
Design and Evaluation of an Easy-to-Use Web Playground
Rodrigo Laiola Guimarães* and Mateus Molinaro Motta

IBM Research
Rua Tutóia 1157

04007900 São Paulo, Brazil
+55 11 2132 3122

{rlaiola, mottam}@br.ibm.com

ABSTRACT
Learning about Web Design can be difficult and time consuming,
yet students often do not learn from their errors and struggle to
understand some differences between document structure, styling,
scripting and temporal synchronization. In this paper we present
Ambulant Sketchbook, an easy-to-use Web playground designed
to enable students to understand and learn from their errors. In
particular, this application simplifies the process of learning how
to write and debug Web documents by exploring aspects of
immediate feedback, coding assistance, direct manipulation and
playback control. We have deployed and used Ambulant
Sketchbook in a course of Web Design Foundations over a 2-
week span. Based on the positive feedback from a group of post-
secondary students, we expect the functionalities and experiences
discussed in this work can yield significant insights to be
considered in the design of next generation authoring tools and in
the process of teaching Web Media related disciplines.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Integrated environments, Interactive environments; I.7.2
[Document and Text Processing]: Document Preparation –
Hypertext/hypermedia, Languages and Systems, Standards; K.3.1
[Computers and Education]: Computer Uses in Education –
Computer-assisted instruction (CAI).

General Terms
Design, Experimentation, Human Factors, Languages.

Keywords
Web playgrounds, Authoring tools, Immediate feedback, Coding
assistance, Direct manipulation, Playback control, HTML, CSS,
JavaScript, Problem-based learning.

1. INTRODUCTION
Problem-based learning (PBL) is an instructional method that uses
problems as the starting point of learning [7]. In the process, it is
envisaged that students will acquire critical thinking and problem-
solving skills [3]. There are varieties of PBL, but basically a
typical PBL sequence consists of 1) setting up the motivational
atmosphere of learning by posing an interesting problem; 2)
activating learners by means of group interaction with peers and
facilitators over the case; 3) building up knowledge base of

relevant materials; 4) applying the knowledge to treat the case and
5) reviewing the case.

In this paper we present an application that has been designed and
implemented to help using the PBL methodology to teach core
concepts of Multimedia and the Web. This work is part of an
extended study to better understand the intersection between
human-computer interaction and multimedia authoring in online
educational platforms. A group of post-secondary students
enrolled in a course of Web Design Foundations has actively
collaborated with this research. Starting in June 2013, students
were encouraged to use existing online coding platforms to
practice the concepts presented by the course instructor in the
classroom. Subsequently, these students were requested to use our
proof of concept, called Ambulant Sketchbook, to do the course’s
final assignments. After 2 weeks of interaction with the system
they have been asked to provide feedback on their experiences.

2. AMBULANT SKETCHBOOK
Ambulant Sketchbook1 is an experimental playground for rapidly
prototyping sketches consisting of HTML (HyperText Markup
Language), CSS (Cascading Style Sheets) and JavaScript2 code
snippets. The application provides a simple user interface with
several useful functionalities such as immediate feedback, coding
assistance, direct manipulation and playback control. Ambulant
Sketchbook realizes some of the insights introduced by Bret
Victor’s work3, and it has been built using many open source
libraries. Currently, it works on modern Web browsers like
Chrome, Firefox and Safari.

2.1 Main Functionalities
The workflow begins when a user accesses the Ambulant
Sketchbook application using a Web browser. At this point, a
sketch id is automatically generated and added to the URL
(Uniform Resource Locator) as a query string. In case a valid id is
provided in the initial page request, the application loads the
referred sketch from the database. During the initialization, a
session id is also created and this is valid as long as the Web page
remains open. Once the Ambulant Sketchbook’s Web page is
completely loaded, the user sees a user interface (UI) like the one
shown on the left side of Figure 1. The UI consists of 2 main
components: the code editor and the code previewer (Figure 1-A
and -B, respectively). The code editor offers independent code
views for HTML, CSS and JavaScript. The user can access a

1 Demo video available at http://goo.gl/C5OFdX.
2 Some technologies mentioned in this paper, if unknown, could

very easily be identified via a simple online search; therefore
they will not be Web-referenced.

3 http://vimeo.com/36579366

* Work was done when the author was at the Instituto Federal
do Espírito Santo, Serra, ES, Brazil.

particular view by simply clicking on a tab (see Figure 1-1). These
views can be used to modify specific parts of a sketch, which will
promptly be reflected in the code previewer.

The code editor also offers some configuration options (e.g. auto
play, auto update) and help information (Figure 1-2). Moreover,
depending on the part of the sketch being edited, contextual
helpers can be activated with keyboard shortcuts (see Figure 2).
Helpers can also be used to show the part of the code that
corresponds to an element in the code previewer and vice versa.

In Ambulant Sketchbook a user can save the progress of a sketch
to edit it later, share the sketch’s URL online (e.g. on
StackOverflow), or even download a sketch as a HTML document
(Figure 1-3). In the next subsection, we will see that our
application also enables the modification of a sketch locally or
remotely in real-time. Finally, Ambulant Sketchbook offers
playback primitives to control the presentation of a sketch (Figure
1-4). This functionality is especially useful when working with
temporal elements like HTML5 audio and video, CSS3 and SVG
animations. In the current prototype it is possible to play, pause,
reload and visualize a sketch’s elapsed time.

2.2 Implementation
Ambulant Sketchbook has been implemented and deployed using
a number of Web related technologies. On the back-end, the Web
server runs Apache (Linux) with PHP 5.2 while the database
server runs MySQL 5.1. The front-end has been developed using a
combination of server-side scripting (e.g. PHP for querying the
database) and client-side languages such as HTML, CSS and
JavaScript. On the client-side, we still used the jQuery framework
and some third-party plugins built on top of it.

The code views (HTML, CSS and JavaScript) have been
implemented using CodeMirror4, a JavaScript library that allows
for in-browser code editing. In principle, CodeMirror provides
only the editor component, but there are a number of third-party
add-ons for auto-completion, code hints, search etc. In particular,
in our implementation we used an add-on5 that offers the code
helpers shown in Figure 2. A rich programming API (Application
Programming Interface) and a CSS theming system are also
available for customizing CodeMirror to fit a specific application,

4 http://codemirror.net
5 https://github.com/enjalot/Inlet

and extending it with new functionality. CodeMirror still offers
some language-specific modes that help color (and optionally
indent) text written in a particular language.

The code previewer itself has been implemented as an
independent Web page, and embedded in the Ambulant
Sketchbook application as an <iframe>. The real-time
communication between the code editor and the code previewer
(be this local or remote as illustrated on the right side of Figure 1)
has been implemented using the Server-Sent Events (SSE)
JavaScript API. SSE is a W3C (World Wide Web Consortium)
draft describing how servers can initiate data transmission towards
clients once an initial client connection has been established. In
Ambulant Sketchbook, SSEs are used to send code updates,
playback commands and to activate cross-component helpers.

Figure 1. Ambulant Sketchbook’s user interface and architecture.

a)

b)

c)

Figure 2. Contextual helpers facilitate the authoring
process: a) color picker, b) slider and c) angle picker.

3. EVALUATION
Working in pairs, 22 post-secondary students (18 males and 4
females) from the Federal Institute of Espírito Santo (IFES) used
Ambulant Sketchbook to do their assignments in the course of
Web Design Foundations over a two-week span. The exercises
consisted of using SVG (Scalable Vector Graphics) with
HTML+CSS. Thereafter, students were requested to present their
results to the instructor and answer a usability evaluation
questionnaire. First, a short set of instructions was added that
reminded them to mark a response to every statement and not to
dwell too long on any one statement. All responses were
anonymous. Based on our observations and responses to the
questionnaires, in the remaining of this section we present the
results and discuss the findings from the evaluation process.

We used the System Usability Scale (SUS) framework, which has
proven to be a robust and reliable evaluation tool [4]. The original
English version of the SUS questionnaire was translated into
Brazilian Portuguese, as shown in Table 1. This simple ten-item
questionnaire provides a single number (SUS score) that
represents a composite measure of the overall usability of a
system. The response to each item is selected based on a 5-point
Likert scale that ranges from 1 (‘Strongly disagree’) to 5
(‘Strongly agree’). The resulting contribution of an item ranges
from 0 to 4. For positively worded items (#1, #3, #5, #7 and #9)
the contribution is the scale value minus 1. For negatively worded
items (#2, #4, #6, #8 and #10) the contribution is 5 minus the
scale value. To calculate the overall SUS score, we sum the
contributions of all 10 items and then multiply by 2.5. The final
SUS score ranges from 0 to 100 (or from bad to good usability).

Figure 3 shows a graph with the distribution of the 22 SUS scores
for Ambulant Sketchbook. The mean score was 90.0 (SD = 9.2),
which indicates that the usability of the system was considered the
best imaginable [2]. In principle, individual item scores are not
meaningful on their own; however, Lewis and Sauro [5] show that
items #4 and #10 can be used to measure the Learnability of a
system at no extra cost. In our case, the resulting Learnability
score was 84.7 (in a 0-100 scale), which indicates that a system

like Ambulant Sketchbook is a good alternative to reduce the time
it takes to complete tasks as users spend more time with it.
Participants also had the opportunity to list the advantages and
shortcomings of using Ambulant Sketchbook by responding an
open-ended question. On the one hand, they said that “...it
(Ambulant Sketchbook) is very useful...” and that “...the learning
process is facilitated because we can visualize things occurring
automatically...”. Others highlighted that Ambulant Sketchbook
was also fast and intuitive: “...I particularly liked it (Ambulant
Sketchbook) because it saves me time...”, “...I can recover from
mistakes quickly...” and “it (Ambulant Sketchbook) makes the
things I want to accomplish easier to get done...”. On the other
hand, a few students mentioned they would rather use the system
in Brazilian Portuguese (if possible) and have the option to skip
the first steps tutorial in the beginning of a session.

Likewise, from the instructor’s point of view the overall
experience was also very positive. On the one hand, Ambulant
Sketchbook helped him to improve retention and performance of
the students. He observed that once students got familiar with the
tool they acquired more self-directed learning skills and they were
motivated to solve the course assignments. On the other hand, he

Table 1. English and Brazilian Portuguese versions of the SUS questionnaire.

Original English version Brazilian Portuguese version

1. I think I would like to use this system frequently. 1. Eu acho que eu gostaria de utilizar o Ambulant Sketchbook
frequentemente.

2. I found the system unnecessarily complex. 2. Eu achei o Ambulant Sketchbook desnecessariamente complexo.

3. I thought the system was easy to use. 3. Eu achei o Ambulant Sketchbook fácil de usar.

4. I think I would need the support of a technical person to be able
to use this system.

4. Eu acho que eu precisaria de suporte técnico para ser capaz de
usar o Ambulant Sketchbook.

5. I found the various functions in this system were well
integrated.

5. Eu achei que as várias funcionalidades do Ambulant Sketchbook
foram bem integradas.

6. I thought there was too much inconsistency in this system. 6. Eu achei que havia muitas inconsistências no Ambulant
Sketchbook.

7. I would imagine that most people would learn to use this system
very quickly.

7. Eu acredito que a maioria das pessoas aprenderia a usar o
Ambulant Sketchbook muito rapidamente.

8. I found the system very cumbersome to use. 8. Eu achei o Ambulant Sketchbook muito complicado.

9. I felt very confident using the system. 9. Eu me senti muito seguro usando o Ambulant Sketchbook.

10. I needed to learn a lot of things before I could get going with
this system.

10. Eu precisei aprender muitas coisas antes que eu pudesse usar o
Ambulant Sketchbook.

Figure 3. Distribution of the SUS scores from the data set.

pointed out that this was an ad-hoc process and a more systematic
approach towards problem creation and automatic validation of
PBL is desirable (e.g. use of badges). We share the same view and
we think this is a topic for further work.

4. RELATED WORK
Online code playgrounds allow users to rapidly write, test and
share code using just a Web browser. These tools (e.g.
W3Schools6, JSFiddle7, JSBin8 etc.) provide many capabilities
that focus on rapid prototyping and generation of proofs of
concept. There are evidences that the use of code playgrounds in
communities like StackOverflow is an effective mechanism to
help users solving problems [6]. Despite the functionalities online
code playgrounds offer, most of them do not keep the runtime
state between code changes. In this work we go a step further by
considering the change of a Web document in real-time, but still
preserving its previous state. Currently, this works for changes in
the CSS code. Moreover, we provide a play/pause functionality
that controls the presentation of temporal elements all together
(e.g. CSS3 and SVG animations, HTML5 audio and video). Last
but not least, Ambulant Sketchbook allows one to visualize and
control the presentation of a sketch on a remote device.

Related to this work, Elm9 is a functional reactive programming
language designed to simplify the creation of rich and responsive
Web browser based user interfaces. Although Elm takes some of
the features discussed in this paper to the next level, it uses a
programming paradigm that is not aligned to current Web
practices. Our work is related but we focus on the task of
supporting HTML, CSS and JavaScript.

In the field of online education, it is worth mentioning platforms
like Code Academy and Khan Academy, which offer tutorials to
learn a programming language. Students enrolled in a course are
able to follow a series of steps at their own pace. These platforms
are closely related to ours, but they only consider ‘canned’
exercises that can be easily validated programmatically. For more
complex PBL problems this approach does not seem to scale.
Moreover, these platforms are targeted to distance learning, and
do not consider the intrinsic dynamics in the classroom.

5. FINAL REMARKS
In this paper we presented Ambulant Sketchbook, a Web
playground developed as a flexible testbed to investigate the use
of PBL while teaching Web Design principles. Based on our
evaluation process, we discussed the results and provided some
insights that can be considered in the design of next generation
authoring tools targeted to the education domain. In particular,
this work highlights the importance of considering:

• Immediate feedback: rapid and incremental feedback allows
users to make fewer errors and complete tasks in less time,
because they can see the results of an action instantly;

• Coding assistance: an authoring tool should provide helpers
that ease the coding process [1] (e.g. completion, syntax
highlight, color picker, angle picker);

• Direct manipulation: users should be able to interact and
manipulate (e.g. dragging, resizing) the representation of

6 http://www.w3schools.com
7 http://jsfiddle.net
8 http://jsbin.com
9 http://elm-lang.org

objects of interest in a more intuitive way and such actions
should reflect directly in the source code; and

• Playback control: as time now plays a prominent role on the
Web, it is important to offer mechanisms to control and
simulate the behavior of elements over time.

In the near future we will make Ambulant Sketchbook’s source
code available, although we are still deciding on its open source
license. As future work, we expect to improve the current
implementation and explore the use of XML (eXtensible Markup
Language) diff and patch to minimize the effect of modifications
on the structure of the HTML document. Finally, we intend to add
support to SMIL (Synchronized Multimedia Integration
Language) Timesheets snippets via an additional code view.

6. ACKNOWLEDGMENTS
This work has been partially funded by the Brazilian Ministry of
Science and Technology under contract no. FINEP 03.11.0371.00.
Special thanks to the students from the Federal Institute of
Espírito Santo who have been involved in the evaluation process.

7. REFERENCES
[1] Azevedo, R. G. A., Lima, B. S., Soares Neto, C. S. and

Teixeira, M. M. 2009. An approach for textual authoring of
hypermedia documents based on the use of programmatic
visualization and hypertextual navigation. In Proceedings of
the XV Brazilian Symposium on Multimedia and the Web
(WebMedia ‘09). ACM, New York, NY, USA, 8 pages.
DOI=10.1145/1858477.1858495
http://doi.acm.org/10.1145/1858477.1858495

[2] Bangor, A., Kortum, P., and Miller, J. 2009. Determining
What Individual SUS Scores Mean: Adding an Adjective
Rating Scale. Journal of Usability Studies 4, 3 (May 2009),
114–123.

[3] Baturay, M. H. and Bay, O. F. 2010. The effects of problem-
based learning on the classroom community perceptions and
achievement of web-based education students. Journal
Computer Comput. Educ. 55, 1 (August 2010), 43-52.
DOI=10.1016/j.compedu.2009.12.001
http://dx.doi.org/10.1016/j.compedu.2009.12.001

[4] Brooke, J. 1996. SUS: A “Quick and Dirty” Usability Scale.
In Jordan, P. W., Thomas, B., Weerdmeester, B. A., and
McClelland, A. L., editors, Usability Evaluation in Industry,
189–194. Taylor & Francis, London.

[5] Lewis, J. R. and Sauro, J. 2009. The Factor Structure of the
System Usability Scale. In Proceedings of the 1st
International Conference on Human Centered Design: Held
as Part of HCI International 2009 (HCD ‘09), Masaaki
Kurosu (Ed.). Springer-Verlag, Berlin, Heidelberg, 94-103.
DOI=10.1007/978-3-642-02806-9_12
http://dx.doi.org/10.1007/978-3-642-02806-9_12

[6] Sillito, J., Maurer, F., Nasehi, S. M. and Burns, C. 2012.
What makes a good code example?: A study of programming
Q&A in StackOverflow. In Proceedings of the 2012 IEEE
International Conference on Software Maintenance (ICSM)
(ICSM ‘12). IEEE Computer Society, Washington, DC,
USA, 25-34. DOI=10.1109/ICSM.2012.6405249
http://dx.doi.org/10.1109/ICSM.2012.6405249

[7] O’Grady, M. J. 2012. Practical Problem-Based Learning in
Computing Education. Trans. Comput. Educ. 12, 3, Article
10 (July 2012), 16 pages. DOI=10.1145/2275597.2275599
http://doi.acm.org/10.1145/2275597.2275599

