
mCMS: A Content Management System Adapter
Architecture for Mobile Devices

Mark Joselli
MediaLab, IC-UFF

http://www.ic.uff.br/˜medialab
Niteroi, RJ

mjoselli@ic.uff.br

Eduardo Soluri
Nullpointer Tecnologia

http://www.nullpointer.com.br
Rio de Janeiro- RJ

esoluri@nullpointer.com.br

Jose Ricardo Silva Junior
MediaLab, IC-UFF

http://www.ic.uff.br/˜medialab
Niteroi, RJ

jricardo@ic.uff.br

Marcelo Zamith
MediaLab, IC-UFF

http://www.ic.uff.br/˜medialab
Niteroi, RJ

mzamith@ic.uff.br

Esteban Clua
MediaLab, IC-UFF

http://www.ic.uff.br/˜medialab
Niteroi, RJ

esteban@ic.uff.br

ABSTRACT
Most of the content on the World-Wide Web is designed for
desktop computers. Nowadays, with the evolution of mobile
phones, smartphones, tablets and Digital TV, this content
must be adapted to these different devices, where each have
specific characteristics and constraints, like screen dimen-
sions. This adaptation task can consume time and compu-
tationl resources, since most solutions resolve it by creating
different content versions for different devices. A CMS (Con-
tent Management System) is a software that keeps track of
every piece of content that is used by websites and portals.
A CMS can be adapted for others consumers, like mobile de-
vices. This adaptation can be done by developing plugins for
each different device, or creating different resources for each
different device, because most of the adaptation needs to be
done for each device. In this work, a novel CMS adapter ar-
chitecture is presented, which is made to adapt the content
on CMSs for different devices, through the use of templates
that describes how the content must be transformed. Also,
since most applications need some form of offline content and
normally the cost of network is high, the architecture also
provides cache management layer on the client side, in order
to provide offline cached content, a data compression mech-
anism for keeping the data exchange in the network low, and
a content version control. This way, the architecture avoid
higher data transfers throught the network which in some
cases can be slow and expensive over mobile networks.

Categories and Subject Descriptors
D.2.11 [[SOFTWARE ENGINEERING]]: Software Ar-
chitecture

General Terms

Architecture, CMS

Keywords
CMS, Content Management Systems, Content Adaptation,
Multimedia, Mobile Devices, Software Architectures

1. INTRODUCTION
Mobile devices, like smartphone, tablets, and Digital TVs
have many constraints [6], when compared to PC. For ex-
ample: hardware constraints (processing power and screen
size); user input, (buttons, voice, touch screen and accelerom-
eters); and different operating systems, like Android, Black-
berry OS, iPhone OS, Symbian and Windows Mobile. These
different characteristics must be taken into account when de-
veloping content for this kind of device [5]. Hence, the design
and adaptation of content for all these platforms and devices
is a tedious task. The presented architecture provides a Con-
tent Management System Adapter Architecture, which can
be used to adapt all the content for mobile devices.

In general, the content adaptation envelops not only the
adaptation of format and types, but also different styles, di-
mensions, data compression and specifications [4] [3], since
quality of experience of the user can suffer from a not adapted
(or poor adapted) media [1]. Also, different contents and in-
formation can be available for specific devices or systems,
requiring a custom adaptation or generation of the content,
which the CMS Adapter Architecture (the mCMS) can pro-
vide.

Most of the World-Wide Web content is manageable though
CMSs (content management system). The CMSs provides a
better content organization, increased access to resources
and a greater organizational effectiveness as some of its’
many advantages. CMSs can be used, natively or with plu-
gins, for others devices, like TVs and Mobile devices, which
can require the input of new contents. The mCMS provides
an adaptation of the CMSs web content for the different
device with the use of templates, providing a generic non-
intrusive content adaptation. Also, natively, CMSs does not
provide cache mechanism, compression of content, and ver-
sion control (for the content on the client) like the mCMS

mCMS: A Content Management System Adapter Architecture for Mobile Devices

59

provides.

The mCMS was developed to be used together with popular
CMSs like JOOMLA [7] and DRUPAL [2], and also with pro-
prietary CMSs, CRMs (Customer relationship management
), ERPs (Enterprise resource planning), and legacy systems.
This work shows a test case of the architecture with a mo-
bile application accessing the adapted content provided by
the mCMS, which were created from resources made for web
sites provided by a proprietary CRM and a JOOMLA CMS.

Mobile devices, normally, do not have connectivity all the
time, needing some offline data in order to function when
there is no network available. Also, the connectivity can
still be very slow and expensive, depending on the network
connection and the network carrier, requiring some form of
data compression and caches techniques to reduce the data
transfers. The mCMS provides a cache mechanism in order
to fulfill these requirements. A version control of the content
is also provided, so that the content transferred between the
server and the client is only the difference between the data
that is on the device and the new data from the server.

The mCMS consists in two parts, a server side and a thin
client. The server is responsible for adapting the content
from different sources throught the uses of templates, com-
pressing the adapted content in order to delivery to the de-
vice and controlling the different contents versions. The thin
client is an native application installed on the device, which
is able to connect to mCMS Server, check for content up-
dates, download the content package and save it locally on
the mobile device. Also, using mobile devices can provide
lots of features such as camera, navigation (location based
features), social networks integration, statistics data, and
much more. The thin client is designed to be a hybrid ap-
plication, based on web patterns (HTML5, Cascading Style
Sheets and Javascript) to provide the graphics interface, and
a native code used to access the available devices capabili-
ties.

This work is divided as follows, section 2 presents the mCMS
architecture and thin client. Section 3 shows the test case
in order to validate the presented architecture and finally
section 4 presents the conclusions and future works.

2. THE MCMS SERVER
This architecture is build as a web service that adapts and
creates content from CMS based on templates. An overview
of the mCMS server can be seen on figure 1.

In this figure, the main modules of the architecture can be
seen. The organization module is shown, that is composed
by the resources provides, which can be the CMSs or even
an web portals. These content are gathered by the controller
and saved on a database. The controller is the service that
connects all the different ones, and make them work to-
gether. Afterwards, the resources are adapted though the
use of templates and them saved on a proprietary server or
on a cloud server, like the amazon S3 and cloud front. Also,
resources that come from secure services can be delivered
and adapted, using the identity server. The Push notifi-
cation services that are normally on the brand server, are
accessed by a web service, and triggered by the controller

CMS Adapter Architecture

Organization

CMS

CMS

Content
Syndication

(PUSH)

Content
Aggregation

(PULL)

Identity Server

Corporative
 App

Key
Activation

Controller

Key
Authorization

Public App

publisher/editor

Content
Notification

Key
Deactivation
Notification

Key
Deactivation
Notification

Push Notification
Services

Content
Notification

Content Adapter

Cloud

Version Control

Resource Database

HTML

Content Negotiation

Templates

Content Sinchronization

Content Negotiation

Content
Notification

Content Response

Content Response

Figure 1: Overview of the mCMS server.

when new content arrives. This process is better illustrated
on the Figure 2.

CMS Controller Resource
Database

Content
Adapter

Save Resource

Request Adaptation

Gather Template

Adaptation Ended

Generate New Version

Saved Ok

Version
Control

Cloud

Save Version

Request
Content

Content

Generate
New Version

ID

Compress
Version

Send Adapted

Convert
Data

Figure 2: mCMs Execution Flow.

The templates for customization and configuration of the
mCMS have to be registered in the controller by a devel-
oper/publisher/editor. These templates are built upon an
XML based language, and they are the baseline of how the
mCMS adapts the contents. Some contents can be specific
for some device, like icons and logos, in this case they can
be placed on the CMS server or inside the mCMS.

The architecture is built upon components. Based on ex-
periments using this architecture in different application do-
mains, a variety of technical implementations were used to
abstract and create a general framework which different mod-
ules or plugins can be achieved for context adaption, person-
alization and contextualization.

The Identity Service is based on an AAA pattern (Authen-
tication, Authorization and Accounting). It is responsible
for generate certificates and key tokens used to implement a
security connection between devices and the mCMS Server.
Using this approach, we are able to guarantee access to spe-
cial encrypted content and log all communication between

Joselli, Soluri, Silva Junior, Zamith e Clua

60

source and client. An extended feature of this enabling com-
ponent is gather all statistic data available on the server and
client sides an compile them on a report database.

The content version control is responsible for keeping each
version of the adapted content. Every time the CMS Adapter
Architecture gathers content from the source or when tem-
plates has changed, it generates a new version on its repos-
itory. This enabling component is built using a balk design
pattern that only executes an action on an object when the
object is on a particular state. In this case it only updates
and generates a new version of the content, when all the con-
tent gathering and adaptation has finished doing its work.

2.1 Content Adaptation
The content adaptation is responsible for gathering the con-
tent from the CMS and adapting it to the required devices.
This component normally uses a XML for the configuration
of the adapter, and a series of XMLs describing how each of
the content should be adapted. The process is simple, it uses
a XML to gather information about the CMS service that
provides the content, and how it should gather and adapt
these content.

The component can gather the information in two ways, by
push a notification generated by the CMS service, or in an
automatic way, pooling from time to time (scheduler). The
push notification requires that this service is implemented
in the CMS, but it has the advantage that the content can
be adapted as soon as published. In the automatic manner,
this implementation is not required, but the content is only
published for the media when the service runs.

This enabling component can support different content types
and formats, like sound, music, documents, video and HTMLs.
The adaptations of these content are made by templates,
which are described by a XML document. These templates
are implemented using Abstract Factory pattern, which de-
fines the methods available for the content adaptation. The
XML document describes how the component gathers the
information, and which transformation need to be made for
each platform.

The image adaptation is normally done using ImageMag-
ick library, which is an free open source library, that the
mCMS uses to change the image properties, like dimension,
format and qualities. For the adaptation of audio or video,
the architecture uses the FFMEPG library, which is an open
source library, in order to convert the video/audio files, this
way the adapter can change its properties, like the frame
rate, format type, quality and dimensions. The configura-
tion for each common device (mobile device) are registered
in the application.

2.2 Thin Client
The thin client is responsible for: gather the data from the
mCMS server, provide the server with the characteristics of
the device, implement a cache system for the gathered data
for offline use and gather of user data for statistics reports.

The client is developed as a framework, in order to be reused
in others projects. It is mainly developed in object-C and
Java, in order to work with the apple IOS and Google An-

droid platforms. Others platforms are being developed, like
for Window mobile, Blackberries and J2ME. This client can
show different resources like, HTMLs, images, audio and
video. It also can process and show a specify data structure
for maps, which are used in the validation. Also, It imple-
ments components for localization system, cache manage-
ment, statistics data gathering and integration with social
network, like Facebook, Twitter and Google+.

This client was implemented mainly as a hybrid applica-
tion, which is a mix of web app with native apps. Web apps
are web sites, which all the content and logic are made ex-
clusively for each device, but it cannot access some of the
capabilities of the device. Native apps are implemented on
the device, with a higher cost of implementation, but it can
access all the functionalities of the devices that can be used
by developers. Hybrid applications are a mix of both web
and native apps, it uses mostly web for the interface, but it
is still a native app, so it can use all the resources of the de-
vice, similar to the native app. Mostly of the customization
of the application is done by XMLs.

The client uses extensively the cache for its contents. It uses
this cache for providing the end-user with offline content and
also minimize the data transfer between updates. This cache
can also be cryptographic or compressed if needed by the
application. Also, the cache consistency can be a problem
in some devices, since the network data exchange can fail.
This client only updates its version after verifying its hash
code between the file that should be downloaded and the last
updeted version. This client also uses a service to save the
sessions’ data, in order to gather statistics of the application
use, if needed by the server.

In order to update the data in the client, the following work-
flow is used: first the device, if registered gets and push
notification of new content availability; then when the user
opens the application, the device authenticates and it gath-
ers from the server the needed resources for its update; in
the case the user has not an available connection, the appli-
cation starts without this update process, by accessing the
cached resources.

3. VALIDATION
In order to validate the architecture, the mCMS was used
in a commercial project for Shoppings Centers. The appli-
cation has all its data and contents gathered from different
CMSs. This application aims to provide a channel of com-
munication with relevant information about the mall, like
the news, the sales, the attractions and also a map system
for location of stores and parking.

One of the main problems of this kind application, without
the use of the mCMS, is that the content comes from dif-
ferent services and different formats. With that, the mCMS
need to have different configuration for gathering the con-
tent, but it can still show the same result for the different
content providers. The CMSs used in this application comes
from two different kinds, a Joomla! CMSs and a proprietary
CRM. These services were already being used for the mall
web sites, so the same content that was used for the sites
is also used for the mobile application. All the content is
gathered as pull service, running five times a day. The use

mCMS: A Content Management System Adapter Architecture for Mobile Devices

61

of mCMS architecture, has save some rework that needed to
be done when customizing difference platforms for releasing
different contents.

The server was developed in PHP and is composed of a linux
with apache and MySQL. The thin client used for this appli-
cation was adapted in order to work on iPhones and iPads
and it was developed natively for these devices using the Co-
coa framework. This client show the following contents: im-
ages, htmls, videos, maps and integration with social media
(from Facebook and Twitter). This application also gathers
some statistics data that is sent from time to time to the
server to analyze the use of the software by the user. These
information can be used latter for delivery of promotion,
sales and events of the malls. One example of the mCMS
that come from a JOOMLA CMSs that also provides the
content for the web site can be seen on figure 3.

4. CONCLUSIONS
The devices nowadays have many difference characteristics
and constraints, requiring specific content. With that, the
devices need the publishing of specify content of the CMS
or the adaptation of already published content. This work
has presented a new adapter for CMS content adaptation,
that provides a layer between the CMS and the devices.

Moreover, devices can have connection constraints, like avail-
ability and also this data can be very expensive. This pre-
sented architecture also provide an version control system
and a cache system in order to provide offline data and also
keep the data communication to a minimum.

5. REFERENCES
[1] F. Agboma and A. Liotta. Quality of experience

management in mobile content delivery systems.
Telecommunication Systems, 49(1):85–98, 2010.

[2] D. Buytaert. Drupa cms, June 2012.

[3] D. Carvalho and F. Trinta. Content adaptation for
multiplatform applications. In Proceedings of the XV
Brazilian Symposium on Multimedia and the Web,
WebMedia ’09, pages 41:1–41:4, New York, NY, USA,
2009. ACM.

[4] T. Chaari, F. Laforest, and A. Celentano. Adaptation
in Context-Aware Pervasive Information Systems: The
SECAS Project. Int. Journal on Pervasive Computing
and Communications(IJPCC), 3(4):400–425, Dec. 2007.

[5] A. Hildebrand, T. C. Schmidt, and M. Engelhardt.
Mobile elearning content on demand. Information
Sciences, 5(2):94 – 103, 2007.

[6] M. Joselli and E. Clua. grmobile: A framework for
touch and accelerometer gesture recognition for mobile
games. In Proceedings of the 2009 VIII Brazilian
Symposium on Games and Digital Entertainment,
SBGAMES ’09, pages 141–150, Washington, DC, USA,
2009. IEEE Computer Society.

[7] I. Open Source Matters. Joomla cms, June 2012.

(a) A list on the web site

(b) A list on a smart-
phone

(c) a list on a tablet

Figure 3: The mCMS in action adapting html con-
tent and image. The images were edited in order to
remove the mark of the client (the white boxes).

Joselli, Soluri, Silva Junior, Zamith e Clua

62

