

43

MINT-Composer – A Toolchain for the Model-based

Specification of Post-WIMP Interactors

Sebastian Feuerstack

Universidade Federal de São Carlos

Rodovia Washington Luís, km 235

São Carlos - São Paulo – Brasil sfeu@dc.ufscar.br

ABSTRACT
With the introduction of new modes to control user interfaces like

speech, gesture and multi-touch Post-WIMP interfaces increasingly

substitute classical WIMP (windows, icons, menus, pointer) user

interfaces.

In this paper, we describe a toolchain of three connected tools to

design and monitor custom Post-WIMP interactors using model

based user interface design (MBUID) methods. We use state charts

and mappings as the basic modeling technique. Different to other

MBUID approaches our models are get created to specify the

behavior of existing widgets. These models are then used to attach

further control modes and connect interactors using mappings.

We explain the toolchain by an interactive music sheet web

application that can be controlled by head movements to turn the

sheets.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User

Interfaces - Input devices and strategies, Interaction styles,

Prototyping; D.2.2 [Software Engineering]: Design Tools and

Techniques – User Interfaces.

General Terms

Design, Human Factors, Languages.

Keywords
Model-based User Interfaces, Multimodal Interfaces, Web

Application Development, HCI.

1. INTRODUCTION
Nowadays more and more devices get equipped with several sensors

used to better capture the interaction with the user by considering

the actual context of use. Whereas early cell phones and televisions

used a numeric keypad to enable to navigate through the interface,

modern smart devices offer a more natural form of interaction,

involving a spoken control to search for or navigate through data or

even gestures to control a game (e.g. the Kinect controller) or a

television (using image processing by a camera).

The change to a more natural control has an impact on the graphical

representation (the media) of the interface. The last 30 years a

mouse and a keyboard were the principle devices to control an

interface and there was consent that the best media to reflect these

controls is a Windows, Icons, Menu, Pointer (WIMP) interface.

With new devices, such as smart TVs and smart phones, tablets,

wall-sized displays and multi-touch tables, the graphical media,

which is still the most prominent output channel used – needs to be

reconsidered to reflect these new and more natural forms of control.

A huge amount of Post-WIMP toolkits have been proposed to

overcome the limitation of classic WIMP style interaction that does

not consider tangible, gestural or speech-based interaction. But as

of now there is no consent about the content of such a toolkit.

Instead Post-WIMP toolkits are proposed for a specific form of

interaction (e.g. for a multi-touch table, or for a specific smart phone

type). Thus, cross-platform or cross-modality development of

interactive systems to enable different user controls is still a difficult

task.

In this paper we present a toolchain that enables a model-based

specification of Post-WIMP interactors based on state charts and

mappings. With our set of tools the behavior of pre-existing

PostWIMP interactors can be described to enable their re-use and

extension to support new interaction modes.

The next section gives an overview about the development process

that is supported by the toolchain and presents the overall

architecture. Thereafter, in section 3 we present the main

functionality of the tools. Finally, in section 4 we discuss a use case

where we applied the tool chain to design and implemented an

music sheet Post-WIMP interactor that can be controlled by head

movements. Section 5 states related work and section 6 concludes

our work.

2. ARCHITECTURE
The process creating or modifying Post-WIMP interactors using our

toolchain involves six basic steps that are depicted in figure 1:

.

1. Selecting a pre-designed interactor widget that should

be used for the graphical presentation.

2. Specifying the behavior of the widget using a state

chart.

3. Select and design the modalities that should be used

for controlling the interactor by using a state chart.

44

Figure 1. The interactor relations on the abstract level.

4. Specification of the mappings that connect the widget

with the modalities.

5. Executing of the interactors, modality and mappings

specification within a runtime environment.

6. Realtime monitoring and debugging of the interactors

and mappings during they are executed.

Our approach focuses on web interfaces, since there are already

a broad range of widgets toolkits available that could be re-used.

Therefore developers usually just need to select a widget from a

toolkit that is already close to the requirements of the

application.

After a widget has been chosen, its behavior relevant for the

interaction with the user is described using a state chart editor.

In our toolchain we use the scxmlgui editor that is available as

open source and produces standardized W3C state chart xml

(SCXML) files. Even if we focus on web widgets, the actual

implementation language of an interactor is not important, but it

is assumed that the widget offers an event-based API so that each

state of the resulting start chart can be attached to a certain API

call.

Different to the second step in that a media widget has been

specified, the control of this media by the user depends on one

or several modalities that are combined to form an interaction.

Therefore in the third step state charts representing how a set of

modalities can be used isolated (uni-modal) or combined

(multimodal) to control the Post-WIMP interactor are specified.

In the fourth step, multimodal mappings are defined that relate

the graphical representation of an interactor with the control

modes. The mappings are designed using a custom flow-chart

like graphical notation based on the CARE properties [5] that

describe multimodal relations like complementary, assignment,

redundant, and equivalent relations. Technically mappings

observe state changes and trigger actions by sending events to

state machines. We implemented a tool, that we describe in the

next section, to ease the specification of mappings.

In the fifth step all interactors are loaded in our runtime

processing platform, the Multimodal Interaction (MINT)

1 http://www.multi-access.de, last accessed August 22th, 2012

framework1. The platform compiles the Post-WIMP interactors

and modality interactor state charts to state machines and the

multimodal mapping to code based on the observer and

publish/subscribe pattern and execute all components inside a

web server.

Finally, in the last step a running Post-WIMP application can be

observed by a monitoring application that is part of the MINT

platform. The monitor observes and visualizes all running

interactors and their state changes in real-time together with a

mapping execution log to ease the understanding of which

mappings are currently executed. The monitor helps to identify

bugs or to improve the interaction by re-wiring the mappings or

state charts of the interactors. Very complex state machines,

such as used to describe gesture-based interactions, can even be

observed directly inside the state chart editor, which supports

animation of state changes while the interactor is executed.

3. MAIN FUNCTIONALITY
The second, third and sixth step in the development process are

supported by the pre-existing scxmlgui editor [3]. Figure 2

depicts the main view of the editor. It supports the visual

specification of Harel state charts [2]. Therefore a specification

can be composed of events, atomic and complex states, initial

states and state entry, exit and transition conditions. Since the

tool saves the state charts in the standardized W3C SCXML

format [8], states and transitions can be associated with backend

API calls and conditions can refer to a data model. During

application monitoring an arbitrary interactor state chart that is

used in a running application can be loaded. As soon as the editor

is connected to the MINT platform it receives state changes of

the interactor and highlights active states and corresponding

state changes.

With our mapping editor, multimodal mappings are specified by

a custom flow chart like notation that offers three basic elements:

observations, actions and operators. Boxes with rounded edges

describe “observations” of state changes. Boxes with sharp

edges are used to define actions, which are backend function

calls or the triggering of events. A set of observations is

connected by an operator that describes a relation between

different modes. Following the CARE properties approach [5]

elementary relations can specify: complementary usage (C), can

assign an observation to a specific mode (A), can be used

Figure 2. The main window of the scxmlgui editor.

http://www.multi-access.de/
http://www.multi-access.de/
http://www.multi-access.de/

45

Figure 3. The main window of the mapping editor.

redundantly (R) or equivalent (E). Additionally we support the

definition of a strict sequence (S) of observations followed by

actions. Observations can either be activated instantly as soon as

the mapping is started (once), can listen continuously to state

changes (onchange) or can combine an initial check for the

actual state and a continuous observation till the observation is

evaluated to true. Mappings can fail and are then get reinitialized

automatically. A comprehensive specification of the mapping

language has been published online 2 . Figure 3 depicts a

screenshot of the main screen of the tool.

After all interactors and mappings have been specified they are

loaded by our runtime environment, the MINT platform, and

instantiated as state machines as part of a web server.

Figure 4 shows a screenshot of two interactors running in

parallel as state machines: A music sheet widget and a

configuration bar to set how to control the page turning: by

nodding, tilting the head or by turning it slightly to left or right.

Figure 4. Web browser displaying a music sheets.

During the application is executed inside the webserver and

displayed by a browser, a developer can connect in parallel to

the monitoring application that tracks all state changes of the

interactors in real-time. Figure 5 shows a screenshot of the entire

list of interactors running in parallel for the music sheet

application. State changes are highlighted in yellow for a short

amount of time to ease the observation. A second tab lists in the

2 http://www.multi-access.de/mint/mim/2012/20120827/, last

checked August, 27th ,2012

same manner the running multimodal mappings together with

their actual state. The monitor logs all interactions in real-time

and serves for (remote) debugging as well as for remote

observations of a user interacting with an application.

Figure 5. The application monitor feature.

4. INTERACTIVE MUSIC SHEET
When learning to play a musical instrument, or when playing

one, a music sheet is used to give guidance as to how to perform

the musical piece. However, as songs become longer and more

intricate it may span across several sheets, forcing the player to

stop playing to turn the page. Although this may become easier

as one becomes more experienced with the instrument, it is a

barrier for inexperienced players that can be tackled easily using

a different mode to turn the pages other that your hand.

One possibility could be the use of voice to issue a command to

turn the page, but this would not be successful as it would disrupt

the melody. With these facts in mind we propose a

humancomputer interface to turn music sheets with simple head

movements that can be captured by a basic VGA webcam, a

common part of modern notebooks. The considered setup is

shown by Figure 6.

Figure 6. Interacting with the music sheet.

We have defined a head movement mode interactor enabling to

detect tilting the head to the side, right and left, as the controller

to pass to the next page or return to the previous page,

respectively. The corresponding interactor definition is

straightforward like illustrated by figure 7. But to get this

http://www.multi-access.de/mint/mim/2012/20120827/
http://www.multi-access.de/mint/mim/2012/20120827/

46

interactor working there this still a programming task to be done

that links the interactor states to API calls of a head recognition

and tracking application.

Figure 7. Head interactor, see 3 for the complete

specification.

Figure 8 shows a screenshot from our head tracking application

that works well with using a simple VGA camera. The left side

of the figure shows the debugging user interface in that a moving

arrow represents the direction of the head movement (mirrored).

5. RELATED WORK
Model-based development to specify and generate user

interfaces for several platforms has been practiced since two

decades [6]. MBUID is mostly performed to semi-automatically

generate interfaces to run on different platforms like a TV, a

smart phone or to support different control modes. The

generation of multimodal interfaces that consider more than one

modality has been only performed to a limited extend [7] to

consider XHTML+Voice based web applications. The open

interface framework [3] helps assembling multimodal interfaces

out of predefined components but does not consider a behavior

modeling.

6. CONCLUSIONS
This approach using interactors and mappings decreases the

work and effort necessary to modify or even add new interaction

styles to an already finished interface. For instance, if decided

that the style of interaction defined isn’t ideal it can be modified

or a new one can be designed (e.g., by moving his head from left

to right) by simply changing the behavior of the interactors and

mappings.

We initially thought the music sheet application just as a small

demonstration application to demonstrate what is possible with

the proposed tool chain and to explain how easy the interaction

can be monitored and changed using our tools. But interestingly

controlling page turns using head movements (especially the

tilting variant) figured out to work very well, which we initially

didn’t expected. The reason for this lies in the fact that especially

for the case that the music is unknown to the musician she really

remains the head in a quite static position while concentrating

on “reading” while playing. Only in cases in that the musician

did know the music to play very well she focuses more on

expressing emotions that actual reading the sheet. But in these

cases the sheet itself is no longer required.

3 http://www.multi-access.de/mint/irm/2012/20120822/, last

checked August, 22th

Figure 8. Head Tracking Software.

ACKNOWLEDGMENTS
Sebastian Feuerstack would like to thank FAPESP for funding

the travel grant that enabled him to attend the WebMedia 2012

conference and present the paper and is grateful to the Deutsche

Forschungsgemeinschaft (DFG) for the financial support of his

research.

REFERENCES
[1] Feuerstack S; Colnago J. and De Souza, C.; Designing and

Executing Multimodal Interfaces for the Web based on

State Chart XML. Proceedings of 3a. Conferência Web

W3C Brasil 2011, The 3rd W3C Brazil Web Conference,

17th18th November, Rio de Janeiro, Brazil.

[2] Harel, D. & Politi, M. (1998) Modeling Reactive Systems

with Statecharts: The STATEMATE Approach. New

York: McGraw-Hill.

[3] Lawson, J.-Y. L.; Al-Akkad, A.-A.; Vanderdonckt, J. &

Macq, B. (2009), An open source workbench for

prototyping multimodal interactions based on off-the-shelf

heterogeneous components, in 'Proceedings of the 1st

ACM SIGCHI symposium on Engineering interactive

computing systems', ACM, New York, NY, USA, pp.

245--254.

[4] Morbini, Fabrizio . Scxmlgui. (Checked, July, 27th 2012)

http://code.google.com/p/scxmlgui/

[5] Nigay, L & Coutaz, J. (1997). Multimedia Interfaces:

Research and Applications - Chapter 9: Multifeature

Systemsn: The CARE Properties and Their Impact on

Software Design. AAAI Press.

[6] Puerta, A. R.; Eriksson, H.; Gennari, J. H. & Musen, M.

A. (1994), Model-based automated generation of user

interfaces, in 'AAAI '94: Proceedings of the twelfth

national conference on Artificial intelligence (vol. 1)',

American Association for Artificial Intelligence, Menlo

Park, CA, USA, pp. 471--477.

[7] Stanciulescu, A.; Limbourg, Q.; Vanderdonckt, J.;

Michotte, B. & Montero, F. (2005), A transformational

approach for multimodal web user interfaces based on

UsiXML, in 'ICMI '05: Proceedings of the 7th

international conference on Multimodal interfaces', ACM

Press, New York, NY, USA, pp. 259--266.

[8] State chart xml (scxml): State machine notation for

control abstraction, w3c working draft, checked July 27th,

2012 http://www.w3.org/tr/2011/wd-scxml-20110426/

http://www.multi-access.de/mint/irm/2012/20120822/
http://www.multi-access.de/mint/irm/2012/20120822/

