

Using NCL to Synchronize Media Objects,
Sensors and Actuators

Álan L. V. Guedes1,2
alan@telemidia.puc-rio.br

Marcio Cunha1,3
mcunha@inf.puc-rio.br

Hugo Fuks1,3

hugo@inf.puc-rio.br

Sergio Colcher1,2
colcher@inf.puc-rio.br

Simone D.J Barbosa1

simone@inf.puc-rio.br
1 Department of Informatics, PUC-Rio

2 TeleMídia Lab, PUC-Rio
3 Second Lab, PUC-Rio

1,2,3 Rua Marques de Sao Vicente, 225
Gavea, Rio de Janeiro, RJ, 22451-900, Brasil

ABSTRACT

IoT (Internet of Things) technologies are underway. Both industry

and academia have been proposing technologies to support IoT. In

particular, some IoT scenarios include audio-video data and aims

at integrating multimedia content and IoT technologies. In this

paper, we investigate the support for those scenarios through a

multimedia language. More precisely, we use NCL (Nested

Context Language) to take advantage of IoT devices and to specify

interactive multimedia applications synchronizing sensors and

actuators, besides the media objects. To help evaluate our approach,

we present a usage scenario using an NCL application that

synchronizes media objects and IoT devices.

Keywords

Internet of Things; Multimedia Languages; Nested Context

Language; NCL; Ginga-NCL

1. INTRODUCTION
The Internet of Things (IoT) can be viewed as the interconnection

of pervasive and uniquely identifiable physical objects—such as

RFID (Radio-Frequency IDentification) tags, sensors, actuators,

and embedded computing devices—using the existing Internet

infrastructure [2]. Those physical objects cooperate with one

another, as well as with the environment and with people, to better

support domestic (e.g., assisted living and e-health) and industrial

(e.g., automation and logistics) applications.

Both industry and academia have become increasingly interested in

IoT in recent years, making efforts to study and propose different

technologies to support IoT scenarios. Some of those efforts, such

as those made by the MPEG [8] and ITU-T SG 16 [10]

standardization groups, aim to integrate multimedia and IoT

technologies.

Scenarios mixing multimedia and IoT include assisted living

facility, monitoring, and entertainment. In assisted living facility,

devices with media rendering capabilities, such as wearables, may

control actuators (heater, lights, fans, etc.) or present data from

ambient sensors (temperature, light, humidity, proximity, gas, etc.).

Regarding monitoring, city governments may take advantage of the

proliferation of sensor-rich devices (wearables and smartphones)

for allowing citizens to report traffic condition, e.g., by uploading

media objects (audio clips, videos, photos) and sensor data. For

entertainment, transmission of live events (e.g., sports or concerts)

may give a sense of immersion to remote audiences, e.g., by using

actuators (e.g., lights, fans, directional speakers) that reproduce the

local event environment captured by sensors.

All the above scenarios require the specification of relationships

between media objects and events related to sensor or actuator

devices. In this paper, we investigate the use of a multimedia

language to support this kind of relationship. Multimedia languages

may take advantage of their synchronism and media abstractions to

control IoT devices. More specifically, we use NCL (Nested

Context Language) [13] to handle both sensor and actuator entities,

besides its ordinary media objects. NCL is a standard for interactive

applications for Digital TV and IPTV services. To help evaluate our

approach, we present a usage scenario consisting of an NCL

application that synchronizes a video and three actuators: fan, light,

and scent dispenser.

Other proposals to support the integration of multimedia and IoT

devices include: MPEG-V [6], a data format for specifying sensor

and actuators parameters; MPEG MTT [7], a transport format that

supports the multiplex of actuator data; and IBM’s Node-RED [11],

a graphical tool that enables the development of IoT-based systems

and their deployment in the IBM private cloud service. To the best

of our knowledge, however, our work is the first one to use NCL to

handle IoT devices.

The rest of the paper is organized as follows. Section 2 discusses

related work. Section 3 presents our proposal and highlights how

current NCL features can be used to control IoT devices. Section 4

discusses the proposed usage scenario and its implementation.

Finally, Section 5 presents our conclusions and discusses some

future work.

2. RELATED WORK
In this section, we present three proposals for the integration of

multimedia and IoT: MPEG’s Multimedia-centric IoT, ITU-T

Immersive Experiences, and IBM’s Node-Red. We then compare

the three approaches and briefly discuss their limitations.

2.1 MPEG Multimedia-centric IoT
MPEG’s Multimedia-centric IoT (MM-IoT) aims at enabling IoT

applications to gather and manage media data, such as audio and

video [8]. For instance, in a monitoring scenario, an MM-IoT

application may use a network of cameras for transmitting audio-

video data to a proxy device or central service. Other usage

scenarios requiring audio-video functionalities include accident

In: Workshop Internacional de Sincronismo das Coisas (WSoT), 1, 2016,

Teresina. Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e

Web. Porto Alegre: Sociedade Brasileira de Computação, 2016. v. 2.

ISBN: 978-85-7669-332-1

©SBC – Sociedade Brasileira de Computação

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

184

detection and surgery room, which may recognize and track objects

or environment properties to inform status.

The key component of MM-IoT is the Media Thing (MIoT Thing

or just MThing) [9], which is a special IoT device that can handle

audio-video data. An MThing may perform tasks such as motion

detection, media rendering, object tracking, and audio-video

compression or transmission. Examples of MThings are cameras,

media storage devices, displays, wearables, speakers, and

microphones.

Figure 1 overviews how an MThings communicates with the user,

the environment, and other MThings. Regarding users, MThings

may offer interactive user interfaces (Figure 1-1) to enable users to

control and configure MThings. In this case, users need to refer to

the content, service, or product designers, which include the setup

parameters and certain conditions to be met. Regarding the

interaction with other MThings (Figure 1-3), an MThing should

offer APIs and data interchange formats. Finally, regarding the

interaction with the environment sensors or actuators, an MThing

exchanges data formats from physical actuators.

Figure 1: MM-IoT overview [9].

MM-IoT is an underway proposal. Currently, MPEG only proposes

technologies for the MThing communication API. For audio-video

data interchange among MThings (Figure 1-3), MPEG proposes

MPEG-4 related formats. Examples of data handled by

sensors (Figure 1-2) include: MPEG-V Part 3 sensorial effects,

MPEG-V Part 5 sensed information, MPEG-V Part 2

sensor/actuator capabilities, and face descriptors using MPEG-7.

Examples of the data (Figure 1-2) handled by actuators include

camera position, display information, and MPEG-V Part 5 actuator

commands.

2.2 ITU Immersive Experiences
Nowadays, sport and music events are commonly delivered to

remote audiences. ITU argues, however, that most audiences want

to have a better sense of immersion in the event and of togetherness

with other fans. To provide that to remote audiences, ITU proposes

Immersive Live Experiences (ILE) [10]. In sports events, for

instance, it is possible to support better immersive experiences by

displaying real-sized objects such as human bodies, or by changing

the direction of the sound coming from cheers or players. In music

events, directional audio speakers may reproduce the directional

audio of instruments.

The overall goal of ITU ILE is to simulate the source event

site (e.g., stadium, concert arena) in the viewer site (e.g. home,

theater). The ILE architecture (presented in Figure 2) consists of

capturing environment, presentation, and transport layer. A

capturing environment may include technologies such as 4K/8K or

3D video capturing, directional microphones, and multiple sensors.

Sensors may be used for real-time objects extraction (e.g., to detect

the player’s location in a game) or for capturing environment

1 http://mqtt.org/

characteristics, such as lighting and odor. Presentation may include

multi-screen displays, 3D projection, synchronous video, sound,

and other actuators, such as lighting, smell, winds, and so on.

Finally, the transport layer consists of media transport protocols

that carry ILE application and its media assets. The ILE application

may use 4K/8K and 3D media codecs and commands to relate

media objects and sensorial devices.

Figure 2: ILE overview [10].

As the MM-IoT proposal, ILE IoT is also underway, ITU only

suggests technologies for the processes above. In particular, a

version of MPEG Media Transport (MMT) is considered for the

live streaming. However, it is needed to extend some MMT

capabilities for presenting real-sized objects at the terminal. At the

viewing sites, the delivered content is reconstructed (in real size)

through projectors and displays, audio is reproduced with sound

direction, and lighting is reconstructed based on the received

lighting information. By presenting them synchronously at viewing

sites, the proponents of ILE IoT believe that users will feel highly

realistic sensations.

2.3 IBM Node-RED
Commonly, IoT developers usually implement communication

between objects using HTTP request/response or MQTT1

publish/subscribe protocols, or even access web services such as e-

mails, SMS or Twitter. IBM proposes a graphical IDE called Node-

RED [12] to facilitate reusing code in such tasks. Figure 3 depicts

Node-RED’s user interface. The tool enables developers to create

applications by dragging and dropping reusable code

blocks (nodes) from a palette and connecting them in a control

flow.

Figure 3: Node-RED screenshot [11].

Node-Red follows an event-processing approach, in which the flow

relates the occurrence and triggering of events between its nodes.

There are three types of nodes: input nodes (e.g., HTTP request)

that generate events to flow; output nodes (e.g. HTTP response, e-

mail) that consume events from the flow; and function nodes that

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

185

process the data from input nodes or other function nodes. Figure

3, for instance, shows a control flow composed of two input nodes,

one function node, and two output nodes. One of the input nodes is

triggered when it receives an HTTP request, and the other is

triggered when it receives an MQTT message. The function node

processes the data generated by input nodes and send them to the

output nodes. One of the output nodes sends an e-email and the

other simply stores the received data.

The deployment of a Node-RED application is restricted to the IBM

cloud service called BlueMix. Therefore, in order to be used and

controlled by the deployed application, a node must be registered

in BlueMix2.

2.4 Discussion
Table 1 compares how MPEG, ITU, and IBM support the

specification of relationships among media objects, sensors, and

actuators. In MPEG MM-IoT, each device exchanges events with

others devices. In ILE, the player in the remote audience controls

the actuators based on the event transmission timeline. IBM’s

Node-Red supports the specification of the synchronism by

enabling the developer to define a control flow relating events

among the nodes. Node-Red, however, requires the use of IBM’s

BlueMix Cloud service.

Table 1: Approach summary

 Focus
Synchronism
approach

Execution

MM-IoT
IoT Devices with
AV resources

Event-driven
Distributed -
handled by
each device

ILE
Immersive events
transmission for
remote audience

Timeline ILE Player

Node-RED
Iot Devices and
services (reused
code)

Event-driven
IBM BlueMix
service

3. PROPOSED APPROACH
Different from the proposals discussed in Section 2, we investigate

the use of an existing multimedia language, NCL, to specify the

relationships between media objects, sensors, and actuators.

Traditionally, multimedia languages focus primarily on audiovisual

data. However, this is very limited when we consider the fact that

more than 60% of human communication is nonverbal and uses a

combination of our five senses (i.e., sight, hearing, touch, taste, and

smell) [4]. We also study how one can use NCL to handle sensor

and actuator tasks, allowing them to be used together with the

ordinary synchronism and media abstractions of the language.

NCL is a DSL (Domain specific language) focusing on audiovisual

media synchronization. NCL developers use audiovisual media

content —such as video, audio and text— by defining <media>

elements, and synchronize them through causal relationships

defined by <link> elements. An NCL link performs actions over

<media> elements (e.g. start, stop, or set) when some conditions

are satisfied (e.g. when the media begins, ends, or a property is

changed) [13].

NCL also enables authors to define additional tasks through Lua

scripts, using the NCLua API [14]. For instance, using NCLua,

authors can create HTTP requests, draw on canvas objects, and

gather broadcast information (MPEG-TS metadata). An NCLua

script is defined as a <media> element with type “application/x-

ncl-NCLua” and can participate in <link>s just as any other media

2 www.ibm.com/cloud-computing/bluemix

object. The communication between an NCLua object and the root

NCL document is based on an event-driven API (i.e. the NCLua

event module). The API allows an NCLua media object to listen to

events being performed by the NCL document in the media object,

and also allows the NCLua script to inform internal changes to the

NCL document, which can be captured by <link>s in the NCL

document. For instance, to react to a start action, an NCLua media

object must register a handler function for the “start presentation"

event. Similarly, to inform to the NCL document the ending of its

presentation, an NCLua script must post an “end presentation”

event.

In this work we investigate the use of an NCLua script to control

IoT devices in NCL applications. Each device is handled by an

NCLua media object that communicates with services in the device.

The NCLua event-driven approach enables us to synchronize the

device with other media objects in the NCL application (including

audio, video, and other sensors and actuators). However, the code

developed to our NCL application was extremely coupled with the

IoT device used and its services. For instance, our initial code

version use device’s information such as IP address and service

URL’s inside the NCLua.To reuse our approach for different IoT

devices, we follow the mechanism proposed by Sousa Junior [15]

to implement new media players in NCLua.

The Sousa Júnior’s proposal aims at covering the lack of native

support for some media types in an NCL player implementation.

For instance, an NCL player for the Brazilian Terrestrial Digital TV

System [1] is not required to support SRT [16] subtitles or GIF [5]

animated image format, two widely used formats. Similarly, we

also want to support new media types, i.e., IoT devices.

Figure 4 depicts an overview of the Sousa Júnior’s mechanism. The

core element is a template function for handing common NCLua

events (e.g. start) and property changes. These events are mapped

to functions in a Lua table (the mediaplayer table). For instance, the

template function handles the “start” of the NCLua media object by

calling the function defined in the “start” fields of the mediaplayer

table. Also, a “set” event in a property triggers the function defined

in “properties.propName” field of the mediaplayer table, in which

propName should be replaced by the name of the property that is

being changed. Thus, for creating a new media player in NCLua,

the programmer just needs to fill in the mediaplayer table.

Figure 4: New player as an NCLua

In our work, we implemented a “mediaplayer” table with functions

that access variables (using the REST API) maintained by IoT

devices. Therefore, a developer who wants to use our

implementation should expose the device variables as properties in

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

186

the NCLua <media> element. More precisely, we define the

following variables: “base_url”, the base address of the device

REST API; ad-hoc names (e.g.smellStatus), the names maintained

by the device; the same ad-hoc names followed by a “.url”

suffix (e.g. smellStatus.url) to define the REST URL; and the same

ad-hoc names followed by a “.interval” suffix (e.g.

distance.interval) to define interval of GET requests to update the

value.

4. USAGE SCENARIO
We have implemented an NCL application that presents sensorial

effects (light, air flow and scent) synchronized with video objects.

This scenario is very similar to 4D cinema rooms, such as some

attractions from DisneyWorld3. Our usage scenario presents three

video objects displayed in sequence (Figure 5). At the moment the

presentation of each video object starts, the application starts an

actuator to produce a sensorial effect related to the video content.

The first video depicts a sun rising in a city; when it begins, the

application turns on the light of lamp (Figure 5-A). The second

video depicts a flight over a lavender field; when it begins, the

application turns on a scent dispenser with lavender fragrance

(Figure 5-B). The third video depicts a parachute jump; when it

begins, the application turns on a fan (Figure 5-C). The turning on

of the scent dispenser and of the fan considers the user position,

captured by a distance sensor. More precisely, if the user position

is greater than 1m, the application anticipates the activation of wind

and scent actuators, so their effect can be felt by the user at the

moment the corresponding video begins. Otherwise, if the user

position is smaller than 1m, no change is applied.

In order to implement the scenario, we developed an NCL

application and a JavaScript code that control the IoT device with

the required sensors and actuators. Both code fragments4 are

detailed next.

The NCL application (shown in Listing 1) uses four <media>

elements. Three <media> (lines 1-6) specify the videos and one

<media> (lines 7-18) specifies the NCLua object for managing the

IoT devices. The last one defines the variables handled by the

devices (lightStats, airStatus, scentStatus, distance) and its base

REST URL. In particular, the “distance” variable is defined to be

updated every second.

The NCL application behavior is defined by two groups of links.

The first group defines the sequence of videos. The second activates

the respective actuator of each video. To do so, it tests the

“distance” property and, if necessary, it anticipates the activation

of the scent dispenser and of the fan. The sensorial effects are

controlled by the <media> properties “lightStatus”, “airStatus”, and

3disneyworld.disney.go.com/pt/attractions/epcot/soarin/
4instructables.com/id/Sensorial-Galileo-for-Video-based-

Applications-Usi/
5intel.com/content/www/us/en/do-it-yourself/galileo-maker-

quark-board.html

“scentStatus”. Changes on those properties corresponds to PUT

requests to the IoT device. Additionally, the “distance” property is

updated each second, also by an HTTP request to IoT device.

1

2
3
4

5
6
7

8
9
10

11
12
13

14
15
16

17
18

<media id="air" src="media/air.mp4"

 descriptor="dsFull"/>
<media id="scent" src="media/scent.mp4"
 descriptor="dsFull" />

<media id="light" src="media/light.mp4"
 descriptor="dsFull" />
<media id="device" src="rest_device.lua">

 <property name="base_url" value="139.82.95.37/api"/>
 <property name="lightStatus"/>
 <property name="lightStatus.url" name="/light"/>

 <property name="airStatus"/>
 <property name="airStatus.url" name="/air"/>
 <property name="scentStatus"/>

 <property name="scentStatus.url" name="/scent"/>
 <property name="distance"/>
 <property name="distance.url" name="/distance"/>

 <property name="distance.interval" value="1s"/>
</media >

Listing 1: NCL code fragment to define the IoT device.

Regarding the IoT device, our prototype is based on an Intel

Galileo5 with a Seeed Studio Grove kit6, which allowed us to easily

connect the sensors and actuators hardware (show in Figure 6). To

emit scents, we use an Air Wick Freshmatic scent dispenser7. We

can control it using a digital port since it is a low energy

consumption device (two 1.5V batteries). To simulate light and

wind, we use domestic lamp and fan. We control them via two relay

devices connected to the GroveKit. To capture the user’s position,

we used an LV-MaxSonar8 connected to an analog port.

Listing 2 shows the JavaScript code to control the device. We

developed it using the Intel XDK IoT edition and Intel

libraries (e.g., MRAA9). Lines 1-8 show the initialization and

change function for the relay for the lamp (digital port #6), lines 9-

16 show the initialization and change functions for the fan (digital

port #3), and lines 17-38 show the initialization and change

function for the scent dispenser (digital port #8). The change of the

scent dispenser is not a continuous operation because of the

strength of its scent; the full operation takes about 6 seconds.

Finally, lines 39-44 show the initialization of the sonar sensor,

whose value is updated every second. The change functions and the

6seeedstudio.com/item_detail.html?p_id=1978
7amazon.com/Air-Wick-Freshmatic-Automatic-

Freshener/dp/B007XTLT8I
8maxbotix.com/Ultrasonic_Sensors/MB1010.htm
9github.com/intel-iot-devkit/mraa

Figure 5: Light, scent and wind effects in different videos of the NCL application

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

187

sonar distance value are offered by a REST API using the express

library10.

Figure 6: Intel Galileo connections

1

2
3
4

5
6
7

8
9
10

11
12
13

14
15
16

17
18
19

20
21
22

23
24
25

26
27
28

29
30
31

32
33
34

35
36
37

38
39
40

41

// --> lamp

var myRelay = new groveSensor.GroveRelay(6);
var lightStatus = 0; myRelay.off();
function changeLightStatus(newStatus){

 if(lightStatus == newStatus) return;
 lightStatus = newStatus;
 lightStatus ? myRelay.on() : myRelay.off();

};
// --> fan
var myRelay2 = new groveSensor.GroveRelay(3);

var airStatus = 0; myRelay2.off();
function changeAirStatus(newStatus){
 if(airStatus == newStatus) return;

 airStatus = newStatus;
 airStatus ? myRelay2.on() : myRelay2.off();
};

// --> scent
var myEnergy = new mraa.Gpio(8);
myEnergy.dir(mraa.DIR_OUT);

var scentStatus = 0; myEnergy.write(0);
var scentInterval;
function startScent() {

 if(myEnergy.read()) return;
 myEnergy.write(1);
 setTimeout(function () {

 myEnergy.write(0);
 }, 200);
}

function changeScentStatus(newStatus){
 if(scentStatus == newStatus) return;
 if(scentStatus == 0){

 startScent(); scentStatus = 1;
 scentInterval = setInterval(startScent, 6000);
 }else{

 clearInterval(scentInterval);
 myEnergy.write(0); scentStatus = 0;
 }

};
// --> sonar
var mySonar = new MaxSonarEZ.MAXSONAREZ(1, 5.0);

var distance = 0;

10expressjs.com

42
43

44

var myInterval = setInterval(function() {
 distance = mySonar.inches() * 2.54;

}, 1000);

Listing 2: Intel Galileo code fragment for controlling sensors

an actuators

5. FINAL REMARKS
In this paper, we investigate the use of the NCL language to handle

sensors and actuators. We were able to satisfactorily use NCL to

synchronize media objects, sensors, and actuators. As a usage

scenario, we implemented an NCL application that presents video

objects synchronized with sensorial effects (light, air flow and

scent). In particular, the turning on and off of wind and scent

actuators, considering the user’s position captured by a distance

sensor, were implemented and tested.

We envision four main paths for future work. First, we can evaluate

use discovery mechanisms of devices in a local networks, such as

UPnP and Bounjour. Second, we can also investigate using

different types of sensors and actuators, which may be useful for

scenarios such as assisted living and monitoring. Third, we can

improve our NCLua implementation to enable it to be reusable to

control other IoT devices. Third, following a path similar to Node-

RED, we may extend the NCL Composer [3] tool to show IoT

device as elements. This way, we may give developers a graphical

tool to create multimedia-based IoT applications.

ACKNOWLEDGMENTS
First, we are strongly thankful to Prof. Luiz Fernando Gomes

Soares (in memoriam) for the profound guidance and friendship,

essential to this work and its authors. We also thank all TeleMídia

and SecondLab researchers, who provided thoughtful discussions

on this work. Finally, we thank the Brazilian National Council of

Technological and Scientific Development (CNPq) for their

financial support (project #309828/2015-5).

REFERENCES
[1] ABNT NBR 15606-1:2016 Digital terrestrial television - Data coding

and transmission specification for digital broadcasting Part 1: Data

coding specification. 2016.

www.abntcolecao.com.br/normavw.aspx?ID=351835. Accessed:
2016-08-08.

[2] Atzori, L., Iera, A. and Morabito, G. 2010. The internet of things: A
survey. Computer networks. 54, 15 (2010), 2787–2805.

[3] Azevedo, R.G.A., Araújo, E.C., Lima, B., Soares, L.F.G. and Moreno,

M.F. 2014. Composer: meeting non-functional aspects of hypermedia
authoring environment. Multimedia Tools and Applications. 70, 2

(May 2014), 1199–1228.

[4] Ghinea, G., Timmerer, C., Lin, W. and Gulliver, S.R. 2014.
Mulsemedia: State of the Art, Perspectives, and Challenges. ACM

Transactions on Multimedia Computing, Communications, and

Applications. 11, 1s (Oct. 2014), 17:1–17:23.
[5] GIF Graphics Interchange Format. 1987.

www.w3.org/Graphics/GIF/spec-gif87.txt. Accessed: 2016-08-08.

[6] ISO/IEC 23005-1:2014 - Information technology -- Media context
and control -- Part 1: Architecture. 2014.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=60359.

Accessed: 2016-08-08.
[7] ISO/IEC 23008-11:2015 - Information technology -- High efficiency

coding and media delivery in heterogeneous environments -- Part 11:

MPEG media transport composition information.
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.ht

m?csnumber=65302. Accessed: 2016-07-20.

[8] ISO/IEC JTC 1/SC 29/WG 11 N15085: Exploration on Media-centric
Internet of Things. 2015.

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

188

http://mpeg.chiariglione.org/standards/exploration/media-centric-

internet-things. Accessed: 2016-08-08.

[9] ISO/IEC JTC 1/SC 29/WG 11/ N16346: Requirements on Internet of

Media-Things and Wearables. 2016.

http://mpeg.chiariglione.org/standards/exploration/internet-media-
things-and-wearables/requirements-internet-media-things-and.

Accessed: 2016-08-08.

[10] ITU-T SG 16 (Study Period 2013) Contribution 1190: New Proposal
of establishment new Focus Group and new Question on Immersive

Live Experience (ILE) services. 2016. https://www.itu.int/md/T13-

SG16-C-1190/en. Accessed: 2016-08-08.
[11] Javed, A. 2016. Complex Flows: Node-RED. Building Arduino

Projects for the Internet of Things. Apress. 51–73.

[12] Node-RED. http://nodered.org/. Accessed: 2016-03-03.
[13] Soares, L.F.G., Moreno, M.F., Neto, C. de S.S. and Moreno, M.F.

2010. Ginga-NCL: Declarative Middleware for Multimedia IPTV

Services. IEEE Communications Magazine. 48, June (Jun. 2010), 74–

81.

[14] Soares, L.F.G., Moreno, M.F. and Sant’Anna, F. 2009. Relating

Declarative Hypermedia Objects and Imperative Objects Through the

NCL Glue Language. Proceedings of the 9th ACM Symposium on
Document Engineering (New York, NY, USA, 2009), 222–230.

[15] de Souza Junior, J.G., Azevedo, R.G. de A., Neto, C. de S.S. and

Soares, L.F.G. 2010. Estendendo NCL : objetos NCLua como
exibidores para novos tipos de mídia. WebMedia ’10: Proceedings of

the 16th Brazilian Symposium on Multimedia and the Web - II

Workshop de TV Digital Interativa - WTVDI (2010).
[16] SRT Subtitles.

http://www.matroska.org/technical/specs/subtitles/srt.html,.

Accessed: 2016-08-08.

Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web (Vol. 2): Workshops e Sessão de Pôsteres

189

