
An approach for the verification of the temporal
consistency of NCL applications∗

S. Yovine
CONICET-UBA

syovine@dc.uba.ar

A. Olivero
UNSAM

aolivero@unsam.edu.ar

D. Monteverde
UBA

dm4e@dc.uba.ar
L. Córdoba

UNSAM
lcordoba@unsam.edu.ar

G. Reiter
UNSAM

greiter@unsam.edu.ar

ABSTRACT
NCL is used to write interactive applications for DTV. This
paper presents the first steps of our approach towards the
formalization of the semantics of NCL. We use Time Petri
Nets (TPN) as target formalism for giving mathematically
precise meaning to NCL. We rely on Visual Timed Scenar-
ios (VTS) to graphically specify the behavioral properties
the NCL application should satisfy. We sketch the method
to translate NCL programs into TPN models and to verify
VTS properties on the obtained model. We illustrate the
approach with “O Primeiro João” from club.ncl.org.br.

1. INTRODUCTION
Considering the important economical and social impact of
IDTV, related to the forseen development of t-commerce,
t-learning, social TV, etc., it is imperative to have a pro-
ductive development process which ensures the correctness
and efficiency of the content to be broadcasted. This means
that the timing requirements imposed by the concurrent ex-
ecution, communication and synchronization of the compo-
nents (audio, video, user, etc..) participating in the broad-
casted software must be consistent. The inherent complex-
ity of the mechanisms offered by the Nested Context Lan-
guage (NCL)1 standard turns infeasible verifying temporal
consistency without the assistance of appropriate automated
frameworks. However, there are currently no tool-supported
rigorous methods for developing NCL applications. The
available tools only validate the syntactical correctness and
test simple applications, ignoring fundamental aspects re-
lated to ensuring temporal consistency. To address this
problem, this work proposes a formal methodology and asso-

∗Partially supported by Ministerio de Planificación Fed-
eral, Inversión Pública y Servicios, Argentina, under project
“Ginga-oriented Automated Methodology for Better Embbe-
ded Television Application Software (GAMBETAS)”, and
PICT PAE 02287.
1http://www.ncl.org.br

ciated tools for verifying whether the NCL application meets
specified timing requirements.

Formal verification reduces software production costs by cap-
turing design errors early in the development process. It
is not opposed to testing, but complements it by ensur-
ing that certain properties hold at some abstraction level.
Moreover, formal semantics of programming languages en-
able using model-based testing which greatly improves the
time and quality of testing by automating the process of
test-case specification and generation. Last but not least,
formal semantics is very important for developing correct
compilers and runtimes.

A way of enhancing the usability of formal techniques in
model-driven system design and analysis consists in resort-
ing to visual languages capable of visually presenting ap-
plication semantics in a clear, precise way, specially in the
context of event-based systems, such as interactive multime-
dia applications. Following this idea, in this paper we adopt
Visual Timed Scenarios (V TS) [6] as a language for specify-
ing behavioral properties of applications described in NCL.
In order to make possible the verification of these properties
using available tools we devise a compositional translation
from NCL to Time Petri Nets (TPN). This allows the use
of existing model-checking tools for verifying whether the
translated NCL application satisfies the V TS property.

This work is an instance of the diagram depicted in Fig. 1,
which shows the architecture of the GAMBETAS project,
orchestrated around two subprojects. The goal of SP1 is to
study different formalisms for mathematically expressing the
meaning of NCL in the best possible way. SP2 is in charged
of extending V TS with appropriate concepts to deal with
NCL-specific properties for IDTV. This paper presents the
preliminary work carried out with TPN as modeling lan-
guage and plain V TS as property specification language. It
sketches a compositional translation from NCL to TPN and
resorts to VTS2TINA [13] and TINA [3] for model-checking.

Outline The paper is structured as follows. Sec. 2 recalls
the syntax and semantics of V TS and illustrates it by means
of an example from club.ncl.org.br. Sec. 3 briefly re-
views Time Petri Nets (TPN) and the approach for checking
whether a TPN satisfies a V TS scenario. Sec. 4 presents the
translation of NCL into TPN and it applies the verification
approach to the NCL application “O Primeiro João”. We

179



Figure 1: Project architecture and tool flow

close the paper with related and future work.

2. VISUAL TIMED SCENARIOS
Visual Timed Scenarios (V TS) [6]2 is a language to describe
event patterns, which can be regarded as simple, graphical
depictions of predicates over traces (time-stamped execu-
tions), constraining expected behavior. It basically features
annotated partial orders of relevant events, denoting a (pos-
sibly infinite) set of matching traces. Violation of verifica-
tion goals for models such as freshness, bounded response or
event correlation can naturally be expressed in V TS.

q matches the next b-event after p

p and q must match different events

point

a

p

b

q
(min, max]

forbidden events

p precedes q
a

p

b

q
(min, max]

forbidden events

p matches the a-event previous to q
a

p

b

q
(min, max]

forbidden events

a

p

b

q
(min, max]

forbidden events

p and q are consecutive a and b events
a

p

b

q

events

point name

begin end

(min, max]
forbidden events

¬

¬

¬
¬

¬

Figure 2: VTS graphical notation

Fig. 2 shows the V TS graphical notation used in this pa-
per. The basic elements are points connected by lines and
arrows. Points are labeled by sets of events, meaning that
the point stands for an occurrence of one of the events in
an execution. A big full circle stands for the begin of the
execution, and two concentric circles correspond to its end.
Triangles below points are used to display optional point
names, needed for the formal notation. V TS can represent
precedence relations and temporal distances between points;
and sets of events which are forbidden between them. An
arrow between two points specifies a precedence relation-
ship. Arrow labels specify forbidden events between points.
A double forward arrow means “the next” occurrence of the
event of the destination point (i.e., shorthand for labeling
the arrow with the destination’s label). A double backward

2http://lafhis.dc.uba.ar/vts

arrow meas “the previous” occurrence of the event of the
source point (i.e., shorthand for labeling the arrow with the
source’s label). A dashed line linking two points expresses a
temporal distance between them. Dashed lines can also be
labeled with forbidden events. V TS can also identify the
first or the last event in a set. The graphical representation
for the first event in a set is a point linked to each point in
the set by dotted lines ending in small empty circles. The
notation for the last event uses full circles. V TS has more
primitives which increase its expressive power. The inter-
ested reader is referred to [6].

end_animation

 Animation ends
[39, 44]

¬ start_photo
start_photo

Photo appears
[4, 5]

¬ end_animation

>69

start_animation

Animation begins

end_photo

Photo disappears

Figure 3: V TS scenario from “O Primeiro João”

Here, we informally introduce V TS through a simple, yet
illustrative, example. Consider the V TS scenario depicted
in Fig. 3. It specifies a behavior observed when running the
interactive NCL application “O Primeiro João”. The sce-
nario expresses that the “animation” video lasts more than
69s. Between 39s and 44s after animation starts, a photo
appears, and there is no other photo starts inbetween. It
disappears between 4s and 5s later, before animation ends.
It is important to stress that this scenario has been obtained
without looking at the actual NCL document.

The scenario of Fig. 3 does not involve any user interac-
tion. In “O Primeiro João” there are several examples of
that, one is precisely the component interactivity which
enables and disables interactivity through the INFO button.
The first two scenarios of Fig. 4 express that interactivity
is switched off and on by pressing the INFO button. The
third scenario states that it is possible to repeatedly set on
interactivity without setting it off. Clearly, this scenario is
NOT satisfied in our example.

on info off

off info on

on on
¬ off

Figure 4: Example of scenarios with user interaction

The reader is referred to [6] for a formal definition of the
syntax and semantics of V TS. Intuitively, the semantics
of V TS assigns to each scenario a set of traces satisfying
it. Labeled points represent events in the traces, they can
match a particular position in a trace if the event in that
position is among the allowed events associated to the point.

A matching is a mapping between points in a scenario and
positions in a trace, exhibiting how the trace satisfies the
scenario. A trace σ satisfies a scenario S (noted σ � S)

180



iff there exists at least one matching between them. For in-
stance, the sub-trace (start anim, 12.4) (start photo, 53.1)
(end photo, 57.9) (end animation, 83.2) has a matching with
the scenario of Fig. 3. However, if the time stamp for event
end photo is 57, there is not matching, because it violates
the time restriction [4,5].

In [6] the notion of conditional scenario was introduced.
This allows expressing universal properties. The verification
of conditional scenarios is done by translating them into a
set of existencial scenarios that violate the property. An
example of conditional scenario is depicted in Fig. 5. It ex-
presses that each time interactivity switches from off to on
(antecedent, in black), then the user must have pressed the
INFO button in between (consequent, in gray).

off on

1info
1

1

Figure 5: Conditional scenario

3. TIME PETRI NETS
Time Petri Nets (TPN) [4] are a widely used formalism for
timed systems. TPN extend Petri nets with temporal in-
tervals associated with transitions. Fig. 6 summarizes the
graphical notation for TPN.

transition

place name

place 
in initial 
marking

transition name

event

[min,max]

inhibitor arc

pre-arc post-arc

transitions priority

transition t1 is higher 
priority than t2

t2

place place

read arc
t1

when not explicit
- event is ?
- interval is [0, )

Figure 6: TPN graphical notation

Two TPN can be combined by parallel composition into one
TPN where transitions with the same label are merged. The
parallel composition between two TPN, N1 and N2, is de-
noted as N1‖N2. See [4] for the formal definition.

Fig. 7 depicts the TPN of part of “O Primeiro Joao”. It
has been obtained from the NCL document by applying the
translation procedure from NCL to TPN of section 4.

3.1 Model-checking
The problem of checking whether a system under analysis
(SUA) modeled as a TPN N satisfies a V TS scenario S is
solved in the following way. The tool VTS2TINA presented
in [13] translates S into a TPN (observer) TS which recog-
nizes matching traces. The TPN TS is composed with the
TPN N of the SUA to check whether a matching execution

exists, by using available model checking tools for TPN, e.g.,
TINA [3]. Specifically, the model-checking problem consists
in verifying whether there exists an execution that reaches
a state where place accept of TS is marked, and remains
marked thereafter. See [13] for further details.

4. VERIFICATION OF NCL
In order to complete the verification method, we need a pro-
cedure to translate a NCL application to a TPN model. For
the“O Primeiro João”case study, the TPN showed in Fig. 7,
modeling the behavior defined by the NCL document, have
been constructed manually, but systematically applying the
rules described hereinafter. We are currently developing a
tool to generate TPN automatically from NCL documents.
In this section, we restrict to a subset of NCL comprising
media components and connectors. In particular, we focus
on the common library of causal connectors defined in the
file causalConnBase.ncl distributed with the case study. The
main idea is to translate each connector (onBeginStart, on-
BeginStartDelay, etc.) and each media (audio, video, music,
user interaction, etc.) as a single TPN component. This ap-
proach allows to construct the TPN of the NCL document
in a compositional way and to reuse translations of frequent
pieces of code (typically connectors). For lack of space, we
only show parts of NCL syntax. The reader is refered to the
NCL manual and full example code for details.

start_animation

[0,0]

stop_animation

ready_animation

begin_animation

l_drible l_photo l_music l_icon

l_endl_con

cancel_animation

end_animation

[70,70]

occurring_animation

Figure 8: TPN of the media component animation

Fig. 8 shows the TPN of the media component animation.
There are 4 basic places3, namely: begin, ready, occurring,
and cancel. Initially, there is a token in ready. Transition
start is fired immediately when a toke is put in begin. This
is done by transition init (Fig. 7). When start fires, it puts
a token in occurring, modeling that the media component
is executing. It also puts tokens in places associated with
links bound to the “onBegin” role of the media. In this case,
these are l_drible, l_photo, l_music, and l_icon. Tran-
sition end models the natural end of the media component,
that is, when the player associated with the media ends play-
ing. In the case of animation, this happens 70 seconds after
start, which is modeled by the interval [70, 70] attached to
end. Transition end puts a token back to ready, meaning
that the media can be started again. It also puts tokens in
places associated with links bound to the “onStop” role of

3For readability, we omit the suffixes _animation, etc., when
clear from context

181



l_con_act[0,0]

ready_drible

begin_drible

l_drible_act[0,0]

l_photo

entry init begin_animation start_animation

[0,0]

start_animation

l_drible

start_drible

start_drible occurring_drible

end_drible

[5,5]

end_drible

stop_drible

stop_drible

ready_icon

l_icon_act[0,0]

l_icon

begin_icon

start_icon

start_icon occurring_icon

end_icon

[6,6]

end_icon

stop_icon

[0,0]

stop_icon

l_photo_act[0,0]

start_photo

start_photo

ready_photo

end_photo

end_photo

occurring_photo

stop_photo

stop_photo

begin_photo

cancel_iconcancel_photo

cancel_drible

l_music

l_music_act[5,5]

begin_background

start_background[0,0]

start_background

occurring_background

occurring_background

stop_background

[0,0]

stop_background

ready_background

occurring_animation

end_animation[70,70]

end_animation

stop_animation

stop_animation

ready_animation

l_con l_end

l_end_act[0,0]

cancel_background

begin_menu

start_menu[0,0]

start_menu

ready_menu

stop_menu

[0,0]

stop_menu

occurring_menu

cancel_menu

cancel_animation
[41,41]

[5,5]

[45,45]

[11,11]

Figure 7: TPN of a part of “O Primeiro João”

the media. In this case, they are l_con and l_end. Place
cancel is used to put a token to stop the media component
through a link binding role “stop”.

l_drible_act

!"#"$

l_con_act

!"#"$

l_music_act

!%#%$

l_drible

begin_drible

l_con

cancel_menu

l_music

begin_menubegin_background

Figure 9: TPN of three links

Consider the following NCL link from “O Primeiro João”:

<link id="lMusic" xconnector="conEx#onBeginStartDelay">
<bind role="onBegin" component="animation"/>
<bind role="start" component="background">
<bindParam name="delay" value="5s"/></bind>
<bind role="start" component="menu">
<bindParam name="delay" value="5s"/>
</bind></link>

Fig. 9 (right) shows the TPN of this link. It starts compo-
nents background and menu with a delay of 5 seconds. The
one on the left models the link

<link id="lDrible" xconnector="conEx\#onBeginStart">

by immediately starting component drible. The one in the
middle models the link

<link xconnector="conEx#onEndStop">
<bind role="onEnd" component="animation" ... />
<bind role="stop" component="menu"/></link>

by immediately stops component menu. Fig. 10 shows an
example of translation of a switch node, e.g., the menu com-
ponent of “O Primeiro João”. Notice that the TPN of the
switch is not part of the TPN shown in Fig. 7.

We have sketched the translation rules for media compo-
nents, switch nodes, links and causal connectors. The TPN
of the NCL document is therefore obtained in a modular way.
We have illustrated the overall idea with our case study. We
are ready now to carry out the verification of the desired
properties on the NCL application. In our experiment, we
use the V TS scenario of Fig. 11, which extends the scenario
shown in Fig. 3 by adding the media icon and including a
superposition condition between it and the media photo.

We proceed as was described in Sec. 3, by running TINA
on the TPN obtained by composing the TPN of the NCL
document shown in Fig. 7, and the TPN of the V TS scenario
of Fig. 11 obtained with the tool VTS2TINA. It takes a few
seconds to generate the TPN of the VTS scenario and verify
the composed net. The verification result is true, meaning

182



start_music

!"#"$

sel_techno

cancel_music

ready_music

begin_music

cancel_menu

start_menu

!"#"$

begin_menu

occurring_menu

stop_menu

ready_menu

occurring_music

sel_cartoon

sel_rock

stop_music sel_choro

Figure 10: TPN of the switch node “menu”

that all the time constraints on the medias are satisfied and
the superposition between two of them effectively occurs.

4.1 Interactivity
The behaviors presented so far did not consider interaction
with the user. To illustrate how interactivity is handled,
we resort to the interactivity component of the running
application. Fig. 12 shows part of the TPN of this com-
ponent4. Here, the interaction is reduced to pressing but-
ton INFO. For this, the TPN has two distinguished places,
namely: sel_info and enabled_info. The former is to be
connected with the TPN modeling the behavior of the user.
An example of such behavior is shown in Fig. 13. In this
case, the INFO events have a minimal inter-arrival time of
one second. Besides, for an INFO event to be taken into ac-
count, the enable_INFO place has to be marked, that is, the
interactivity component has to be waiting for it, and the
sel_INFO place has to be empty, that is, there must not be a
pending previous INFO event. For a discussion on different
strategies for modeling the interaction of a reactive applica-
tion with its environment, the reader is referred to [15].

We have verified that the first two scenarios of Fig. 4 and
the conditional scenario of Fig. 5 are satisfied in the TPN
model of the NCL application “O Primeiro João”. We have
also checked that the third scenario of Fig. 4 does NOT hold,
as expected.

4Recall that arrows between transitions are priorities.

start_animation             
      end_animation[39, 44]

start_photo

[4, 5]

[42, 45] start_icon end_icon

[6, 7]

end_photo

last_to_start first_to_end
>0

>69

Figure 11: V TS scenario from “O Primeiro João”

5. RELATED WORK
There has been very little work on the specific topic studied
by this paper. The main reason for this is the recent adop-
tion of Ginga-NCL for ITVD. The only, and very preliminar,
research paper we are aware of about checking temporal con-
sistency of NCL documents is [9]. That article proposes a
translation of version 1.0 of the underlying modeling frame-
work of NCL, namely Nested Context Model (NCM), into
Timed Automata (TA) [2]. Such work focuses on the vali-
dation of NCL 1.0 and 2.0, less expressive than 3.0. More-
over, there is no available tool implementing the approach
nor reported case studies. Other previous works relate to
SMIL (Synchronization Multimedia Integration Language),
versions 1.0 and 2.0, less expressive than NCL 3.0. For in-
stance, [11] presents the editing tool Madeus, based on tem-
poral constraint networks [7], weaker than TPN, [10] pro-
poses a verification framework for SMIL 1.0 based on Ar-
gos [12], and [14] proposes a semantics of SMIL 2.0 based in
RT-LOTOS and model checking based on TA. None of these
tools are currently available. Earlier, [8] developed Timed
Stream Petri Nets for modeling multimedia systems and [16]
extended timed automata in the same direction. There is
no tool support for such modeling formalisms. More re-
cently, [5] proposed a verification technique for SMIL based
on Petri Nets and [17] used the PN-based tool SAM for
checking temporal consistency of a multimedia document.
Also, [1] used TA with deadlines (introduced in [16]) for
model-checking a multimedia greetings card. Those works
only present examples without giving formal semantics to
any supporting language.

6. CONCLUSIONS AND FUTURE WORK
This paper proposes an approach and tool support for veri-
fying complex properties on NCL documents, encompassing
temporal consistency. For this, we devised a TPN-based se-
mantics of a significant subset of NCL. In our framework,
properties are expressed with the visual language V TS. Ver-
ification is carried out by using the tool VTS2TINA [13]
to generate a TPN from a V TS scenario, and then using
TINA [3] to check whether the TPN of the NCL document
satisfies the scenario. The approach has been illustrated
with the case study used for teaching NCL.

From the preliminary experimental results obtained with
this case study, we believe V TS is an adequate formalism
for specifying complex timing properties of interactive mul-
timedia applications, implemented in NCL, in an intuitive
and compact way. We intend to extend V TS in order to be
able to express other kinds of properties, comprising layout,

183



lOff_seq1

lOn_act1

[0,0]

lOn_seq2

lOn_act2

[0,0]

begin_intOff

start_intOff

[0,0]

cancel_const_intOff

[0,0]

lOn_seq1

off

[0,0]

on

[0,0]

lOff_act1

[0,0]

lOff_seq2

lOff_act2

[0,0]

begin_intOn

cancel_intOff
cancel_intOn

sel_info

start_intOn

[0,0]

enable_info
cancel_const_intOn

[0,0]

occurring_intOn
occurring_intOff

Figure 12: TPN of component interactivity

info

enable_info

sel_info wait

press_button

delay

[1,![

Figure 13: User behavior

transitions, etc. We are currently working on the automati-
zation of the translation from NCL to TPN, the extension of
the current semantics to a larger subset of NCL (including
interaction with devices and lua-based scripting), and the
study of other formalisms to determine which is the best
suited for verifying NCL documents.

7. REFERENCES
[1] K. Altisen, G. Gossler, A. Pnueli, J. Sifakis,

S. Tripakis, and S. Yovine. A framework for scheduler
synthesis. In IEEE RTSS’99.

[2] R. Alur, D. Dill. A Theory of Timed Automata TCS
126(2): 183-235 (1994).

[3] B. Berthomieu and F. Vernadat. Time Petri Nets
Analysis with TINA. In (QEST’06), 2006.

[4] B. Berthomieu and F. Vernadat. State Space
Abstractions for Time Petri Nets. In Handbook of
Real-Time and Embedded Systems, 2007.

[5] S. Bouyakoub, A. Belkhir. H-SMIL-Net: A
Hierarchical Petri Net Model for SMIL Documents.
10th Int. Conf. on Computer Modeling and
Simulation, p. 106-111, 2008.

[6] V. Braberman, N. Kicillof, A. Olivero. A
Scenario-Matching Approach to the Description and
Model Checking of Real-Time Properties. IEEE TSE,
31(12), 2005.

[7] R. Dechter, I. Meiri, J. Pearl. Temporal Constraint
Networks. Artificial Intelligence 49:61-95, 1991.

[8] M. Diaz, P. Sénac. Time Stream Petri Nets: A Model
for Timed Multimedia Information. Application and
Theory of Petri Nets, 1994, p. 219-238

[9] M. Fagundes Felix, E. Hermann Haeusler, L. F. Gomes
Soares. Validating Hypermedia Documents: a Timed
Automata Approach. TR, PUC-Rio Inf. MCC21/02.

[10] M. Jourdan. A formal semantics of SMIL: a web
standard to describe multimedia documents.
Computer Standards and Interfaces 23(5):439-455,
November 2001, Elsevier.

[11] M. Jourdan, N. Layaida and L. Sabry Ismail.
MADEUS: an authoring environment for multimedia
documents. IEEE Int. Conf. on Multimedia
Computing and Systems, 1997.

[12] F. Maraninchi. Argonaute: Graphical Description,
Semantics and Verification of Reactive Systems by
Using a Process Algebra. LNCS 407, p. 38-53, 1989.

[13] D. Monteverde, A. Olivero, S. Yovine, and
V. Braberman. VTS-based specification and
verification of behavioral properties of AADL models.
ACES-MB’08, Toulouse, France, 2008. Also available
as TR, DC. FCEN. UBA.

[14] P. Sampaio, C. Lohr, J. P. Courtiat. An integrated
environment for the presentation of consistent SMIL
2.0 documents. ACM Symp. on Document
Engineering, 2001.

[15] J. Sifakis, S. Tripakis, S. Yovine. Building models of
real-time systems from application software.
Proceedings of the IEEE 91(1): 100-111 (2003).

[16] J. Sifakis, S. Yovine. Compositional Specification of
Timed Systems. STACS’96, LNCS 106, p. 347-359.

[17] H. Yu, X. He, Y. Deng, L. Mo. Formal analysis of
real-time systems with SAM. ICFEM’02, LNCS 2495.

184




