
aNa: API for NCL Authoring

Joel A. F. dos Santos
Laboratório MídiaCom,

Instituto de Computação,
Universidade Federal

Fluminense
Niterói, RJ, Brazil

joel@midiacom.uff.br

Julia V. da Silva
Laboratório MídiaCom,

Instituto de Computação,
Universidade Federal

Fluminense
Niterói, RJ, Brazil

julia@midiacom.uff.br

Renan R. Vasconcelos
Programa de Engenharia de

Sistemas e Computação,
COPPE, Universidade Federal

do Rio de Janeiro
Rio de Janeiro, RJ, Brazil
renanrv@cos.ufrj.br

Wagner Schau
Programa de Engenharia de

Sistemas e Computação,
COPPE, Universidade Federal

do Rio de Janeiro
Rio de Janeiro, RJ, Brazil

schau@cos.ufrj.br

Cláudia Werner
Programa de Engenharia de

Sistemas e Computação,
COPPE, Universidade Federal

do Rio de Janeiro
Rio de Janeiro, RJ, Brazil
werner@cos.ufrj.br

Débora C. M. Saade
Laboratório MídiaCom,

Instituto de Computação,
Universidade Federal

Fluminense
Niterói, RJ, Brazil

debora@midiacom.uff.br

ABSTRACT

There are several available NCL (Nested Context Language)
authoring and formatting tools using their own metamodel
to represent the code they are working on. This paper
presents an API that implements a metamodel specifically
created to represent NCL documents. This API helps the
creation of tools to manipulate NCL documents and brings
some benefits to code reuse to the Digital TV Systems de-
velopment context. The API here presented is called aNa,
an acronym for API for NCL Authoring. aNa is available for
free download and open for contributions. aNa has already
been used for the development of some NCL authoring and
analysis tools.

1. INTRODUCTION
Nested Context Language (NCL) is the standard declar-

ative language of the Brazilian Digital TV system [1] and
ITU standard for IPTV services [8]. The growth in the use
of NCL for the creation of interactive content shall increase
the need for tools to help interactive application creation.
Those tools can be authoring tools, analysis tools and even
presentation tools.

Usually, each tool that has been created to manipulate
NCL code implements its own metamodel to represent the
code it is working on. If one does not create a model to
represent the document, it is common to use available XML
parsing tools, like DOM (Document Object Model) [4] or
SAX (Simple API for XML)1. Although those parsers pro-
duce a good result and help the tool developer to manipulate

1http://www.saxproject.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WebMedia ’12, October 15-18, 2012, São Paulo, SP, Brazil
Copyright 2012 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

NCL code, their purpose is generic, allowing the parsing of
any XML document.
This paper presents a metamodel specifically created to

represent NCL documents in a model-oriented environment
and help the creation of tools to manipulate NCL code. This
metamodel is implemented in Java by an API called aNa, an
acronym for API for NCL Authoring. aNa is available for
free download and is open for contributions. aNa has already
been used for the development of some NCL authoring and
analysis tools.
The remaining of this paper is structured as follows. Sec-

tion 2 summarizes available tools to help NCL authoring.
Section 3 presents aNa structure. Section 4 discusses the
API implementation and its main characteristics that facil-
itate the creation of NCL tools, like code reuse. Section
5 presents some tools that already use aNa and Section 6
concludes the paper and presents future work.

2. NCL AUTHORING TOOLS
Currently there are some available tools for helping the

authoring of NCL documents. Those tools present different
capabilities, focusing on different user profiles. The following
paragraphs present those NCL authoring tools.
Composer 3 [9] provides a single authoring environment

suitable for different user profiles, from home users to con-
tent producers. Composer 3 proposes the basis for building
an integrated environment that can adapt itself to various
profiles and support non-functional requirements.
NCL-Eclipse [2] is an authoring tool, available as an Eclipse

plugin, which helps the author creating an NCL document.
It presents some facilities to help coding as: code complet-
ing, code highlighting and errors and warnings highlighting.
NCL-Inspector [7] is a tool based on other tools for code

quality critique, which supports the authoring of NCL ap-
plications. It supports the author in terms of code quality.
XTemplate 3.0 [6] defines a language and tools for the

authoring of NCL documents using composite templates.
Composite templates define generic structures of nodes and
links that can be reused in different document compositions,
facilitating the authoring of interactive applications in Dig-

1

aNa: API for NCL Authoring

63

ital TV systems.
Berimbau iTV Author [3] is a graphical authoring tool for

digital TV applications aimed at media professionals who
have no programming knowledge. The tool provides a simple
and intuitive interface and a media repository to be used
while creating the application.

Notice that each one of those tools uses its own meta-
model, in an informal manner, to represent NCL documents.
If there were an NCL reusable API that implemented an
unified metamodel available to model and represent NCL
documents, the programming effort to develop NCL tools
would be much smaller. This paper proposes such API.

3. ANA METAMODEL
aNa was created to represent an NCL document as a

model. Its structure is optimized so the author of NCL
tools that manipulate XML code does not need to worry
about the language representation, but with the model it-
self. Every NCL element is represented as a class, which will
be called element class. An element class contains the same
attributes of the NCL element it represents. Every element
class in aNa inherits from the basic type NCLElement.

The element classes follow the same hierarchy of the NCL
elements, therefore, an element class will be associated to all
element classes that represent its child elements. The cardi-
nality of those associations is defined following the NCL lan-
guage specification. By representing parent-child relations
as associations, aNa makes it possible to navigate from an
element to its children and the opposite as well. Figure 1
presents the related representation in aNa of the element
<ncl>, represented by class NCLDoc, which has attributes
id, title and xmlns and the elements head and body as chil-
dren.

Figura 1: NCLDoc class representation

NCL also defines attributes that refer to other elements.
This reference is usually done by defining the attribute value
equal to the referred element id (more common) or another
attribute of the referred element. In order to improve navi-
gation over element classes, aNa represents those references
as associations between them. Listing 1 presents an exam-
ple of reference between elements and Figure 2 presents how
those elements are represented in aNa.

Listing 1: Element reference example
1 <r eg ionBase>
2 <r e g i o n i d =”reg1 ”/>
3 </reg ionBase>

4 <d e s c r i p t o rBa s e>
5 <d e s c r i p t o r i d =”desc1 ” r e g i o n =”reg1 ”/>
6 </d e s c r i p t o rBa s e>

Figura 2: Element reference representation

Listing 1 presents an NCL document part. The example
defines a <regionBase> element that has a <region> ele-
ment as child. The <region> element id attribute is a String
that represents its identification. The example also defines
an element <descriptorBase>, that has a <descriptor> ele-
ment as child. The <descriptor> defines two attributes, id
and region. The id attribute represents its identification and
the region attribute is a String that represents the identifica-
tion of the <region> used by that <descriptor>. In Figure
2, it is possible to observe that the region attribute of the
<descriptor> is represented as an association between the
NCLDescriptor and NCLRegion classes.
Some element attributes may have a value from a spe-

cific value set, like the xmlns attribute. In those cases, aNa
defines the attribute type as an Enumeration with all the
possible values for that attribute (see xmlns in Figure 1).
Sometimes an attribute value can have more than one type.
For example, consider the elements presented in Listing 2.

Listing 2: Attribute value examples
1 <r e g i o n i d =”reg1 ” top =”10” l e f t =”10”/>
2 <r e g i o n i d =”reg3 ” top =”10.5%” l e f t =”10%”/>

Notice that the element <region> has attributes that may
be an integer without a percent sign (%) or a integer or a
double with a percent sign. NCL also defines other elements
whose attributes can be numbers or strings, as the max at-
tribute of a connector condition, where it can be a positive
integer or the string“unbounded”; elements whose attributes
can be a value (like a string, a number, etc) or another el-
ement representing a parameter, as the delay attribute of a
connector action, where it can be a double or a reference to
a connector parameter element.
In aNa, those attributes are defined with type Object. So,

they can receive any of the possible values the attribute de-
mands. When receiving a new value, the API tests if its
type is correct. If not, aNa raises an error indicating the
values the attribute may receive. In those cases, if the value
received is an string, aNa tries to parse the value to the
format used by NCL.
Figure 3 presents a fragment of the API structure, repre-

senting relations among elements of the document body. In
order to simplify the diagram, the figure presents only class
names and associations between them.

2

Santos, Varanda, Vasconcelos, Schau, Werner e Saade

64

Figura 3: aNa document body structure

4. ANA IMPLEMENTATION
aNa is implemented in Java, providing portability in dif-

ferent platforms. It presents methods to get and to change
the value of an element class attribute, to navigate through
the NCL document, to create Java objects from an NCL
document and to write an NCL document from those ob-
jects.

aNa provides facilities to increase reusability in the de-
velopment of Digital TV applications. NCL itself already
allows code reuse, since the same elements can be used in
different contexts, without the need to redefine them. Be-
cause of the Java implementation, the benefits of object ori-
ented design, such as allowing reuse by class inheritance or
object composition [12], help increasing the application de-
velopment productivity in comparison to direct NCL pro-
gramming.

The document parsing is done using DOM [4]. aNa walks
through the DOM tree gathering information about the NCL
elements and creating Java objects that represent them.
During that object creation, aNa already creates references
between objects. For example, if aNa finds the value “reg1”
in the attribute region of a <descriptor> element, it will
search for a <region> element in the region base with that
id in order to create this reference and it will raise an error
if no <region> with that id is found.

The search for a referred element is done only in the at-
tribute scope. That is, if an attribute indicates the id of
an element inside the same context, aNa will search for that
element only inside the context. For example, suppose a
<port> element that defines component and interface at-
tributes. aNa will search for an NCL node with the id
defined in the component attribute inside the port parent
context. Once that element is found, aNa will search for an
interface with the id defined in the interface attribute inside
that node.

During parsing, aNa gathers from the DOM representa-
tion of an NCL element only the information that makes
sense to it, that is, the attributes and child elements defined
in the language specification. Also, when reading an NCL
document, DOM already verifies if the XML document is
well written, that is, all the XML tags are opened and closed
correctly. So, after the document parsing, aNa will have a
consistent document representation. If a wrong definition is

found in the NCL document, aNa will raise errors. Listing 3
presents an error example. Errors always present the whole
path from the root document element to the element where
the error occurred. It also shows a message that informs the
error found to the author.

Listing 3: Parsing error example
1 E r r o r p a r s i n g Head > ConnectorBase >

Causa lConnec to r (onKeySe l e c t i onS top) >

S imp l eCond i t i on
2 Could not f i n d a param i n connec to r w i th name : t e c l a

The opposite way, that is, create an NCL document from
the aNa representation is done by getting, from each Java
object, its XML representation. The method that imple-
ments it returns a String with the XML element represen-
tation. It is worth to highlight that the code returned is
indented, making the document reading easier.
Once aNa is developed to be used by tools that manipulate

NCL code, it is able to notify the tool that uses it about a
modification in an element class. This notification can help
the tool maintaining a consistent document representation.
For example, suppose a tool that is built to graphically show
all document regions. Every time a modification occurs in
the position of any region, the tool is notified, so it is able to
apply the necessary changes in the graphical position of the
modified region. The API has a ModificationNotifier which
may have one or more ModificationListeners. The notifier
will send notifications when the value of an attribute is set
and a child element is added or removed. As this feature
may not be necessary for all kinds of tools, the tool is not
obliged to implement the ModificationListener.
Also, in order to maintain a consistent document repre-

sentation, once element references are represented as asso-
ciations, when removing an element from its parent, aNa
verifies if such element is used in a reference. If so, aNa
indicates to the author the elements that make reference to
it and disable its removal until the references are removed.
Another characteristic of aNa is that it is implemented

using parameterized classes, which is done using the Gener-
ics Java language feature2. Using that feature, aNa element
classes extensions are simpler, requiring less coding effort.

2more information available in
http://docs.oracle.com/javase/tutorial/java/generics

3

aNa: API for NCL Authoring

65

5. ANA USE CASES
As mentioned before, aNa was developed to help tools

modeling and manipulating NCL code. One use case is a
graphical editor that was built for helping users creating
NCL connectors [10]. The editor uses aNa to read an NCL
document and extract the <connectorBase> element. This
element represents a base containing all connectors that may
be used in <link> elements. Once the editor has the object,
created by aNa, representing the connector base, it can use
aNa methods to get necessary information from the element
and to graphically show the connector to the author. The
editor also allows the author to perform creations, removals
and modifications on connector child elements. All these
modifications are performed through aNa methods. More-
over, the editor allows the author to create a new connector
base document. The final NCL document code is also cre-
ated by aNa.

Another tool that uses aNa is called NEXT (NCL Editor
supporting XTemplate) [11]. It is a graphical authoring tool
developed to facilitate the creation of digital TV applications
using the NCL language and supporting the use of composite
templates. Its architecture is based on a core that is able
to communicate with plugins and is completely independent
from them. NEXT plugins are allowed to manipulate the
document and, when a plugin makes any modification on
it, NEXT notifies other plugins about the modification. In
order to obtain knowledge about the change, NEXT uses
aNa’s feature that notifies about changes occurred in the
document. Moreover, NEXT uses aNa objects to create a
tree model representing the nesting structure of the NCL
document. aNa also enables NEXT to open and to edit any
standard NCL document.

aNa is also used as the basis for the development of an
NCL document validation tool. That tool, called aNaa - API
for NCL Authoring and Analysis, extends aNa by adding
methods that allow the validation of the NCL document be-
ing authored [5]. It uses aNa for reading an NCL document
and gathering information about document elements. After
that, aNaa creates different representations of the NCL doc-
ument, which allow the tool to investigate some document
properties and verify its temporal consistency.

6. CONCLUSION
In general, when developing tools to manipulate NCL

code, developers have to implement their own metamodel to
represent the code to be manipulated. Sometimes no meta-
model is created at all. Since those tools need to read an
NCL document, it is common to use available XML parsing
tools, like DOM or SAX. Although those parsers produce a
good result and help the tool developer to manipulate NCL
code, their metamodel is generic for any XML document.

This paper presented aNa, an API that provides a meta-
model created specifically for representing NCL code and
helping the creation of tools that manipulate NCL docu-
ments. aNa considers NCL attribute types and verifies if the
document follows NCL syntactic and reference rules as de-
fined in the Brazilian standard [1]. Besides API specificities,
with a common core that represents an NCL document, aNa
makes it possible to exchange object-oriented data among
different tools without the need to generate XML code.

Currently, aNa is being used as a basis for the creation
of authoring and validation tools. Its code is available for

free download3 and the tool is also open for contributions.
We intend to continuously improve aNa, based on feedback
from the NCL developers community.
In the current version of the API, error messages are pre-

sented in English. A future work is the creation of aNa error
messages in different languages. Another future work is to
improve the API to receive NCL live editing commands and
to produce the necessary modifications in the document.

7. ACKNOWLEDGEMENTS
This work was partially supported by CNPq, FAPERJ

and CAPES.

8. REFERÊNCIAS
[1] ABNT. Digital terrestrial television - Data coding and

transmission specification for digital broadcasting -
Part 2: Ginga-NCL for fixed and mobile receivers -
XML application language for application coding,
2011.

[2] R. G. A. Azevedo, M. M. Teixeira, and C. S. S. Neto.
NCL Eclipse: Ambiente Integrado para o
Desenvolvimento de Aplicações para TV Digital
Interativa em Nested Context Language. In Salão de
ferramentas - SBRC, 2009.

[3] Batuque TV digital. Berimbau iTV Author.
http://www.batuque.tv/, 2011.

[4] W. W. W. Consortium. Document Object Model
(DOM) Level 2 Core Specification, 2000. W3C
Recommendation DOM-Level-2-Core-20001113.

[5] J. A. F. dos Santos. Multimedia and hypermedia
document validation and verification using a
model-driven approach. Master’s thesis, Universidade
Federal Fluminense, 2012.

[6] J. A. F. dos Santos and D. C. Muchaluat-Saade.
XTemplate 3.0: spatio-temporal semantics and
structure reuse for hypermedia compositions.
Multimedia Tools and Applications, 2011.

[7] G. S. C. Honorato and S. D. J. Barbosa.
NCL-Inspector: Towards Improving NCL Code. In
ACM SAC, pages 1946–1947, 2010.

[8] ITU. Nested Context Language (NCL) and
Ginga-NCL for IPTV services.
http://www.itu.int/rec/T-REC-H.761-200904-P, 2009.
ITU-T Recommendation H.761.

[9] B. Lima, R. Azevedo, M. Moreno, and L. Soares.
Composer 3: Ambiente de autoria extenśıvel,
adaptável e multiplataforma. In WebMedia –
Workshop de TV Digital Interativa (WTVDI), 2010.

[10] J. V. Silva and D. C. Muchaluat-Saade. Editor Gráfico
de Conectores Hipermı́dia para Linguagem NCL 3.0.
In WebMedia, 2011.

[11] J. V. Silva and D. C. Muchaluat-Saade. NEXT -
Editor Gráfico para Autoria de Documentos NCL com
Suporte a Templates de Composição. In WebMedia,
2012.

[12] S. Srinivasan and J. Vergo. Object Oriented Reuse:
Experience in Developing a Framework for Speech
Recognition Applications. pages 322–330, 1998.

3https://github.com/joeldossantos/aNa

4

Santos, Varanda, Vasconcelos, Schau, Werner e Saade

66

