
An Alternative Architecture for Ginga

Arturo Zambrano
Juan Antonio Zubimendi

Javier Búcar
LIFIA, Facultad de Informática

Universidad Nacional de La Plata
50 y 120

La Plata, Argentina
[arturo,azubimendi,jbucar]@lifia.info.unlp.edu.ar

ABSTRACT
The GingaNCL reference implementation is developed by
PUC-Rio as a GPL project. This implementation runs on an
x86 Linux virtual machine. The reference implementation is
an excellent tool for communicating the intended behavior
of Ginga but it is difficult to use it as the software running
inside DTV dedicated platforms such as: set-top-boxes or
integrated TV-sets.

There are two main issues that make it hard to port Gin-
gaNCL to dedicated platforms. First, GingaNCL has a
monolithic structure that includes functionality usually pro-
vided by DTV dedicated platform such as: channel tuning,
volume control and user menus. Second, the GPL license
forces developers to make the changes available back to the
community.

This paper presents a refactoring to GingaNCL that ad-
dresses the issues stated before by separating the tuning
functionality, transport stream and data carousels process-
ing on a different process and by defining an API between
GingaNCL and the dedicated platform.

1. INTRODUCTION
Any successful software, eventually, ends up doing more
things than it was originally intended for. As it evolves it
may become a big ball of mud [5]. Avoiding such state im-
plies constructing clear architectural boundaries. In order
to recover architectural boundaries, large scale refactorings
are needed. In this paper we will report on the result of
such refactoring (not the refactoring process itself) that is
an alternative architecture for Ginga.

Ginga is the Brazilian middleware for digital TV applica-
tions. It is composed by three main building blocks: Ginga
CC, Ginga NCL [10] and Ginga J. The work we report in
this paper is based on the reference implementation of Ginga

NCL and Ginga CC as published by Pontificia Universidade
of Rio de Janeiro (PUC-Rio, for short) on December 24th,
2009 and the results of changes made to that code base.

During our work on Ginga NCL we found some issues
that prevented us from embedding it easily in commercial
dedicated hardware platforms. We also found problems
in the implementation of modules dealing with transport
stream [6] (TS for short) and DSM-CC [7] data carousels
processing. We reimplemented this functionality, and made
some architectural changes. The code of GingaNCL is re-
leased under GPL license, therefore all modifications to
it are released under the same license. The interested
reader can find the source code of our derivative work at
http://tvd.lifia.info.unlp.edu.ar.

This paper is organized as follows: Sect. 2 states the context
and general objectives of the project where the refactoring
has taken place. Sect. 3 presents an overview of the ref-
erence implementation of GingaNCL and some challenges
derived from it. Sect. 4 presents the alternative architec-
ture and discusses its consequences. We conclude the paper
in Sect. 5 with the a summary of the contributions of this
work.

2. CONTEXT
By the end of 2009, the Argentinian government entrusted
LIFIA1 the task of embedding Ginga NCL in a dedicated
hardware platform. The government also required:

• A free, open source implementation of Ginga NCL.

• The provided solution must ease future embeddings for
other platforms.

For the sake of clarity hereof we will make use of the follow-
ing names:

Ginga NCL the specification of the presentation engine for
NCL/Lua documents.

GingaNCL-PUC The reference GPL licensed implemen-
tation of Ginga NCL developed by PUC-Rio.

1LIFIA stands for Laboratorio de Investigación y Formación
en Informática Avanzada. The lab is part of the College of
Computer Science at the National University of La Plata.
The web page of the lab is http://lifia.info.unlp.edu.ar

174



Ginga.ar It is our derivative of the reference implementa-
tion. Ginga.ar was forked from the original GingaNCL
by January 2010.

3. OVERVIEW OF GINGANCL-PUC
The reference implementation of GingaNCL (GingaNCL-
PUC) is developed by the Telemidia Lab at PUC-Rio. The
source code of this implementation can be found at the
Brazilian Portal of Public Software [3]. In this section we
describe the modules composing GingaNCL-PUC implemen-
tation and their responsibilities. They are the starting point
for our work.

3.1 Modules and Responsibilities
Below we list the modules present at the downloaded code
base and their responsibilities:

telemidia-util This module provides an implementation of
threads, utility functions for strings, colors, etc.

telemidia-links It is an adapted version of the Links [2]
browser.

gingacc-cm The Component Manager is in charge of load-
ing other modules in the system.

gingacc-system It hides platform details such as input
methods, audio and video. Almost all other modules
use gingacc-system

gingacc-ic Interactive Channel Manager provides access to
the interactive channel (Internet connection), its im-
plementation is based on Curl [1].

gingacc-um Update Manager: its implementation seems
to be incomplete. As far as we understand it is a util-
ity for handling Ginga upgrades, received through the
interactive channel.

gingacc-player This module defines a player for each sup-
ported media object: LUA scripts, audio and video,
XHTML, text, and images.

gingacc-tuner This module encloses tuning related func-
tionality, such as: frequency change and transport
streams reception (not processing)

gingacc-tsparser Transport Stream Parser is in charge of
TS de-multiplexing, elementary stream filtering and
section filtering.

gingacc-dataprocessing This module is responsible of
processing EPG streams, data and object carousels
(including events).

gingacc-contextmanager It handles user profiles and
global configuration of the system.

ncl30 This module contains the entities that compose the
NCL conceptual model [9].

ncl30-converter This module transforms NCL documents
into the object model of NCL 3.0.

gingancl This is the NCL document formatter.

gingalssm Logical Subsystem Manager: this module is re-
sponsible for initializing the rendering device, creating
the different players, and receiving and dispatching all
the events (input and stream ones) to the players.

Figure 1 shows the main dependencies between the modules
listed before. Only those modules relevant to this work have
been included in the figure.

Figure 1: GingaNCL-PUC modules and relation-
ships.

Note that gingalssm takes stream events from dataprocess-
ing, we explain below how we cut and removed some func-
tionality at this point.

3.2 Issues
After analyzing the code and making some tests we found
the following issues that needed to be solved before con-
tinuing our work for embedding GingaNCL-PUC into the
destination hardware.

3.2.1 Extrinsic Functionality
Looking at all these modules it can be seen that some of
them belong to the core presentation engine and others pro-
vide services needed to feed this presentation engine – in-
put for the presentation engine are the documents and the
events. In particular some low level modules such as gingacc-
tuner, gingacc-dataprocessing and gingacc-tsparser pro-
vide functionality that is unrelated to the presentation of
NCL documents. For example, tuning functionality depends
on the underlying hardware tuning services. Regardless
which tuner is being used, for the NCL presentation engine
what is paramount is the document and all the information
related to it, this information includes all the files referenced
by the document and the live editing events that affect the
document’s structure.

GingaNCL-PUC is well modularized at source code level.
During the execution loading of modules is controlled by

175



the Component Manager. What we found here as an im-
pediment is the fact that both document presentation and
low level TS processing is done in the same process. We
elaborate on this idea in Sect.4.1.

3.2.2 Scattered Implementation of the TS and DSM-
CC Carousels Processing

Hiding design decisions is a key for good modularity [8].
With this idea in mind we review the implementation of
TS and DSM-CC carousels processing. Transport stream
processing is spread in gingacc-tuner, gingacc-tsparser
and gingacc-dataprocessing. This fact makes it difficult
to extend TS processing functionality.

Other problems we found in the implementation are:

• There was no support for carousel updates.

• Downloaded data was sometimes corrupt.

• It was not able to download carousels of more than
1MB. This prevented the execution of some applica-
tions, since carousels got never mounted.

After this analysis we decided to re-implement all this func-
tionality from scratch.

4. ARCHITECTURE OF GINGA.AR
4.1 Motivation for Changes
In order to enhance maintainability of Ginga-NCL, it should
be kept as simple and small as possible. In our opinion, the
core of Ginga is responsible for document presentation but
not for tuning or transport stream (data) processing. Tun-
ing functionality and TS processing depends on the facilities
that dedicated hardware and low level APIs provide, there-
fore they vary from one deployment to another, while the
Ginga presentation engine should remain the same. The ref-
erence implementation of Ginga – the one provided by PUC
– separates this functionality in the form of the three above
mentioned modules (tuner, tsparser and data-processing)
but once Ginga is built they belong to the same OS pro-
cess. This means that a problem in one of this modules
(that has nothing to do with NCL document presentation)
affects the Ginga presentation engine. For example, a mem-
ory leak in the TS parsing can cause the OS to kill the pro-
cess consuming memory, in this case it is same process that
it is presenting interactive applications. Another example
the case of a bug in the data carousel processing that causes
a segmentation fault, which produces a crash that also kills
the document presentation.

As we decided to re-implement all the TS and DSM-CC
carousel processing functionality and we wanted to keep
Ginga isolated and safe of our changes, we removed this
functionality from the code base of Ginga. Thus the possi-
bility of introducing bugs into GingaNCL during the reim-
plementation is minimized.

4.2 Alternative Architecture
Changes done to GingaNCL-PUC can be summarized into
two main decisions, that we describe below.

4.2.1 Re-implement Transport Stream and DSM-CC
Processing

Ginga.ar has a reimplementation of functionality regarding
TS and DSM-CC carousels processing, including:

• Version checking for TS sections.

• Support for updates in data carousels.

• Support for large carousels, using modules up to 25400MB,
tested size in the dedicated platform was 60MB.

• Other functionality not necessary for Ginga but a must
for production set top boxes:

– Support for SDTT tables.

– Support for AIT.

4.2.2 Move Extrinsic Functionality to another Pro-
cess

In order to have the presentation engine separated from the
low level functionality mentioned before (Sect. 4.2.1), we
removed it. Now low level functionality is carried out in
another process, called Zapper2. The Zapper provides basic
TV functionality such as: frequency and program changing,
volume adjustment, scanning of digital TV channels, etc,
and now also the TS data processing.

Figure 2: Architecture of Ginga.ar (Ginga presenta-
tion engine and Zapper processes)

Changes made to the code base lead us to an alternative ar-
chitecture, which is depicted in Fig. 2. A new Zapper process
runs on top of the operating system and libraries for access-
ing hardware specific services (such as hardware accelerated
rendering, tuning, etc). The wide arrow is a bi-directional
communication channel between the two processes. At im-
plementation level it is a Unix domain socket. Instead of the
interaction between the gingalssm and dataprocessing ex-
plained in Sect. 3.1 we added a protocol between the Zapper
process and Ginga presentation engine. This communication

2Normally zappers does not perform data processing, we are
using the word “zapper” extending the typical meaning.

176



protocol allows the Zapper to command the Ginga presen-
tation engine. Currently, we are using this architecture to
deploy GingaNCL into a production set top box. Note that
there is a module called Ginga Connector, which is embed-
ded into the Zapper. This module communicates Zapper
with Ginga presentation engine.

Note that Ginga presentation engine is GPL as it is a deriva-
tive of GingaNCL-PUC, in contrast Ginga-Connector is li-
censed under LGPL. We explain the reason and implications
of this in Sect. 4.3.3

As interactive applications are transmitted using data
carousels, they are received in the set top box by the Zap-
per process. It mounts the data carousel. When an event
is received, indicating that application needs to be started,
Zapper – through Ginga-Connector– sends a command to
Ginga presentation engine to add the document and start
playing it. If further editing events are received, new com-
mands are sent to the Ginga presentation engine process.

Zapper is launched upon system boot. Once an interactive
application is received the Ginga-Connector launches Ginga
presentation engine. After the engine is up, it is instructed
to run the application. Connector can send after that a
kill or destroy application command (or others commands)
according to the AIT events received. Another possibility
is to launch both processes after boot, and instruct Ginga
presentation engine to start or stop documents as needed.
In the current deployment we choose to launch Ginga only
if an interactive application has been received.

Ginga presentation engine is able to invoke functionality on
the Zapper side (through Ginga-Connector), for example,
to reserve control remote key events that must not be in-
terpreted by the zapper during the execution of a given in-
teractive application. Ginga presentation engine also relies
on the zapper for some media presentation functionality, for
example main video re-size or positioning. Summarizing,
the communication protocol between both process allow bi-
directional communication.

4.3 Consequences
Here we describe some benefits and drawbacks obtained from
the current architecture.

4.3.1 Quick Interactive Application Start
The presented architecture allows to have Ginga presenta-
tion engine process running, even when no interactive appli-
cation is present. This contrasts with a schema where the
presentation engine is started when an application must be
executed. Ginga.ar allows to immediately execute the appli-
cations, since when an application is received and its start
is signaled in the transport stream, the Ginga presentation
engine is up and ready to execute it.

4.3.2 Easier Testing
In Ginga.ar, the presentation engine is commanded from
Ginga-Connector. It is easy to build a testing oriented con-
nector that allows to test the presentation engine. Many
stress and stability tests in Ginga.ar were conducted using
a scriptable connector.

4.3.3 License Schema Suitable for both Ginga Evo-
lution and Embedding

Ginga.ar is GPL licensed, as it is derivative work of
GingaNCL-PUC. We are for GPL software and one of our
objectives is to help the evolution of GPL Ginga. Never-
theless, we are aware that, generally, the APIs provided by
hardware manufacturers are proprietary. To overcome this
gap, the architecture provides the following solution: Ginga
Connector is LGPL and GPL licensed. It allows to keep
the Zapper’s code closed but at the same time it allows to
make use of a GPL licensed Ginga. At implementation level
this done communicating both processes through a Unix
domain socket. Both Ginga presentation engine and Zap-
per are linked against the Ginga Connector –it is a shared
library–, which define the structures for messages. Zapper
is never linked against Ginga.

Plans for the future includes to release a GPL Zapper, mean-
while, the LGPL Ginga Connector will help to keep Ginga
evolving to a mature product.

4.3.4 Obliviousness of the Events Transmission Sys-
tem

Events affecting an interactive application can be encoded
as AIT [4] control commands or editing commands (stream
events). Having an homogeneous protocol for interacting
with the Ginga presentation engine abstracts the engine
from the underlying format or transmission method of events.

4.3.5 Resources Consumption
Having two processes cause more resource consumption. Also,
the communication protocol between the processes add over-
head to the computation (compared to a single process ar-
chitecture).

4.3.6 Process Status Synchronization
Having the two processes adds complexity. The Zapper or
Ginga-Connector must be aware of the state of the Ginga
presentation engine. For example: if the engine freezes,
Ginga-Connector is responsible for killing the engine and
starting a new one.

5. CONCLUSIONS AND FUTURE WORK
In this work we have analyzed the modules composing the
reference implementation of GingaNCL. We also presented
the architecture of Ginga.ar, a derivative of GingaNCL-PUC.
The main benefits of the new architecture, whose purpose
is to speed up the process of embedding Ginga in different
hardware platforms have been discussed. The distinctive
characteristic of the presented derivative architecture is the
separation of functionality into two different processes (one
for transport stream and DSM-CC processing and other the
NCL presentation presentation engine).

Future work on Ginga.ar include the replacement of Links
web browser and large scale refactoring of its threading model.

6. ACKNOWLEDGMENTS
First of all, the authors want to thank the researchers of
Telemidia Lab at PUC-Rio, most notably Prof. Luiz Fer-
nando Gomes Soares and Marcelo Moreno. They develop

177



Ginga NCL reference implementation, make it free and open
source, and always have excellent predisposition for collab-
orating with us.

The authors thank also Federico Balaguer, Martin Oliv-
era and Ignacio Jaureguiberry for their useful comments on
drafts of this paper. Finally, the authors want to thank
Richard Matthew Stallman for his cooperation in the defi-
nition of a valid licensing schema for Ginga.ar.

7. REFERENCES
[1] curl groks urls. http://curl.haxx.se/.

[2] Links. the www text browser.
http://links.sourceforge.net/.

[3] Portal do software público brasileiro.
http://www.softwarepublico.gov.br/.

[4] Associação Brasileira de Normas Técnicas. Digital
terrestrial television — Data coding and transmission
specification for digital broadcasting. Part 3: Data
transmission specification, August 2008.

[5] B. Foote and J. Yoder. Big Ball of Mud. Pattern
Languages of Program Design 4, pages 277–288, 2000.

[6] International Organization for Standardization.
Generic coding of moving pictures and associated
audio information Part 1:Systems, 2007.

[7] International Organization for Standardization.
Generic coding of moving pictures and associated
audio information. Part 6: Extensions for DSM-CC,
2007.

[8] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Comm. ACM,
15(12):1053–1058, Dec. 1972.

[9] L. F. G. Soares and R. F. Rodrigues. Nested context

model 3.0. Technical report, PONTIFÍCIA
UNIVERSIDADE CATÓLICA DO RIO DE
JANEIRO, Departamento de Informática, RUA
MARQUES DE SÃO VICENTE, 225 - CEP
22453-900 RIO DE JANEIRO - BRASIL.

[10] L. F. G. Soares, R. F. Rodrigues, and M. F. Moreno.
Ginga-ncl: the declarative environment of the
brazilian digital tv system. Journal of the Brazilian
Computer Society, page 37–46, 2007.

178




