync

tool is on synchronization, we allow users to add new stream
sources to the application. He only needs to set the video
source, and the video will be added to the DAL and list
of videos. However, we don’t do any filtering about the
added video, this means that the user can add any video to
the application, even ones that contains none relation with
the other videos. In future versions we plan to add options
where other users can mark the video as not related, and
then remove them.
Multiple Platform Support: One keypoint of our tool

is the use of other platforms as video sources. The videos
that we play to users and that are synchronized, are not
provided by us, but by other live video stream platforms.
To be compatible with our tool, two requisites are required:

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

113



Figure 2: Modelo simplificado do live-sync

1. Remote Player: we need that the platform allows em-
beddable players on third pages, allowing us to control
the player with its basic functionalities such as: play,
pause and stop;

2. Uptime Support: a second and fundamental requisite
is an API that allows us to retrieve the video Uptime.
Video uptime is the time since the beginning of the
video that is presented on the video player. This is
fundamental to create and replicate the couplers gen-
erated in synchronization process.

Serverless Architecture: Serverless architectures refer
to applications that significantly depend on third-party ser-
vices and putting much of the application behavior and logic
on the front end. Such architectures remove the need for
the traditional server system sitting behind an application
[2]. More of this characteristic will be addressed in the next
topic: Architecture.

Multiplatform: LiveSync is a Web Based application
designed and developed in compatibility with HTML5 stan-
dard to its front-end (MashUp Player) component. It allows
our application to run on multiple browsers, operational sys-
tems and devices.

Active X Passive Contributions: Two branches of the
LiveSync are currently on our repositories. They differ only
in one aspect: who defines what videos are to be synchro-
nized: the crowd or the application? The active version
allow users to navigate freely through the videos, synchro-
nizing them when they wish to. The focus of this branch is
to allow users to contribute if they want to. On the other
hand, in the Passive branch the server gives the crowd ex-
actly what video they will synchronize. The focus here is
to rapidly synchronize all videos, so the focus isn’t to make
users watch the videos, but force them to synchronize all
the base for other porpoises. The active branch is the focus
here, but can easily converted to the passive one.

2.3 Architecture
The LiveSync tool has three main components (Figure 2):

the Content Providers (Video Sources), the Coupler and the
Mashup Player.

2.3.1 Content Providers
Content Providers are third-parties videos streamers plat-

forms. There are multiple Live Video Stream applications in
the market, such as YouTube Live, LiveStream, TwitCast,

Twitch and Ustream. One of our objective was to allow
the use of different platforms as video sources, so we maxi-
mize the number of videos for an event and allow the use of
already in market platforms.

A Content Provider needs two requisites to be compatible
with LiveSync: a Remote Player and Uptime Support. As
each stream platform uses their own protocols, we opt to
use their embeddable players into a MashUp application.
These players must allow us to play, pause and stop the video
stream. The second requisite, Uptime Support, is necessary
to find the couplers among the videos. Uptime is the time
passed since the beginning of the live stream until the video
part being presented in the player at the moment of the call.

At this time, LiveSync supports two video stream plat-
forms: the YouTube Live (https://goo.gl/DEM9eW) and
WebSocket Stream (http://goo.gl/GYnGpg). YouTube live
allows live stream from both desktop and mobile devices,
making possible users to stream any event they wish with
low effort: they only need to install the software and to have
a YouTbe account. WebSocket Stream is an open source
project that allows developers to implement live stream ser-
vices with websockets and canvas and WebGl technologies.
It works in any browser and was used for our first tests
where we needed full control of the stream, something that
YouTube Live doesn’t support.

To add an video source form a Content Provider, it nec-
essary only the video ID from YouTube Live or the video
stream URI from the WebSocket Stream. These are added
as assets to the LiveSync and can be accessed or synchro-
nized.

2.3.2 Coupler
The Coupler is responsible for storage, distribution and

calculation of synchronization points among video streams
from the Content Providers.

A coupler is composed of a DAL instance and Log files.
This goes in direction of the Serverless Architecture. We
wanted an architecture that needed low resources (another
justification for using third party stream services) and easy
deployment. All that is necessary do execute the coupler is a
NODE.JS (https://nodejs.org/en/) server instance. This is
possible because the Coupler is fully developed in JavaScript
and compatible with the HTML5 standards. To deploy the
Coupler, we use a Backend as a Service or ”BaaS” platform,
more specifically we use the Heroku (www.heroku.com) one,
that permits free use of NODE.JS instances.

It stores synchronization information only during the du-
ration of the event, so its stance is finished with the end of
the videos and all data is lost. In the current scope, the sync
info is only necessary during the event, after it, there is no
need to store the information. For reasons of testing and us-
ing the filmed videos from YouTube we create log files that
contains all contributions made by the crowd. If it is impor-
tant to maintain all contributions and data for post analyses
and further use, unstable version of the LiveSync is being
configured to use a fully transactional database. We use a
fully transactional database because we want to maintain
track of all contributions made by the crowd, an important
aspect in crowdsourcing and that is also supported by the
DAL.

Other aspect of the Coupler is that it is responsible for
the distribution of synchronization couplers. When a user
chooses two videos, a message is sent from the MashUp to

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

114



Figure 3: Modelo simplificado do live-sync

the coupler, containing the required relation. The coupler
then answer with the required information. If the relations
is unknown, it answer soliciting the user to synchronize and
contribute with those two videos.

The last function of the Coupler, is to calculate the syn-
chronization points among Videos. Each relation (∆A,B)
may contain several contributions, then it is necessary to
calculate a value to that relation based on the contributions.
In the current version we calculate a Geometric Mean of the
contributions to find an ideal value. This however may not
be the best value, because the more accurate the sync is,
the better the results are, so older contributions must have
a lighter weight, something that does not happen in cur-
rent version. The other calculation made by the coupler,
is to infer unknown relations based on the afore mentioned
transitive relation.

The communication between Coupler and MashUp is made
through Websocket communication. The MashUp creates a
WebSocket channel with the Coupler, and requests the sync
information or sends contributions from the crowd. A simple
protocol is used in JSON messages: act:value, data:object.
The act field contains the action to be made and the data
contains an object to complement the action. As example
we have an act to send a new contribution (”contribution”)
that is complemented with a new relation that contains the
assets involved, the value and an id to that contribution.

2.3.3 MashUp Player
Mashups are applications generated by combining content,

presentation or other applications functionalities from dis-
parate sources. They aim to combine these sources to create
useful new applications or services (the offer and consump-
tion of data between two devices) to users [?]. In LiveSync
we combine videos coming from different sources and plat-
forms with the synchronization information from the coupler
to reproduce a synchronous presentation of these videos.

The MashUp Player (Figure 3) is responsible for both pre-
senting video synchronously and collecting the synchroniza-
tion. Figure 3 represents the interface of the MashUp.

On the top we have all information necessary to the user.
He can aggregate new videos using the ADD NEW VIDEO
options, SYNCHRONIZE the videos if he thinks the videos
are not synchronized or he can just select the videos he
want to watch. When just playing two selected videos from
the videos list, each video player creates an instance for the
player that is compatible with that source (YouTube or Web-
Socket). It is invisible to the user where the video is coming
from.

When the user adds a video, an input text is shown to
him, and he can add the video URI (WebSocket) or video ID

(YouTube). The page reloads and the new video is listed in
the video list for everyone that connects to the application.
When the video is added by the user, an message is sent to
the Coupler, containing the action to add a new asset to the
DAL, and the specification of it, such as label and URI.

The last functionality of the MashUp is to synchronize the
videos. When the user clicks on SYNCHRONIZE, a new
mode of the application is revelled showing the synchroniza-
tion tools. We use a Play ’n Pause approach to synchronize
the videos. After the user thinks the videos are synchro-
nized, clicking the DONE button, his contribution is sent to
the Coupler and stored in the DAL for further processing of
the relation.
Play ’n Pause: If two videos with a certain degree of

similarity, are presented to an individual from the crowd,
he can possibly notice that one video is ahead of the other.
This way, he can pause the video that is ahead on time
while the other remains playing, until reaching a point of
synchronization. Then, the user can resume playback of the
first video. This process can be repeated until an individual
feels like both videos are being presented synchronously. On
[https://goo.gl/HTzecL], readers can see the play and pause
technique being used to synchronize two live streams from
from Two YouTube servers.

3. FINAL REMARKS
The LiveSync tool allows users to watch live video streams

from multiple sources synchronized. If the videos are not
synchronized, user can contribute and synchronize them-
selves the videos and help building the synchronization, in
a crowdsourced approach, believing that using human per-
ception is better than using automatic approaches in this
specific case.

Our tool however presents some limitations that shall in
the futures be suppressed, such as the number of events that
we can follow. Now, each instance of Coupler and MashUps
can handle only one event, in other words, we can’t cover two
independent live events at the same time with one instance,
for that porpoise we need more than on instance of each
service. Also, new stream services must be added to increase
our compatibilities.

Github [https://github.com/rmcs87/liveSync] contains all
code for LiveSync.

4. REFERENCES
[1] J. Howe. The rise of crowdsourcing. Wired magazine,

14(6):1–4, 2006.

[2] M. Roberts. Serverless architectures.

[3] F. Schweiger et al. Fully automatic and frame-accurate
video synchronization using bitrate sequences.
Multimedia, IEEE Transactions on, 15(1):1–14, 2013.

[4] R. Segundo and C. Santos. Remote temporal couplers
for multiple content synchronization. In Computer and
Information Technology, 2015 IEEE International
Conference on, pages 532–539. IEEE, 2015.

[5] K. Su et al. Making a scene: alignment of complete sets
of clips based on pairwise audio match. In Proceedings
of the 2nd ACM International Conference on
Multimedia Retrieval, page 26. ACM, 2012.

[6] O. Wang et al. Videosnapping: Interactive
synchronization of multiple videos. ACM Transactions
on Graphics (TOG), 33(4):77, 2014.

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

115


