AVSA: An automatic video segmentation applicatio

AVSA: An automatic video segmentation application

Tiago H. Trojahn
Institute of Computer Sciences and
Computational Mathematics
Av. Trabalhador S&o-Carlense 400
S&o Carlos, Sao Paulo
ttrojahn@icmc.usp.br

ABSTRACT

Segmentation is an important preprocessing step for a num-
ber of current multimedia applications using video, like rec-
ommendation, personalization or indexing. Since manual
segmentation is prone to interpretation error and are time
demanding, researchers concentrate efforts in developing au-
tomatic segmentation methods.

Automatic techniques need a number of technical input
parameters, requiring specialists to be operated. Moreover,
these techniques need the specialist to give a threshold, used
to decide when a shot or scene transition occurs. Obtain-
ing an adequate threshold is time consuming and mostly an
empirical process. The precision is greatly affected by par-
ticularities of the input video, so, an inadequate threshold
can lead to over or under-segmentation.

To addresses these problems, this paper presents a friendly
user application developed in Java which has two main con-
tributions: perform video segmentation using both an au-
tomatic method for calculate the needed threshold and a
heuristic to overcome some gradual shot transitions issues.
The application, named AVSA, uses the video histogram
intersection or histogram absolute differences to perform
the segmentation. Furthermore, performance tests are pre-
sented in order to testify the precision and the recall of the
application when segmenting newscast videos.

Categories and Subject Descriptors

H.3.3 Information Search and Retrieval]: Shot Detec-
tion

General Terms
Algorithms

Keywords

Shot detection, video segmentation, application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WEBMEDIA ’12 Sao Paulo, Brasil

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

71

Rudinei Goularte
Institute of Computer Sciences and
Computational Mathematics
Av. Trabalhador Sao-Carlense 400
S&o Carlos, Séo Paulo
rudinei@icmc.usp.br

1. INTRODUCTION

In recent years there has been a huge development of video
content authoring, due to lower prices for cameras, laptops
and other devices which can create videos. This resulted in
a large amount of video data, available in a wide range of
storages, like video streams sites as YouTube' and vimeo?.

That situation leads to a problem: How, in this vast
amount of data, can we find a specific video segment of in-
terest? One approach to answer that question is to segment
the video in smaller pieces which can be addressed and in-
dexed through some directives, like the presence of specific
actors, the action being recorded and so on. Segmentation is
a key step for important domains like multimedia informa-
tion retrieval, content-based video retrieval, summarization
and personalization [1].

A traditional way to segment is using experts to manu-
ally segment the video. They watch the video at least one
time, possible dozens of times, and manually perform the
indexing using the boundaries of the desired video segment.
Unfortunately, the manual segmentation is labor intensive,
making it a non-pratical solution [12].

To avoid these problems, an automatic video segmentation
technique can be used. The literature contains a number of
these techniques [2, 4, 8, 10]. In general, these methods
focuses in segmenting the video in shots, defined as an “un-
broken sequence of frames taken from one camera’ [7], or
“scenes”, which do not have a consensual definition. Among
these techniques, the most usual method to perform video
segmentation is the frame-to-frame histogram comparison
[3]. The histogram comparison stands out for being simple,
invariant to camera movement and has low computational
cost [11].

Unfortunately, little effort [6, 12] was done to develop tools
which can be used by non-specialists users. Most of the im-
plementations is not available for general use, have a confus-
ing interface requiring the user to set dozens of parameters,
or even need some adjusts in the source code and a poste-
rior compilation process. Our tool, on the other hand, was
developed to avoid these needs and thereby facilitating its
use.

One of these input parameters is the threshold. The thresh-
old value is of the utmost importance: an incorrect value can
lead the technique to perform poorly, giving many false pos-
itives and negatives. Then, to free the user to input the
threshold value, can be used a fixed threshold for all pos-
sible video inputs. That approach can lead to poor results

Thttp://www.youtube.com/
http://vimeo.com/

Trojahn e Goularte

because the appropriate threshold varies from domain to do-
main of the input video. Even videos of the same domain
can require a specific threshold to achieve at least accept-
able results. An adequate threshold is normally discovered
through several manual empirical tests, which demands time
and a prior ground truth. Our tool, however, can generate a
good approximate threshold through an automatic adaptive
threshold method for a given input video.

This work presents the AVSA (stands for Automatic Video
Segmentation Application), which can be effectively used by
users to perform an automatic video segmentation. The pro-
gram can segment a large number of input video formats in
terms of shots, returning to the user a set of possible out-
puts, like a XML description of the shot boundaries or the
frames for each shot.

This paper is organized as follows: the Section 2 presents
the application and his features. The Section 3 presents
some details of the application architecture. Finally, in
Section 4, are presented our conclusions and some future
works.

2. THE APPLICATION FEATURES

The AVSA fundamental feature and main goal is to pro-
vide a simple method to segment a video file in shots using
an automatic threshold.

To operate, the application requires only a video input
file. Most of the video formats and video coding procedures
are supported by the application, being limited to formats
and CODECS which are installed in the users computer and
which are supported by the OpenCV? library. Since the
expected output may vary from user to user, AVSA offers:

e A XML description of the video input showing the
transitions boundaries.

e All frames of the video, grouped in shots, using the
lossy JPEG or the lossless PNG formats.

e A video sequence for each shot of the input video.

The AVSA most basic mode of operation consists in 1)
select the desired output, 2) select the segmentation pro-
cedure (intersection and/or differences), 3) select the input
video and 4) click on the “Process” button. To relieve the
user of repeating the steps 1 and 2, the program comes with
default settings loaded at run-time.

The user can also adjust some parameters of the AVSA
segmentation procedure. The options relate to the thresh-
old used in both segmentation methods: it can be used a
specific threshold or a technique which automatically calcu-
lates the threshold. For default, both intersection and dif-
ferences threshold method are set to automatic with default
boundaries defined. Also, the gradual transitions heuristics
is enabled by default. More details of the automatic thresh-
old and the gradual transitions heuristics are presented at
Subsection 3.2.1 and Subsection 3.2.2, respectively.

Other feature of AVSA application is the Comparing tool,
available at the “Tools” menu. The Comparing is a simple
and useful tool for developers allowing to compare a seg-
mentation file against a ground truth. The tool requires a
ground truth input file and the file to be compared, the lat-
ter being provided by the AVSA itself, as a result of a video

3http://opencv.willowgarage.com/

72

segmentation. The results are show in terms of True Posi-
tives, False Positives, False Negatives, Precision, Recall and
F1-Score [5].

Another available tool at the “Tools” menu are the Manual
Creating tool. With that tool, the user can manually insert
the boundaries of the shots and export it to a valid XML,
which can be used in the Comparing tool as a ground truth,
for example. The aim of this tool is to ease the need to
manually create a XML or develop a separate application
only for that.

Both the AVSA and his tools uses the TRECVID* shot-
BoundaryReferenceSegmentation Document Type Definition
(DTD). Additionally, the AVSA XML provides more infor-
mations like threshold used and heuristics strength value,
useful for testing purposes, for example.

3. THE PROPOSED APPROACH

This section presents the AVSA implementation at Sub-
section 3.1. At Subsection 3.2 is presented the segmen-
tation technique as well as the tests performed in order to
measure the tool efficiency.

3.1 Implementation details

The application is divided into six distinct classes which
performs different functionalities.

The main class, named GUI, was developed using the
well-know Java Swing API, being responsible to present the
user interface responsible to manage users’ interactions. The
other classes are instantiated in appropriate moments to per-
form specific tasks.

The ConfigsHandler class is responsible to read and write
the configuration files and adjust the graphic user interface
according to them. This class is called when an user saves
the actual configuration, load the default configuration or
even when the application is launched.

The Segment class is responsible to, given an input video,
creates a shot transitions index of the video. The class
was developed with the JavaCV? library, which provides the
OpenCV functionalities to Java language. After the process-
ing is done, another class, named OutputHandler, is called to
create and organize the desired output to the user (the XML
description, shots frames and/or the shot video sequence).

The Comparing class represents the Comparing tool and
is responsible to open two XML description files and to com-
pare them: the test file against the ground truth file.

The Manual Creating tool, represented by the class Man-
ualCreating, simply receives a set of pairs of integer values
and creates a XML description file which can be read by the
Comparing tool, for example.

The main processing of the application, the segmentation
technique, is described in the Subsection 3.2.

3.2 Segmentation technique

The main processing of the application is segmenting videos
in shots performed by the Segment class.

First, the video is opened and a frame grabber is created.
For each frame decoded is calculated it’s HSV histogram [6]
using 8 bins for H, 4 for S and 4 for V [9]. The resulting
histogram is stored and the frame is deallocated. Was used
the HSV histogram because it’s presents higher precision

*http://trecvid.nist.gov/
Shttp://code.google.com/p/javacv/

AVSA: An automatic video segmentation applicatio

values at the same recall when comparing with the RGB
color space [6] and the 8:4:4 quantization was adopted to
follow the basis technique [9]. It’s important to mention
that the technique itself isn’t limited by most video details
like resolution, frame rate or video length.

After decoding all frames with corresponding histograms
extraction, AVSA performs comparisons with adjacent his-
tograms using histograms intersection and/or histograms
absolute differences, generating a histogram differences ar-
ray. This array is then normalized in order to contain values
in the range [0,1], in case of histogram intersection, or [0,2]
in case of histogram differences. In the first case, 1.0 means
that the two histograms are equal to each other and in the
second case 2.0 means the two histograms does not have any
similarity.

The shot detection is then performed analyzing the dif-
ferences values calculated and stored in an array with a de-
sired threshold. If the k-value, a value in the array, is lower
than the threshold, in the case of histogram intersection, or
higher than the threshold, in case of histogram differences,
the k£ and k + 1 frames are detected as possessing a transi-
tion between then. If consecutive transitions are detected,
the algorithm merge then, forming a gradual transition.

This shot segmentation technique is based on a technique
know as Backward Shot Coherence (BSC) [9], where the au-
thors use the shot segmentation as initial step towards the
scene segmentation. Our implementation, however, presents
two major contributions: the automatic threshold calcula-
tion, presented in the Subsection 3.2.1, and the gradual
transitions heuristics, presented in Subsection 3.2.2. Fur-
thermore, the segmentation based in the histogram absolute
differences were not used in the BSC technique.

3.2.1 The automatic threshold calculation method

The automatic threshold calculation method is defined in
Equation 1. We defined two values, called lower bound
(LB) and upper bound (U P), which are used as references to
calculate the average values between then. The V; represents
the i-value of the differences array and K the number of
frames which have values between LB and UP.

iV .

Threshold = lT Vi| LB<V; <UP (1)

If the K value are 0, i.e. no value was been found between
LB and UP, the threshold used is equal to LB % 1.2.

The Equation 1, in other words, calculates the average
values needed to detect gradual transitions which values falls
between the LB and UP. The LB value must be small
enough to be considered as the minimum similarity between
two adjacent frames of the same shot, in case of histogram
intersection, or the minimum dissimilarity of two adjacent
frames of different shots, in case of histogram absolute dif-
ferences. Furthermore: if the i-value is lower than LB, the
i and 7 + 1 frames are automatically considered as being of
different shots, in case of histogram intersection, or as being
of the same shot, in case of histogram absolute differences.

The U P value, on the other hand, has different meanings
to histogram intersection and to histogram absolute differ-
ences. In the first case, the value must be high enough to
represent all possible transitions, i.e., no shot transition can
have value above UP. In the second case, the UP value
must be high enough to represent gradual transitions, but

73

can not represent abrupt transitions. That arises from the
fact of the abrupt transitions often have overly high values,
which in turn would rise the threshold value, ignoring the
gradual transitions which values are closer to the LB value.

Adequate values for LB and U P were determined through
several performance tests in the newscast domain. The de-
fault LB and U P values for the intersection are 0.5 and 0.9
respectively. For the absolute differences, the default values
are 0.3 and 0.9, respectively. The obtained precision and
recall of the automatic threshold calculation method using
these values is presented in Subsection 3.2.3.

The LB and U P are the only needed parameters for video
segmentation in AVSA. These values can be defined only
once and, even so, the application comes with default LB
and U P values, making them effectively transparent to the
users. The default LB and U P values are adequate to news-
cast domain: adequate values can change to other domains.

3.2.2 The gradual transitions heuristics

Techniques which compare adjacent frames can detect changes

comparing the similarity/dissimilarity against a threshold.
If the threshold is exceeded, a transition, classified as an
abrupt transition, are flagged. However, modern digital
videos often presents gradual transitions: in these transi-
tions, the similarity decrease and the dissimilarity increases
over time. These techniques, under such circumstances, can
over-segment the video, detecting several abrupt transitions
when there is actually a single gradual transition.

One way around this problem is merging consecutive abrupt
transitions in a single and larger gradual transition. How-
ever, some complex gradual transitions can shows subtle
changes spanning over several frames, resulting in a set of
gradual and abrupt transitions when there is a single gradual
transition. To avoid these outliers, we created a heuristics
to detect such gradual transitions.

When a transition is detected, we search the N (N is the
size of the search window) previous histogram absolute dif-
ferences or histogram intersections to see if a shot transition
was detected. If there is a shot transition in those frames,
all frames from the last transition up to the actual frame
are considered as belonging to the same gradual transition.
The default number of searched frames, called “strength”; is
3. Although a high “strength” value does not influence in
the abrupt detection, if a shot length are smaller than the
window size, the shot will not be indexed properly.

3.2.3 Evaluation tests

For the evaluation tests, we used a set of videos obtained
through direct TV signal capture. The video domain were
newscast transmitted at different channels. Some video de-
tails, like name, duration, number of frames and number of
transitions, are presented in Table 1. The video set was
digitalized using 720x480 progressive resolution at 30 fps.
The commercial breaks were removed.

Table 1: Some details for each video used in the
evaluation tests
Video Name | Duration | # frames | # transitions
NewsA 24:09 43470 317
NewsB 23:07 41610 278
NewsC 1:04:51 116730 808

In terms of shot transition type, the video set presents

Trojahn e Goularte

a larger amount of abrupt transitions when compared with
gradual transitions. The NewsC, however, presents about
the same rate of abrupt and gradual shot transitions, re-
flecting a slight lower precision, recall and F1 score than
with the NewsA and NewsB videos.

First, we built a ground truth base for the shot transi-
tions. Then the results of the segmentations presented by
our application was compared with the ground truth, result-
ing in the precision, recall and F1 values presented in Table
2 and Table 3. The tests results were obtained through the
Comparing tool, using plus and minus 3 frames as frame
error tolerance for gradual transitions. In these tests, the
gradual heuristics strength was set to 3.

The Table 2 presents the results of the segmentation us-
ing the histograms intersection with the automatic thresh-
old method presented in Equation 1 with lower and upper
bounds values at 0.5 and 0.9, respectively.

Table 2: Precision, recall and F'1 score obtained with
histogram intersection

NewsA | NewsB | NewsC

Precision | 89.57% | 85.76% | 71.28%
Recall 92.11% | 86.69% | 81.43%
F1 90.82% | 86.22% | 76.02%

The Table 3 presents the results of the segmentation us-
ing the histograms absolute differences with the automatic
threshold method presented in Equation 1 with lower and
upper bounds values at 0.3 and 0.9, respectively.

Table 3: Precision, recall and F1 score obtained with
histogram absolute differences

NewsA | NewsB | NewsC

Precision | 97.30% | 89.25% | 84.43%
Recall 68.45% | 80.93% | 65.09%
F1 80.37% | 84.90% | 73.51%

The results show a higher precision when using the his-
togram absolute differences when comparing with the his-
togram intersection obtained results. The histogram inter-
section, on the other hand, presented a significantly higher
recall value.

4. CONCLUSIONS AND FUTURE WORKS

In this paper we presented the AVSA application, which
can be used both by casual users and also by developers or
experts to easily segment videos in shots. The features and
the architecture of the application was presented. Also, the
techniques used by the application was described, presenting
also a set of precision and recall tests.

As future works, we intent to add support to other com-
parison techniques, like Euclidean Distance, in order to mea-
sure similarities/dissimilarities. We also plan to apply AVSA
to other video domains.

Is also planned add a help assistant in the application.
Useful information like the explanation of the lower and up-
per bounds and the constraints of the application could ease
the AVSA usage and improve the results.

Another possible future work is the development of tools
which can simplify the burden of specific tasks such as XML
editing or even to visualize the results.

74

5. ACKNOWLEDGMENTS

‘We would like to thanks to the FAPESP for the financial
support of this work.

6. REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
on Knowl. and Data Eng., 17:734-749, June 2005.

E. Bruno and D. Pellerin. Video shot detection based
on linear prediction of motion. In Multimedia and
Ezxpo, 2002. ICME ’02. Proceedings. 2002 IEEE
International Conference on, volume 1, pages 289 —
292 vol.1, 2002.

P. Geetha and V. Narayanan. A Survey of
Content-Based Video Retrieval. Journal of Computer
Science, 4(6):474-486, June 2008.

A. Hampapur, T. Weymouth, and R. Jain. Digital
video segmentation. In Proceedings of the second ACM
international conference on Multimedia,
MULTIMEDIA ’94, pages 357-364, New York, NY,
USA, 1994. ACM.

X.-S. Hua, D. Zhang, M. Li, and H.-J. Zhang.
Performance evaluation protocol for video scene
detection algorithms. In Workshop on Multimedia
Information Retrieval, in conjunction with 10th ACM
Multimedia, 2002.

S. Jeong. Histogram-based color image retrieval.
Technical report psych221/ee362, Stanford university,
Mar. 2001.

I. Koprinska and S. Carrato. Temporal video
segmentation: A survey. Signal Processing: Image
Communication, 16(5):477-500, 2001.

S. Manjunath, D. S. Guru, M. G. Suraj, and B. S.
Harish. A non parametric shot boundary detection: an
eigen gap based approach. In Proceedings of the
Fourth Annual ACM Bangalore Conference, volume 1
of COMPUTE ’11, pages 14:1-14:7, New York, NY,
USA, 2011. ACM.

Z. Rasheed and M. Shah. Scene detection in
hollywood movies and tv shows. In Computer Vision
and Pattern Recognition, 2003. Proceedings. 2003
IEEE Computer Society Conference on, volume 2,
pages II — 343-8 vol.2, june 2003.

K. Sawai, T. Takahashi, D. Deguchi, I. Ide, and

H. Murase. Scene segmentation of wedding party
videos by scenario-based matching with example
videos. In Proceedings of the 19th ACM international
conference on Multimedia, volume 1 of MM 11, pages
1545-1548, New York, NY, USA, 2011. ACM.

M. Swain. Interactive indexing into image databases.
In In Storage and Retrieval for Image and Video
Databases, pages 95-103, 1993.

H. Zhong, L. Wenyin, and S. Li. Interactive tracker - a
semi-automatic video object tracking and
segmentation system. In Multimedia and Ezxpo, 2001.
ICME 2001. IEEE International Conference on, pages
1167 1170, aug. 2001.

2]

3]

(4]

[5]

[6

[7

[10]

[11]

[12]

